序批式双外循环生物流化床特性及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对高浓度、高色度有毒有害难降解的工业废水,利用生物流化床废水处理技术和多种厌氧—好氧组合方式的原理方法,设计了新型序批式双外循环生物流化床系统。该系统具有如下特点:(1)该系统结合了序批式操作模式和生物流化床技术的优势,是一种新型、高效的序批式生物膜反应器(SBBR),解决了已有固定床SBBR易堵塞、反应效率低等问题;(2)该流化床在不同的运行阶段,可以分别利用强制水力循环和气提式循环,实现液-固两相循环流化床及气-液-固三相循环流化床的操作,从而在同一流化床中实现了厌氧、好氧及沉降等多个过程;(3)该系统可使被处理的废水在处理过程中历经序批式厌氧—好氧过程、交替式厌氧—好氧过程以及厌氧—好氧原位降解过程的多种组合协同作用,能对包括染料在内的难溶、难降解的大分子进行更有效地吸附和分解,使厌氧分解及硝化和反硝化过程更完全;(4)该流化床采用了较轻的细小活性碳颗粒(100-120目)为载体且添加量较少,并采用循环射流的启动和流化方式,使系统更容易启动和流化,而且具有更优的生物降解性能;(5)该系统的微生物采用了悬浮生长和附着生长共存及序批式驯化的方式,生物相丰富,适应性强,具有多种降解能力;(6)合理设置的“闲置”期可以使厌氧分解、反硝化过程及色度的去除更完全,并对污泥进行减量降解及载体和生物系统再生,达到同时去除高浓度含碳有机物、去氮、脱色并减少污泥的目的。该技术系统还包括一个可以根据工艺需要产生多种不同控制模式的自动控制箱,能够对各种序批式的间歇过程进行自动地连续化操作,所以该技术在一定意义上实现了一体化处理,自动化操作,高效节能化运行,无二次污染的环保化处理目标。
     对系统特性的实验研究表明,该系统中气-液-固三相流化床,具有较好的充氧特性:氧总转移系数K_(La)(20℃)=10.78h~(-1),氧的利用率较高:E_A=18.9%;系统的微生物能适应从厌氧到好氧再到厌氧过程的溶解氧(DO)环境变化;在厌氧和好氧阶段,系统内微生物量合适,生物相丰富,悬浮生长和附着生长比例适当,生物膜厚度适宜,分别为124μm和146μm。
     另外,本文还对运行过程中该系统的流体动力学特性进行了细致研究,主要包括两部分:一是采用粒子图像速度场仪(PIV)对液-固两相循环阶段主、副床的流场特性进行了实验研究,得到了主、副床速度分布规律及涡量分布特性,结果表明:主床x方向的轴向速度分布V_z—r_x/R是不对称的,其最大值偏向外侧(r_x/R为正):y方向的轴向速度分布V_z—r_y/R是对称的,最大速度均在中心r_y/R=0;在不同的循环流量下,主床和副床内的涡量的分布都比较均匀,不会出现由于剪切力过大而使生物膜被破坏的情况,说明流化床结构设计合理;实验确定了最佳操作条件下主、副床的涡量范围分别是(35-45)s~(-1)和(10-20)s~(-1)。二是采用RSM湍流模型对流化床进行数值模拟计算,得到了流化床在不同入射流量下的三维速度场,与相应条件下实验结果对比均符合得比较好;模拟计算还得到了流化床在不同循环流量下的三维压强分布和湍流强度分布。本文对流化床系统流体力学特性的深入研究为此类设备的设计和工程放大提供了新的方法和基础数据。
     本文利用该系统对模拟印染废水进行处理,考察了厌氧阶段和好氧阶段COD_(cr)及NH_3-N的去除规律和效果,确定了其最佳的循环流量和气速分别为1.4m~3/h和0.17m/min经过五种不同厌氧.好氧组合工艺的比较,最佳组合处理工艺为:一次性进水厌氧A(4.0h)—好氧O(4.0h)—沉淀出水D(2.0h)—闲置(2.0h),一个处理周期总计12h;该最佳组合方式处理模拟印染废水结果如下:高浓度(COD_(cr)1000-1200mg/L)进水,COD_(cr)去除率可达到90%以上,低浓度(COD_(cr)400-600mg/L)进水,去除率达82%;NH_3-N去除率均达60%以上;色度去除率均接近100%,该结果表明系统对含染料废水的处理效果比较理想;对最佳的运行模式下系统的主要性能参数的研究表明:反应器中DO和pH均呈周期性变化,满足多重厌氧-好氧的生化处理要求;系统中污泥量在好氧阶段结束时达到最大值4272mg/L,保证良好的处理效果,在闲置期结束时又减到最少,从而大大降低了污泥排放量;该系统进水pH值在6.0~8.5范围内,温度在18~30℃范围内,有机负荷在1.4~5.4(kgCOD/m~3·d)之间,碳氮比大于5时,NH_3-N的去除率基本不受影响,经过30个周期以上的运行,均能达到规定的排放标准,进一步验证了该系统的有效性和稳定性。
In this thesis, a new equipment called a Sequential Batch Bi-extemal Recycling Biological Fluidized Bed (SBBRBFB) is designed to treat the highly polluted, toxic industrial wastewater which is hard to bio-degrade. The BRBFB is designed on the basis of techno-peculiarity of biological fluidized bed and the reasonable combination of anaerobic-aerobic courses. The BRBFB process has some innovations, which include:
     ●It is a new type of sequencing batch biofilm reactor(SBBR), which combines both the advantages of sequencing batch reactor technology and those of the biological fluidized bed technology. The shortages of liability of being blocked and low efficiency of treatment for packed bed sequencing batch biofilm reactor are overcome in this new system.
