抗震设计的R-μ基本准则及钢筋混凝土典型框架结构超强特征分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
各国现行抗震设计规范采用的居于主导地位的抗震设计方法仍然是基于弹性反应谱理论和R-μ基本准则的通用抗震设计方法。其中,通过地震力降低系数R把基准设防地震作用降到设计采用的相对偏低的地震作用水准,同时通过相应的能力设计措施力求保证结构在强震下的反应需求不超过结构的反应能力。
     但最近完成修订的美国抗震设计规范IBC 2003和加拿大抗震设计规范NBCC 2005已展示出为了追求等倒塌风险而把基准设防地震作用水准从475年重现期水准提高到预期最大地震水准的动向,从而使各类超静定结构对应这一地震水准的R-μ规律及超强特征成为理应进一步深入揭示的结构抗震性能规律。
     为此,本论文初步完成了以下研究工作:
     ①对迄今为止已完成的单自由度非弹性体系R -μ-T规律主要研究成果的归纳和分析;
     ②对迄今为止已完成的多次超静定非弹性结构R -μ规律及超强特征主要研究成果的归纳和初步评述;
     ③对各国抗震设计规范反映R -μ规律及超强等问题的具体做法进行归纳和对比分析;
     ④利用动力推覆分析初步完成了对我国五个不同设防分区各一榀典型框架的结构超强特征分析,并对分析结果进行了讨论。
     从上述研究工作中得出的主要结论是:
     ①从单自由度和多自由度非弹性体系R -μ规律的主要研究成果来看,各研究者所得主要规律和认识趋同。应该承认R-μ基本准则是保证结构抗震性能的基本准则,在设计地震作用参与荷载组合对结构设计起控制作用时必须遵循。中国现行规范不符合R-μ基本准则的缺口急待修补。
     ②若以预期最大地震水准作为基准设防地震水准,则实际结构地震力降低系数R可能应至少包含两个因素,即考虑结构延性能力的延性降低系数Rμ和考虑整体结构超强效应的结构超强系数? d。
     ③本文动力推覆分析识别出0.1g区、0.15g区、0.2g区、0.3g区和0.4g区典型框架相对保守的超强分别为3.15、2.32、1.83、1.54和1.79;同时清楚的识别出0.15g区、0.2g区、0.3g区典型框架存在相对较高的形成层侧移机构的风险。
     ④美国IBC 2003和加拿大NBCC 2005为了追求等倒塌风险把基准设防地震作用水准提高到了预期最大地震水准;美国IBC 2003、加拿大NBCC 2005和新西兰NZS 4203(1992)为了更好的考虑不同地区地震危险性特征的差异,采用一致风险
The dominant seismic design method in current seismic design codes of different countries is still the conventional seismic design method based on elastic response spectra theory and R-μprinciple. In this method, the reference earthquake design level is reduced to relatively lower earthquake level adopted by design through force reduction factor R, and the corresponding capacity design measures are adopted to ensure the response demand of structures under strong earthquakes doesn’t exceed the response capacity.
     However, the recently revised seismic design codes IBC 2003 of USA and NBCC 2005 of Canada reveal a trend of increasing reference earthquake design level from earthquake level with a recurrence period of 475 years to anticipated maximum earthquake level so as to provide a more uniform margin against collapse. This makes that R-μrelations and overstrength character of redundant structures corresponding to anticipated maximum earthquake level should be further studied.
     Therefore, the main research work finished preliminarily in this thesis is as follows:
     ①Summary and analysis of the chief research findings of R-μ-T relations for single-degree-of-freedom inelastic systems so far finished.
     ②Summary and commentary of the main research findings of R-μrelations and overstrength character of redundant structures.
     ③Summary and comparison of specific measures reflecting R-μprinciple and overstrength character in seismic design codes of different countries.
     ④Overstrength character analysis of five typical frames, which separately locate in intensity zonation 0.1g, 0.15g, 0.2g, 0.3g and 0.4g, through dynamic pushover analysis, and discussions of the analysis results.
     From the research work stated above, the main conclusions can be drawn as follows:
     ①The main research findings of R-μrelations of single-degree-of-freedom and multi-degree-of-freedom inelastic systems are consistent. It should be admitted that R-μprinciple is the fundamental principle to ensure seismic performance of structures and must be followed when load combinations including earthquake action control the design of structures. The flaw of current Chinese codes which is inconsistent with R-μprinciple is pressing for remedy.
     ②If the anticipated maximum earthquake level are determined as reference earthquake design level, the force reduction factor R of actual structures may include at
引文
[1] IBC 2003. International Building Code[S]. International Code Council. Inc. May 2003.
    [2] A.C. Heidebrecht. Overview of seismic provisions of the proposed 2005 edition of the National Building Code of Canada[J]. Canadian Journal of Civil Engineering. 2003, 30(2):241-254.
    [3] NZS 4203. General Structural Design and Design Loading for Buildings[S]. New Zealand. Wellington. 1992.
    [4] N.M. Newmark and W.J. Hall. Earthquake Spectra and Design [M]. EERI Monograph Series. Earthquake Engineering Research Institute. Oakland. California. USA. 1982
    [5] H. Krawinkler and A.A. Nassar. Seismic design based on ductility and cumulative damage demand and capacities[A]. Nonlinear Seismic Analysis and Design of Reinforced Concrete Buildings[C]. Fajfar and Krawinkler, ed. Elsevier Applied Science. New York. USA. 1992:23-40.
    [6] E. Miranda. Site-dependent strength-reduction factors [J], Journal of Structural Engineering. 1993, 119(12): 3503-3519.
    [7] E. Miranda and V.V. Bertero. Evaluation of strength reduction factor for earthquake-resistance design [J]. Earthquake Spectra. 1994, l0 (2):357-379.
    [8] T. Vidic P. Fajfar and M. Fischinger. Consistent inelastic design spectra: strength and displacement[J].Earthquake Engineering and Structural Dynamics, 1994, 23(3):507-521.
    [9] B. Borzi and A.S. Elnashai. Refined force reduction factors for seismic design [J]. Journal of Engineering Structures.2000, 22(5):1244-1260.
    [10] 卓卫东,范立础. 结构抗震设计中的强度折减系数研究[J].地震工程与工程振动. 2001, 21(1):84-88.
    [11] 翟长海,公茂盛,张茂花,谢礼立和张敏政. 工程结构等延性地震抗力谱研究[J].地震工程与工程振动.2004, 24(1):22-29.
    [12] 吕西林和周定松. 考虑场地类别与设计分组的延性需求谱和弹塑性位移反应谱[J].地震工程与工程振动.2004, 24(1):39-48.
    [13] J.E. Martinez-Rueda. Scaling procedure for natural accelerograms based on a system of spectrum intensity scales[J]. Earthquake Spectra. 1998, 14(1):135-152.
    [14] A.S. Elnashai and A.M. Mwafy. Overstrength and force reduction factors of multistory reinforced-concrete buildings [J]. The Structural Design of Tall Buildings.2002, 11:329-351.
    [15] A.M. Mwafy and A.S. Elnashai. Static pushover versus dynamic collapse analysis of RC buildings[J]. Engineering Structures. 2001, 23:407-424.
    [16] A.M. Mwafy and A.S. Elnashai. Calibration of force reduction factors of RC buildings[J]. Journal of Earthquake Engineering. 2002, 6(2):239-273.
    [17] C.M. Uang. Establishing R (or Rw) and Cd factors for buildings seismic provisions[J], Journal of Structural Engineering. 1991, 117(1): 19-28.
    [18] A. Whittaker, G. Hart and C. Rojahn. Seismic response modification factors[J]. Journal of Structural Engineering. 1999, 125(4): 438-444.
    [19] L.M. Salvitti and A.S. Elnashai. Evaluation of behaviour factor for RC buildings by nonlinear dynamic analysis[C]. In Proceedings 11th WCEE. IAEE, Acapulco, 1996, Mexico. Paper No.1820.
    [20] T.B. Panagiotakos and M.N. Fardis. Effect of Column Capacity Design on Earthquake Response of Reinforced Concrete Buildings[J]. Journal of Earthquake Engineering. 1998, 2(1):113-145.