     ●Several different processes involving anaerobic treatment, aerobic treatment and settlement can be easily realized in this fluidized bed reactor because this system can be switched easily from solid-liquid fluidized bed recycling by hydrodynamic jet to gas-solid-liquid recycling by airlift in different process stages.
     ●The wastewater in this fluidized bed can be well dealt by various combination of anaerobic/aerobic course including sequencing, alternate, local concurrent mode, so the large molecules like dye which are difficult to dissolve and degrade can be absorbed and decomposed more effectively.
     ●This new system can be started up and fluidized easily and has higher biodegradation ability since the fine light activated carbon particles are adopted as carrier of the microorganism, and the recycling jet is taken to start up and fluidize the liquid-solid two phase fluid.
     ●The microorganisms in this reactor exist and develop in both suspended and attached manners and are domesticated by sequential anaerobic/aerobic process. Therefore the system has rich microorganism, good adjustability and degradation ability to many types of waste water.
     ●An idle period devised rationally makes the hydrolyzation- acidification and denitration more completely. The idle time can also help to reduce the residual sludge, and help the carriers and the within biofilm reproduce.
     ●Finally, an automatic control box, which can provide manifold modes of process according to the different calling for sequencing batch, is introduced, and therefore, in some way; the targets of automation, high efficiency and no secondary pollution of waste water treatment are realized in this new system.
     The primary investigation of the new system shows that: the gat-liquid-solid fluidized bed possesses a good ability to absorb oxygen. The total coefficient for transferring oxygen is K_(La)(20℃)=10.78h~(-1), and the Oxygen utilization is high (E_A=18.9%). The microorganisms can adapt for the change of environment of dissolving oxygen from anaerobic to aerobic course. The amount of rich microorganism is appropriate and the ratios of suspended microorganism to attached ones are 21% and 28% in anaerobic and aerobic processes respectively. Besides, the thick of the biofilm are 124μm and 146μm in anaerobic and aerobic processes respectively which are appropriate for biologic treatment.
     The fluid dynamics in the fluidized bed have also been investigated in detail both numerically and experimentally. First, the characteristics of the velocity fields in the main bed and the auxiliary bed were measured in solid-liquid fluidized phase by the particle image velocimetry (PIV). The Reynolds averaged velocities and vorticity in the main bed and the auxiliary bed were shown and analyzed. It is shown that axial velocity component is asymmetric with respect to the X direction(V_Z-r_x/R) and the excursion to the outside wall (+ r_x/R) of the maximal value is clearly seen, whereas the distribution of the axial velocity in the Y (V_Z-r_y/R) direction is symmetric and the maximal speed is located in the centre (r_y/R=0). On the other hand, the vorticities in the main bed and the auxiliary bed are both uniformly distributed so that the turbulent shear stresses around the carriers are not too strong to destroy the biofilms, and this accounts for the validity of the design of the reactor. The vorticities in the main bed and the auxiliary bed are between (35-45)s~(-1) and (10-20)s~(-1) respectively under the situation of optimal flux of recycling (1.4m~3/L). Second, a Reynold-stress model (RSM) was used to simulate the three dimensional velocities in the main and auxiliary beds. By comparison to the experiments, it is indicated that the numerical results by RSM model agree well with experiments under any flux of recycling. The distribution of pressure and turbulence intensity were also obtained and analyzed. The numerical method used in this thesis can be used to evaluate the performance of the reactor, and to shed new light on the design of such equipment.
     Finally, the new system was used to treat a model waste water from a dyeing plant. The effects of the removal of COD_(Cr) and NH_3-N were investigated in both anaerobic and aerobic phases. It is found that the most appropriate fluxes of recycling and aeration are 1.4m~3/h and 0.17m/min respectively. By the comparison of five different treatment courses, the optimization of the combined operation of the system is determined to be a 12-hour cycle including an inflow process and anaerobic digestion process (4 hr), an aerobic aeration process (4 hr), a settlement process (2 hr), and a recess process including effluent discharge process (2hr). After this optimal treatment, 90% of COD_(Cr) is removed for a higher concentration water (COD_(Cr) 1000-1200mg/L), and 82% of COD_(Cr) is removed for a lower concentration water (COD_(Cr) 400-600mg/L). The removal rate of NH_3-N is higher than 60%, and nearly 100% color is removed. These results indicate that wastewater containing dying wastewater can be well treated using SBBRBFB with proper choice of courses. Meanwhile, some other performance parameters under the optimization condition were also examined. These examinations show that the values of DO and pH in the reactor are periodic and can meet the requirement of biochemistry treatment, and the sludge in the reactor is changed from the maximum in the end of aerobic process to the minimal quantity in the end of idle process, which meet the requirement of microorganism quantity for treatment. The final residual sludge is reduced to a low level. The temperature is between 18-30℃, and the organic load is between 1.4-5.4 kgCOD/m~3·d. The discharge standards can be usually met after 30 periods of running. These results further indicate that SBBRBFB and the operating strategies are well designed and working well for treating dye waste water.