    [21] A.J. Kappos. Evaluation of behaviour factors on the basis of ductility and overstrength studies[J]. Engineering Structures. 1999, 21:823-835.
    [22] M. Fischinger P. Fajfar and T. Vidic. Factors Contributing to the Response Reduction[C]. 5th US NCEE.Chicago .1994:97-106.
    [23] T. Paulay and M.J.N. Priestley 著. 戴瑞同,陈世鸣等译. 钢筋混凝土和砌体结构的抗震设计[M]. 北京:中国建筑工业出版社.1999.
    [24] R. Park. Explicit incorporation element and structure overstrength in the design process[C]. Proc. 11th WCEE.IAEE.Acapulco.Mexico.1996: Paper No.2130.
    [25] P. Fajfar and T. Paulay. Notes on definitions of overstrength factors[A]. Seismic Design Methodologies for the Next Generation of Codes[C]. Proceedings of the International Workshop, Bled, Slovenia, 24-27 June 1997:407-409.
    [26] D. Mitchell and P. Paultre. Ductility and overstrength in seismic design of reinforced concrete structures[J]. Canadian Journal of Civil Engineering.1994, 21: 1049-1060.
    [27] J.L. Humar and M.A. Ragozar. Concept of overstrength in seismic design[C].Proc.11th WCEE. IAEE.Acapulco.Mexico.1996: Paper No.639.
    [28] A. Massumi, A.A. Tasnimi and M. Saatcioglu. Prediction of seismic overstrength in concrete moment resisting frames using incremental static and dynamic analysis[C]. Proc. 13th WCEE. IAEE, Vancouver, Canada. 2004: Paper No.2826.
    [29] S.K Jain and N. Navin. Seismic overstrength in reinforced concrete frames[J]. Journal of Structural Engineering. 1995, 121(3): 580–585.
    [30] G.D.P.K. Seneviratna and H. Krawinkler. Modifications of seismic demands for MDOF systems[C]. Proc. 11th WCEE.IAEE.Acapulco.Mexico.1996: Paper1446.
    [31] P.R. Santa-Ana and E. Miranda. Strength reduction factors for multi-degree-of-freedom systems[C]. Proc. 12th WCEE. IAEE. Auckland.New Zealand.2000: Paper1446.
    [32] H. Moghaddam and R.K. Mohammadi. Ductility reduction factor of MDOF shear-building structures[J].Journal of Earthquake Engineering.2001, 5(3):425-440.
    [33] 范立础等.桥梁延性抗震设计[M]. 北京:人民交通出版社.2001.
    [34] SEI/ASCE7-02. Minimum Design Loads for Buildings and Other Structures[S]. American Society of Civil Engineers. 2003.
    [35] 罗开海. 建筑抗震设防标准和性能设计方法研究-中美欧抗震设计规范比较分析[博士][D]. 北京:中国建筑科学研究院.2005
    [36] IBC2000. International Building Code[S]. International Code Council. Inc. Mar 2000.
    [37] R.E. Bachman and D.R. Bonneville. The seismic provisions of the 1997 Uniform Building Code[J]. Earthquake Spectra. 2000, 16(1):85-100.
    [38] W.T. Holmes. The 1997 NEHRP recommended provisions for seismic regulations for new buildings and other structures[J]. Earthquake Spectra. 2000, 16(1):101-114.
    [39] UBC 1997: Uniform Building Code[S]. International Council of Building Officials (ICBO). Whittier, CA. 1997.
    [40] BSSC. 1997 edition NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures[S]. Part 1: Provisions (FEMA 302) and Part 2: Commentary (FEMA 303). Washington, D.C.1997
    [41] BSSC. 2000 edition NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures[S]. Part 1: Provisions (FEMA 368) and Part 2: Commentary (FEMA 369). Washington, D.C.2001
    [42] BSSC. 2003 edition NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures[S]. FEMA 450. Part 1: Provisions and Part 2: Commentary. Washington, D.C.2004
    [43] A.D. Frankel. C.S. Mueller. T.P. Barnhard and E.V. Leyendecker. et.al. USGS national seismic hazard maps[J]. Earthquake Spectra.2000, 16(1):1-20.