引文
[1] Jeris J. S. J. W at. Pollut. Control, 1977, 49(15): 816-823.
    [2] G. Hoyland. Aerobic Treatment in 'Oxitron' Biological Fluidized Bed Plant at Coleshill [J]. War. Pollut. Control, 1983, 82(4): 479-493.
    [3] P. F. Cooper. Complete Treatment of Sewage in a Two-Stage Fluidized-Bed System Part1 [J]. War. Pollut. Control, 1981, 81 (4): 447-464.
    [4] 崔连起等.生物流化床法处理废水技术发展概况[J].兰化科技,1986,4(1),47-52.
    [5] 周平,钱易.内循环生物流化床处理丙烯酸废水的试验[J].环境科学,1993,16(1):58-61.
    [6] 周平,钱易,内循环生物流化床反应器的理论分析[J]环境科学,1995,16(2):88-90.
    [7] 韦朝海,等.内循环流化床结构参数及其反应器性能的相关性[J].高校化学工程学报,2001,15(3):236-241.
    [8] 邓洪权等.内循环生物流化床反应器数学模型分析[J].四川大学学报(工程科学版),2001,33(2):52-56.
    [9] 张永明等.增加内循环的生物反应器对啤酒废水处理效率的研究[J].环境科学学报,2000,20(6):727-730.
    [10] 郑礼胜,等.内循环三相生物流化床处理生活污水[J]中国环境科学,1999,19(1):51-55.
    [11] 周平,等.内循环生物流化床处理石化废水的中试研究[J],环境科学,1997,18(1):26-29.
    [12] 华彬,陆永生,张麟等.利用外循环流化床技术处理染料废水的研究[J],化学世界,2000.增刊,92-93.
    [13] C. T. M. J. Frijters, et. al. Extensive nitrogen removal in a new type of airlift reactor [J]. War. Sci. Tech, 2000, 41(4-5): 469-476.
    [14] M. C. M. van Loosdrecht, et al., Integration of nitrification and denitrification in biofilm airlift suspension reactors [J]. War. Sci. Tech, 2000, 41(4-5): 97-103.
    [15] 胡宗定等.磁场生物流化床特性的研究[J],化工学报,1988,(1):120-126.
    [16] Tatsuhiko Suzuki. A new sewage treatment system with fluidized pellet bed separator [J]. Wat Sci Technol, 1993, 27(11): 185-192.
    [17] 栾金义等.复合生物流化床流动特性研究,第五届全国流态化会议文集[C].1990,4:211-214.
    [18] 刘有智等.新型复合生物流化床[J].化学反应工程与工艺,1996,6(2):92-96.
    [19] B. Kach, et al. Degradation of Phenol and Benzoic Acid in a Three Phsase Fluidized Bed Reactor[J], Wat. Res., 1999, 25(1): 1.
    [20] Jaakko A. Puhakka. Aerobic fluidized-bed treatment of polychlorinated phenolic wood preservative constituents [J]. wat. Res., 1992, 26 (6): 765-770.
    [21] J. A. Puhakka, Biodegradation of chlorophenols by mixed and pure purecultures from a fluidized bed reactor [J]. Applied Microbiol Biotechnol, 1995, 42 (6): 951-957.
    [22] G Ryhiner, Operation of a three-phase biofilm fluidized sand bed reactor for aerobic wastewater treatment [J]. Biotechnology and Bioengineering, 1988, 32 (5): 677-688.
    [23] A IMAIM Removal of refractory organics and nitrogen from landfill leachate by the microoganism-attached activeated carbon fluidized bed process [J]. wat. Res., 1993, 27(1): 143-145.
    [24] M A Moteleb. Anaerobic degradation of 2,4,6-trinitrotoluene in granular activated carbon fluidized bed and batch reactor [J]. wat. Sic Technol, 2001, 43(1): 67-75.
    [25] T Tanaka. Algae-removal performance of a fluidized-bed biofilm reactor system for lake water treatment[J]. Wat Sci Technol, 2001, 43(1): 277-283.
    [26] 郑礼胜等.内循环三相生物流化床处理生活污水[J].中国环境科学,1999,19 (1):51-55.
    [27] 周平等.内循环生物流化床处理石化废水的中试研究[J].环境科学,1997,18(1):26-29.
    [28] 蔡建安等.三相气提循环生物流化床处理焦化废水[J].水处理技术,1997,23 (2):110-114.
    [29] 耿士锁.生物接触氧化-生物炭流化床在毛纺印染废水深度处理中的应用[J].环境与开发,1997,12(4):28-30.
    [30] 胡妙生.厌氧生物活性炭流化床处理制药废水[J].中国给徘水,1996,12(4);39-41.
    [31]#12
    [32] 韦朝海,谢波,吴超飞,任源,陈焕钦.三重环流生物流化床的流体力学与传质特性[J].化学反应工程与工艺,1999,15(2):166-173.