    [44] E.V. Leyendecker. R.J. Hunt. A.D. Frankel and K.S. Rukstales. Development of maximum considered earthquake ground motion maps[J]. Earthquake Spectra. 2000, 16(1):21-40.
    [45] B.R. Ellingwood. Probability-based codified design for earthquakes[J]. Engineering Structures. 1994, 16(7):498-506.
    [46] E.V. Leyendecker. S.T. Algermissen and A.D. Frankel. Use of spectral response maps and uniform hazard response spectrum in building codes[C]. 5th US NCEE.Chicago .1994:379-387.
    [47] A.D. Frankel. S. Harmsen and E.V. Leyendecker. et.al. USGS national seismic hazard maps:uniform hazard spectrum, de-aggregation, and uncertainty[R]. NCEER technical report 97-0010, 1997:39-73.
    [48] J.P.N. Guy and R.B. Glenn. Seismic design requirements for regions of moderate seismicity[J]. Earthquake Spectra. 2000, 16(1):205-225.
    [49] J.L. Humar and M.A. Rahgozar. Application of uniform hazard spectra in seismic design of multistory buildings[J]. Canadian Journal of Civil Engineering.2000, 27(3):563-580.
    [50] J. Adams and G. Atkinson. Development of seismic hazard maps for the proposed 2005 edition of the National Building Code of Canada[J]. Canadian Journal of Civil Engineering. 2003, 30(2):255-271.
    [51] J.L. Humar and M.A. Mahgoub. Determination of seismic design forces by equivalent static load method[J]. Canadian Journal of Civil Engineering. 2003, 30(2):287-307.
    [52] D. Mitchell P. Paultre and M. Saatcioglu et. al. Seismic force modification factors for the proposed 2005 edition of the National Building Code of Canada[J]. Canadian Journal of Civil Engineering. 2003, 30 (2):308-327.
    [53] W.D.L. Finn and A. Wightman. Ground motion amplification factors for the proposed 2005 edition of National Building Code of Canada[J]. Canadian Journal of Civil Engineering. 2003, 30(2):272-278.
    [54] R.H. Devall. Background information for some of the proposed earthquake design provisions for the 2005 edition of the National Building Code of Canada[J]. Canadian Journal of Civil Engineering. 2003, 30(2):279-286.
    [55] M. Saatcioglu and J.L. Humar. Dynamic analysis of buildings for earthquake-resistant design[J]. Canadian Journal of Civil Engineering. 2003, 30 (2):338-359.
    [56] NBCC1995. National Building Code of Canada 1995[S]. Institute for Research in Construction. National Research Council of Canada. Ottawa. Ont. 1995.
    [57] EC8 (1994): Eurocode 8-Design Provisions for Earthquake Resistance of Structures[S]. ENV 1998, CEN, Brussels, 1994.
    [58] CEN/TC 250(2003). PrEN 1998-1 Eurocode 8: Design of Structures for Earthquake Resistance. Part 1: General Rules, Seismic Actions and Rules for Buildings. Final Draft Dec. 2003.
    [59] M.N. Fardis. Current development and future prospects of the European code for seismic design and rehabilitation of buildings: Eurocode 8[C]. Proc. 13th WCEE. IAEE, Vancouver, Canada. 2004: Paper No.2025.
    [60] GBJ 11-89. 建筑抗震设计规范[S]. 北京:中国建筑工业出版社,1989.
    [61] GB 50011-2001.建筑抗震设计规范[S].北京:中国建筑工业出版社.2001.
    [62] 周雍年.关于设防地震动水准的考虑[J].建筑结构学报.2000, 21(1):17-20.
    [63] 马玉宏,谢礼立.考虑地震环境的设计常遇地震和罕遇地震的确定[J].建筑结构学报.2002, 23(1):43-47.
    [64] 洪峰,谢礼立.工程结构抗震设计中小震、中震和大震的确定方法[J]. 地震工程与工程振动.2000,20(2):1-6.