    [33] 文湘华,王东海,钱易.内循环SBR处理含染料废水的研究[J].环境科学学报,2000,20(Sup.):54-57.
    [34] 华彬,陆永生,胡龙兴,卞华松.外循环三相流化床处理染料废水[J],过程工程学报2000,2(2):107-111.
    [35] P F Copper. Complete treatment of sewage in a two-stage fluidized-bed system part 1 [J]. Water Pollution Control, 1982, 81 (4): 447-464.
    [36] GONZALES S., WILDERER. P. A. Phosphate removal in a biofilm reactor[J]. Water Science Technology, 1990(23), 7-9: 1405-1416.
    [37] Wilderer P. A. Sequencing Batch Biofilm Reactor Technology[C]. Ladisch, MR. and Bose, A. Harnessing Biotechnology for the 21st Century. Washington, DC: American Chemical Society, 1992, 475-479.
    [38] Rusten, B., McCopy, M., Proctor, R. and Siljudalen, J. G. The Innovative Moving Bed Biofilm Reactor/Solid Contact Reaeration Process for Secondary Treatment of Municipal Wastewater [J]. Wat. Environ.Res., 1998, 70(5): 1083-1089.
    [39] Helness, H. and Odegaard, H. Biological Phosphorus and Nitrogen Removal in a Sequencing Batch Moving Bed Biofihn Reactor[J]. Mat. Sci. & Tech., 2001, 431: 233-240.
    [40] Gonzales-Martinez, S. and Wilderer, P. A. Phosphate Removal in a Biofilm Reactor [J]. Wat. Sci. & Tech., 1991, 23(7-9): 1405-1415.
    [41] Morgenroth, E. and Wilderer, P. A. Modelling of Enhanced Biological Phosphorus Removal in a Sequencing Batch Biofilm Reactor [J]. Wat. Sci. & Tech, 1998, 37(4/5): 583-588.
    [42] Woolard, C. R. The Advantages of Periodically Operated Biofilm Reactors for the Treatment of Highly Variable Wastewater [J]. Wat. Sci. & Tech., 1997, 35(1): 199-206
    [43] Irvine, R. L. and Moe. W. M. Period Biofilter Operation for Enhanced Performance during Unsteady-state Loading Conditions [J]. Wat. Sci. & Tech., 2001, 43(3): 231-239.
    [44] Daims, H., Purkhold, U., Bjerrum, L., Arnold, E., Wilderer, PA. and Wagner, M. Nitrification in Sequencing Biofilm Batch Reactors: Lessons from Molecular Approaches [J]. Wat. Sci. & Tech., 2001, 43 (3): 9-18.
    [45] Wilderer, P. A. Technology of Membrane Biofilm Reactors Operated under Periodically Changing Process Conditioncs [J]. Wat Sci. & Tech. 1995, 31 (1), 173-183.
    [46] Irvine, R. L., Wildere, P. A. and Flemming, H-C. Controlled Unsteady State Processes and Technologies: an Overview [J]. Wat. Sci. & Tech., 1997. 35(1). 1-10.
    [47] Wilderer P. A. Sequencing Batch Biofilm Reactor Technology [C]. Ladisch, M R and Bose, A. Harnessing Biotechnology for the 21st Century. Washington, DC: American Chemical Society, 1992. 475-479.
    [48] Chudoba, J., Grau, P. and Ottova, V. Control of Activated Sludge Bulking Ⅱ: Selection of Microorganisms by Means of a Selector [J]. Wat. Res., 1973, 7: 1389-1406.
    [49] Wilderer, P. A., Irvine, R. L., Goronszy, M. C. et al. Sequencing Batch Reactor Technology [M]. London, UK: IWA publishing, 2001, 1-3.
    [50] Daigger, G. T., and Grady, C. P. L., The Dynamics of Microbial Growth on Soluble Substrates-A Unifying Theory [J], Wat. Res., 1982, 16: 365.
    [51] Kaballo, H., Zhao, Y and Wilderer, P. A. Elimination of p-Chlorophenol in Biofilm Reactor-A Comparative Study of Continuous Flow and Sequenced Batch Operation [J]. Wat. Sci. & Tech., 1995, 31(1): 51-60.
    [52] Wobus, A. and Roske, I. Reactors with Membrane-grown Biofilm: Their Capacity to Cope withFluctuating Inflow Conditions and with Shock Loads of Xenobiotics [J]. Wat. Res, 2000, 34(1): 279-287.
    [53] Van Loosdrecht, M. C. M., Tijhuis, L., Wijdieks, A. M. S, Heijnen, J. J. Population Distribution in Aerobic Biofilms on Small Suspended Particles [J]. Wat. Sci. & Tech., 1995, 31(1): 163-171.
    [54] Wang, B., Li, J., Wang, L., Nie, M. and Li, J. Mechanism of Phosphorus Removal by SBR Submerged Biofilm System [J]. Wat. Res, 1998, 32 (9): 2633-2638.
    [55] Amz, P., Arnold, E. and Wilderer, P. A.. Enhanced Biological Phosphorus Removal in a Semi-full Scale SBBR [J]. Wat. Sci. & Tech., 2001, 43 (3): 167-174.