    [65] CECS 160:2004. 建筑工程抗震性态设计通则(试用)[S]. 北京:中国计划出版社.2004
    [66] 谢礼立.《建筑工程抗震性态设计通则》的特点[J].工程建设标准化.2004, 21(6):24-29.
    [67] 谢礼立.论《建筑工程抗震性态设计通则》的编制思想[J].铁道勘察.2004, 21(3):1-5.
    [68] 谢礼立,马玉宏.基于抗震性态的设防标准研究.地震学报[J].2002,24(2):200-209.
    [69] 马玉宏,谢礼立,赵桂峰.地震环境下不同重要性建筑的抗震设防水准[J].自然灾害学报.2004,13(5):117-121.
    [70] NZS3101. Concrete Structures Standards[S]. New Zealand. Wellington. 1995.
    [71] GB 50010-2002.混凝土结构设计规范[S]. 北京:中国建筑工业出版社.2002.
    [72] ACI 318-05. Building Code Requirements for Structural Concrete[S]. American Concrete Institute. Farminton Hills. Michigan. USA. 2005.
    [73] CSA 1994a. Design of Concrete Structure[S]. Standard CSA-A23.3-94. Canadian Standard Association. Rexdale. Ont. 2005.
    [74] J.H. Rainer. Force reductions factors for the seismic provisions of the National Building Code of Canada[J]. Canadian Journal of Civil Engineering. 1987, 14(4):447-454.
    [75] 韦锋.钢筋混凝土框架和框架-剪力墙结构非弹性地震反应性态的识别[博士][D].重庆:重庆大学.2005.
    [76] 杨红.基于细化杆模型的钢筋混凝土抗震框架非线性动力反应规律研究[博士][D].重庆:重庆建筑大学,2000.
    [77] TJ 11-78.工业与民用建筑抗震设计规范[S]. 北京:中国建筑工业出版社,1978.
    [78] 李英民.工程地震动的模型化研究[博士][D].重庆:重庆建筑大学,2000.
    [79] 杨溥,李英民,赖明. 结构时程分析法输入地震波的选择控制指标[J]. 土木工程学报,2000,33(6): 33-37.
    [80] D. Vamvatsikos and C.A. Cornell. Incremental dynamic analysis[J]. Earthquake Engineering and Structural Dynamics. 2002, 31(3):491-514.
    [81] D. Vamvatsikos and C.A. Cornell. Applied incremental dynamic analysis[J]. Earthquake Spectra. 2004, 20(2):523-553.
    [82] Fib (CEB-FIP). Bulletin 25. Displacement-Based Seismic Design of Reinforced Concrete Buildings[R]. Sprint-Digital-Druck. Stuttgart. 2003.
    [83] Fib (CEB-FIP). Bulletin 25. 白绍良译. 钢筋混凝土建筑结构基于位移的抗震设计[R].重庆大学土木工程学院.2004
    [84] Fib (CEB-FIP), Bulletin 25, Displacement-based seismic design of reinforced concrete buildings[R]. Sprint-Digital-Druck, Stutlgart, 2003.
    [85] Fib (CEB-FIP). Bulletin 25. 白绍良译. 钢筋混凝土建筑结构基于位移的抗震设计[R].重庆大学土木工程学院.2004
    [86] T.B. Panagiotakos and M.N. Fardis. Deformations of reinforced concrete members at yielding and ultimate[J]. ACI Structural Journal. 2001, 98(2): 135-148.
    [87] S.S.F. Sameh. H. Kuramoto and G.G. Deierlein. Stiffness modeling of reinforced concrete beam-columns for frame analysis, ACI Structural Journal. 2001, 98(2): 215-225.
    [88] 吴勇. 设计基本地震加速度为 0.15g 和 0.30g 的地区钢筋混凝土框架的非线性动力反应研究[硕士] [D].重庆:重庆大学.2002
    [89] 吴勇,雷汲川,杨红,白绍良. 板筋参与梁端负弯矩承载力的探讨[J]. 重庆建筑大学学报. 2002.24(3):33-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700