    [56] Chiou, R. J., Ouyang C F, Lin, K. H. and Chuang, S. H. The Characteristics of Phosphorus Removal in an Anaerobic/Aerobic Sequential Batch Biofilter Reactor [J]. Wat. Sci. & Tech., 2001, 44 (1): 57-65.
    [57] Kolb F. R. and Wilderer P. A. Active carbon sequencing biofilm hatch reactor to treat industrial wastewater [J]. Wat. Sci. technol., 1997, 35(1): 169-176.
    [58] Protzman, R. S., Lee, P. -H., Ong, S. K. and Moorman, T. B. Treatment of Formulated Atrazine Rinsate by Agrobacterium Radiobacter Strain in a Sequencing Batch Biofilm Reactor [J]. Wat. Res., 1999, 33 (6): 1399-1404.
    [59] Kaballo, H-P Shock Loading Management with the sequencing Batch Biofilm Reactor Technology [J]. Wat. Sci. & Tech., 1997, 35(1): 35-40.
    [60] Cho, B-C, Chang, C-N, Liaw, S-L and Huang; PT The Feasible Sequential Control Strategy of Treating High Strength Organic Nitrogen Wastewater with Sequencing Batch Biofilm Reactor [J]. Wat. Sci. & Tech., 2001, 43 (3): 115-122.
    [61] Brinke-Seiferth, S., Behrendt, J. and Sekoulov, I. The Biofilm Filter Sequencing Batch Reactor (BFSBR) [J]. Wat. Sci. & Tech., 1999, 39 (8): 77-83.
    [62] Gonzales-Martinez, S. and Wilderer, P. A. Phosphate Removal in a Biofilm Reactor [J]. Wat. Sci. & Tech., 1991, 23(7-9): 1405-1415.
    [63] Pastorelli, G., Canziani, R., Pedrazzi, L. and Rozzi, A. Phosphorus and Nitrogen Removal in Moving-bed Sequencing Batch Biofilm Reactor [J].Wat. Sci. & Tech., 1999, 40(4-5): 169-176.
    [64] Castillo, P. A. Gonzalez-Martinez, S. and Tejero, 1. Biological Phosphorus Removal Using a Biofilm Membrane Reactor: Operation at High Organic Loading Rates [J] Wat. Sci. & Tech., 1999, 40(4-5): 321-329.
    [65] Fang, H. H. P, Yeong, C. L. Y, Book, K. M. and Chiu, C. M. Removal of COD and Nitrogen in Wastewater Using Sequencing Batch Reactor with Fibrous Packing [J]. Wat. Sci. & Tech., 1993, 28(7): 125-131.
    [66] Cruz, A. and Buitron, G. Biotransformation of Disperse Blue 79 by an Anaerobic Sequencing Batch Biofilter [J]. Wat. Sci. & Tech., 2000, 42(5-6), 317-320.
    [67] Quezada, M, Linares, I. And Bultron, G. Use of a Sequencing Batch Biofilter for Degradation of Azo Dyes (Acids and Bases) [J]. Wat Sci. & Tech., 2000, 42(5-6), 329-336.
    [68] Iaconi, C. D., Lopez, A., Ramadon, R., Pinto, A. C. D. and Passino, R. Combined Chemical and Biological Degradation of Tannery Wastewater by a Periodic Submerged Filter (SBBR) [J]. Wat. Res., 2002, 36: 2205-2214.
    [69] 王乾扬,方士,陈国喜,詹伯君,陈学群.膜法SBR工艺处理皮革废水研究[J].中国给水排水,1999,15(3):54-56.
    [70] Chang, C. N., Chen, H. R., Huang, C. H. and Chao, A. Using Sequencing Batch Biofilm Reactor (SRRR) to Treat ABS Wastewater [J]. Wat. Sci & Tech 2000, 41(4-5): 431-440.
    [71] Melgoaa, R. M. and Bultron, G. Degradation of P-nitrophenol in a Batch Biofilter under Sequential Anaerobic/Aerobic Environments [J]. Wat. Sci. & Tech., 2001, 44(4): 151-157.
    [72] 周海峰,詹伯君.兼氧生物膜法SBR工艺在碱减量废水处理中的应用[J].环境工程,1999.17 (6):18-20.
    [73] White, D. M. and Schnabel, W. Treatment of Cyanide Waste in a Sequencing Batch Biofilm Reactor [J]. Wat. Res., 1998, 32(1): 254-257.
    [74] White, D. M., Pilon, T. A. and Woolard, C. Biological Treatment of Cyanide Containing Wastewater [J]. Wat. Res., 2000, 34(7): 2105-2109.
    [75] Jaar, M. A. A. and Wilderer, P. A. Granular Activated Carbon Sequencing Batch Biofilm Reactor to Treat Problematic Wastewaters [J]. Wat. Sci. & Tech., 1992, 26(5-6): 1195-1203.
    [76] Woolard, C. R. and Irvine, R. L. Response of a Periodically Operated Halophilic Biofilm Reactor to Change in Salt Concentration [J]. Wat. Sci. & Tech., 1995, 31 (1): 41-50.
    [77] Chung, K. T., Stevens, S. E. J., 1993. Degradation of azo dyes by environmental microorganisms and helminthes [J]. Environ. Toxicol. Chem. 12 (11), 2121-2132.
    [78] Weisburger, J. H. Comments on the history and importance of aromatic and heterocyclic amines in public health [J]. Mutat. Res. Fundam. Mol Mech. Mutagenesis, 2002, 506-507, 9-20.
    [79] N. H. Inze, M. I. Stefan, J. R. Bolton. UV/H202 degradation and toxicity reduction of textile azo dyes: Remazol Black-B, a case study [J]. Adv. Oxid. Technol. 1997, 2(3), 442-448.
    [80] Cooper, P. Removing colour from dye house waste waters—a critical review of technology available. [J]. Soc. Dyers Colourists, 1993, 109, 97-100.
    [81] Southern, T. G. TechniCal solutions to the colour problem: a critical review [M]. In: Cooper, P. (Ed.), Colour in Dyehouse Effluent. Society of Dyers and Colourists, Bradford, England 1995, 73-91.
    [82] Vandevivere, P. C., Bianchi, R., W., V.. Treatment and reuse of wastewater from the textile wet-processing industry: review of emerging technologies. J. Chem. Technol. Biotechnol. 1998, 72 (4), 289-302.
    [83] Robinson, T., McMullan, G., Marchant, R., Nigam, P. Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technol, 2001, 77 (3), 247-255.
    [84] Frank P. Z, Santiago V.. Combined anaerobic-aerobic treatment of azo dyes—A short review ofbioreactor studies, Water Research, 2005, 39, 1425-1440.
    [85] Namasivayam, C., Kadirvelu, K.. Coirpith, an agricultural waste by-product, for the treatment of dyeing effluents. Bioresource Technol., 1994, 48, 79-81.
    [86] Namasivayam, C., Yamuna, R. T.. Utilizing biogas residual slurry for dye adsorption [J]. Amer Dye StuffRep., 1994, 83, 22-28.
    [87] Mckay, G., Otterburn, M. S., Sweeney, A. G.. The removal of colour from effluents using various adsorbents: Some preliminary consideration [J]. Soc. Dyers and Colorist., 1979 23, 357-360.
    [88] Panswed, T., Wangchaisuwan, M.. Mechanism of dye wastewater colour removal by magnesium carbonate-hydrated basic. Water Sci. Technol, 1986, 18, 139-144.
    [89] Ciardelli, Gianluca, Ranieri, Nicola. The treatment and Reuse of Wastewater in the Textile Industry by Means of Ozonation and Electro flocculation [J]. Water Research, 2001, 35(2): 567-572.
    [90] William S Hichman. Environmental aspects of textile processing[J]. JSDC, 1993, 109(1): 32-37.
    [91] Chen Guohua, Lei Lecheng, Hu Xijun, et al.. Kinetic study into the wet air oxidation of printing and dyeing wastewater [J]. Separation and Purification Technology, 2003, (31): 71 -76.
    [92] 阮新潮等.印染废水终端处理工艺研究[J],科技进展,2001,23(6):329-330.
    [93] Brindle K and Stephenson T. Application of membrane biological reactors for the treatment of wastewaters [J]. Biotech Bioeng, 1996, 49: 601-610.
    [94] 刘超翔等.一体式膜-生物反应器处理毛染废水的中试研究[J].给水排水,2002,28(2):55-58.
    [95] 陈银生等,印染废水处理技术,化工进展[J],2001,(5):39-42.
    [96] Getoff, N. Lutz. W. Radiation physical chemistry, 1985, 25(1): 21-26.
    [97] Brown D, Hamburger B.. The degradation of dyestuffs Part Ⅲ investigation of their ultimate degradability[J]. Chemosphere 1987; 16: 1539-1553.
    [98] Kapdan I, Kargi F, Mcmullan, G.. Comparison of white-rot fungi cultures for decolorization of textile dyestuffs [J]. Bioprocess and Biosystems Engineering, 2000, v 22, n 4, 347-351.
    [99] Beydilli M I, Pavlostathis S G, Tincher W C.. Decolorization and toxicity screening of selected reactive azo dyes under methanogenic conditions [J]. Water Sci Technol 1998, 38 (4-5): 225-232.
    [100] Setiedi T, Van Loosdrecht M.. Anaerobic Decolorization of textile wastewater containing reactive azo dyes. Proceedings of the Eighth International Conference on Anaerobic Digestion 1997, vol. 2,437-444. [101] Chung K T.. The significance of azo-reduction in the mutagenesis and carcinogenesis of azo dyes [J]. Mutat Res, 1983,114: 269-281.
    [102] Field, J. A., Stams, A.J.M., Kato, M.. Schraa, G. Enhanced biodegradation of aromatic pollutants in cocultures of anaerobic and aerobic bacterial consortia. Antonie van Leeuwenhoek Int. Gen. Mol. Microbiol. 1995. 67,47-77.
    [103] Knackmuss, H. J.. Basic knowledge and perspectives of bioelimination of xenobiotic compounds [J]. Biotechnol. 1996, 51(3), 287-295.
    [104] Tan N C G, Prenafeta-Boldu F X, Opsteeg J L, et al.. Biodegradation of azo dyes in cocultures of anaerobic granular sludge with aerobic aromatic amine degrading enrichment cultures[J]. Apply Microbial Biotechnol, 1999, 51: 865-871.
    [105] Nuttapun Supaka, Kanchana Juntongjin, Somsak Damronglerd, et al. Microbial decolorization of reactive azo dyes in a sequential anaerobic-aerobic system [J] .Chemical Engineering Journal, 2004, 99: 164-176.
    [106] Field, J. A., Stams, A.J.M., Kato, M.. Schraa, G. Enhanced biodegradation of aromatic pollutants in cocultures of anaerobic and aerobic bacterial consortia. Antonie van Leeuwenhoek Int.. Gen. Mol. Microbiol. 1995. 67,47-77.
    [107] Sponza, D. T, Is-ik, M.. Reactor performances and fate of aromatic amines through decolorization of Direct Black 38 dye under anaerobic/aerobic sequentials [J]. Process Biochem. 2005,40 (1), 35-44.
    [108] O'Neill, C, Hawkes, F. R., Esteves, S.R.R., Hawkes, D. L., Wilcox, S. J.. Anaerobic and aerobic treatment of a simulated textile effluent [J]. Chem. Technol. Biotechnol, 1999, 74 (10), 993-999.
    [109] O'Neill, C, Hawkes, F. R., Hawkes, D. W., Esteves, S., Wilcox, S. J.. Anaerobic-aerobic biotreatment of simulated textile effluent containing varied ratios of starch and azo dye [J]. Water Res., 2000, 34 (8), 2355-2361.
    [110] O'Neill, C, Lopez, A., Esteves, S., Hawkes, F. R., Hawkes, D. L., Wilcox, S.. Azo-dye degradation in an anaerobic-aerobic treatment system operating on simulated textile effluent [J]. Appl. Microbiol. Biotechnol. ,2000, 53 (2), 249-254.
    [111] FitzGerald, S. W., Bishop, P. L.. Two stage anaerobic/aerobic treatment of sulfonated azo dyes [J]. Environ. Sci. Health Part A—Toxic/Hazard. Subst. Environ. Eng., 1995, 30 (6), 1251-1276.
    [112] Libra, J. A., Borchert, M., Vigelahn, L., Storm, T. Two stage biological treatment of a diazo reactive textile dye and the fate of the dye metabolites [J]. Chemosphere, 2004, 56 (2), 167-180.
    
    [113] Is-ik, M., Sponza, D. T.. Aromatic amine degradation in a UASB/CSTR sequential system treating Congo Red dye [J]. Environ. Sci. Health, Part A—Toxic/Hazard. Subst. Environ. Eng., 2003, 38 (10), 2301-2315.
    [114] Kapdan, I. K., Alparslan, S.. Application of anaerobic-aerobic sequential treatment system to real textile wastewater for color and COD removal [J]. Enzyme Microb. Technol., 2005 36 (2-3), 273-279.
    [115] Cruz, A., Buitro' n, G. Biodegradation of Disperse Blue 79 using sequenced anaerobic/aerobic biofilters. Water Sci. Technol. 2001,44 (4), 159-166.
    [116] Kuai, L., De Vreese, I., Vandevivere, P., Verstraete, W.. GAC—amended UASB reactor for the stable treatment of toxic textile wastewater [J]. Environ. Technol, 1998, 19 (11), 1111-1117.
    [117] Lourenc-o, N. D., Novais, J. M., Pinheiro, H. M.. Reactive textile dye colour removal in a sequencing batch reactor [J]. Water Sci. Technol., 2000,42 (5-6), 321-328.
    [118] Lourenc-o, N. D., Novais, J. M., Pinheiro, H. M, 2003. Analysis of secondary metabolite fate during anaerobic-aerobic azo dye biodegradation in a sequential batch reactor [J]. Environ. Technol. 24 (6), 679-686.
    [119] Albuquerque, M.G.E., Lopes, A. T, Serralheiro, M. L., Novais, J. M., Pinheiro, H. M.. Biological sulphate reduction and redox mediator effects on azo dye decolourisation in anaerobic-aerobic sequencing batch reactors [J]. Enzyme Microb. Technol. 2005, 36 (5-6), 790-799.
    
    [120] Cabral Goncalves, I., Penha, S., Matos, M., Santos, A. R., Franco, F., Pinheiro, H. M.. Evaluation of an integrated anaerobic/aerobic SBR system for the treatment of wool dyeing effluents. Biodegradation 2005,16 (1), 81-89.
    [121] Luangdilok, W., Paswad, T. Effect of chemical structures of reactive dyes on color removal by an anaerobic-aerobic process [J]. Water Sci. Technol.,2000,42 (3-4), 377-382.
    [122] Panswad, T, Luangdilok, W.. Decolorization of reactive dyes with different molecular structures under different environmental conditions [J]. Water Res., 2000, 34 (17), 4177-4184.
    [123]Panswad, T., Techovanich, A., Anotai, J.. Comparison of dye wastewater treatment by normal and anoxic+anaerobic/aerobic SBR activated sludge processes[J]. Water Sci. Technol., 2001,43 (2), 355-362.
    [124] Shaw, C. B., Carliell, C. M., Wheatley, A. D.. Anaerobic/aerobic treatment of coloured textile effluents using sequencing batch reactors [J]. Water Res.,2002, 36 (8), 1993-2001.
    [125] Harmer, C, Bishop, P.. Transformation of azo dye AO-7 by wastewater biofilms [J]. Water Sci. Technol., 1992,26 (3/4), 627-636.
    [126] Tan, N. C. G. Integrated and sequential anaerobic/aerobic biodegradation of azo dyes. Ph.D. Thesis, 2001, Agrotechnology and Food Sciences, Sub-department of Environmental Technology, Wageningen University, Wageningen, The Netherlands.
    [127] Gottlieb, A., Shaw, C, Smith, A., Wheatley, A., Forsythe, S.. The toxicity of textile reactive azo dyes after hydrolysis and decolourisation [J]. Biotechnol.,2003, 101 (1), 49-56.
    [128] Park, Y K, Lee C H.. Dyeing wastewater treatment by activated sludge process with a polyurethane fluidized bed bioflim [J], Wat. Sci. Tech, 1996, 34( 5-6): 193 -200.
    [129] Banat I M, Nigam P Singh D, et al. Microbial decolorization of textile dye containing effluents: A Review [J]. Biosource Technology, 1996, 58:2 17 -227.
    [130] Yeom I T,Nah Y M, Ahn K H. Treatment ofhousehold wastewater using an intermittently aeraleol membrane bioreadtor. Desalination, 1999, 124: 193-204.
    [131] Ueda T, Hata K, Kikuoka Y. Treatment of domestic sewage from rural settlements by a membrane bioreactor. War. Sci. Technol., 1996, 34(9): 189-196.
    [132] Takai T. Effects of temperature and volatile fatty acids on nitrification-denitrification activity in small-scale anaerobic-aerobic recirculation biofilm process[J]. Wat. Sci. Tech., 1997, 35 (6): 101-108.
    [133] Guiot S R, Single-stage anaerobic/aerobic biotreatment of resin acid containing wastewater[J]. Wat. Sci. Tech., 1998, 38 (4/5): 255-262.
    [134] John G. Co-immobilized aerobic/anaerobic mixed cultures in stirred tank and gaslift loop reactors. Journal of Biotechnology, 1996, 50: 115-122.
    [135] Meyerhoff J. Characterization and modelling of commobilized aerobic/anaerobic mixed cultures. Chemical Engineering Science, 1997, 52 (14): 2313-2329.
    [136] 李红兵,顾国维,谢维民.中空纤维膜生物反应器处理生活污水的特性[J].环境科学,1999,20(2):53-56.
    [137] Davits W J, Le M S, Heat C R. Intensified activated sludge process with submerged membrane microfiltration[J]. Wat. Sci. Tech., 1998, 38(4-5): 421-428.
    [138] Rittmann B E, Manem J A. Development and experimental evaluation of a steady-state, multispecies biofilm model [J]. Biotechnology Engineering, 1992, 39(2): 914-922.
    [139] HEGEMANN W. A combination of the activated sludgeprocess with fixed film biomass to increase the capacity of wastewater treatment plants [J]. Wat. Sci. & Tech. 1984, 16: 119-130.
    [140] BONHOME M. Enhancing nitrogen removal in activated sludge with fixed biomass [J] Wat. Sci. & Tech., 1990, 22 (1/2): 127-135.
    [141] CLIFFORD W, RANDALL. Full-scale evaluation of an integrated fixed-film activated sludge (IFAS) process for enhanced nitrogen removal [J] Wat. Sci. & Tech. 1996 (12): 155-162.
    [142] Jing. S. et al. Role of adsorption in granular activated carbon-fluidized bed reactors [J]. Y vat. Environ. Res., 1995, 67: 302-305.
    [143] Imai A. et al. Removal of refractory organics and nitrogen from landfill leachate by the microorganism-attached activated carbon fluidized bed process [J]. Wat. Res., 1993, 27(1): 143-145.
    [144] Thomas, C. V. et al. Biological activated carbon in fluidized bed reactors for the treatment of groundwater contaminated with volatile aromatic hydrocarbons [J]. Wat. Res., 1992, 26 (10): 1389-1401.
    [145] 刘津,李敏,于洗,范晓鹏新型内循环生物流化床反应器氧传质特性研究[J].环境工程,2004,22(4):12-14.
    [146] 蒋锋,吴建元.生物流化床处理含硫污水净化水的探讨[J].石油化工环境保护,1996,(2):23-26.
    [147] 刘振鸿,陈季华,李茵,剩余污泥处理新工艺[J],上海环境科学,1996,15(2):16-17.
    [148] 许保玖,龙腾锐,孟宪庭,王志石,当代给水排水原理.1991,高等教育出版社,北京.248-260.
    [149] 赵一德,吴志超.城市污水厂污泥好氧处理可行性研究[J].上海环境科学,1997,16(10):29-31.
    [150] 王才,韩超,刘喜光,袁琳.污泥消化处理试验研究[J].中国给水排水,1999,25(6):17-20.
    [151] 蒋克彬.剩余污泥的好氧消化设计[J].中国给水排水,2002,18(12):54-55.
    [152] 王凯军.厌氧(水解)—好氧处理工艺的理论与实践[J].环境科学,1998,18(4):337-340.
    [153] 牛樱,陈季华.兼氧—好氧工艺处理高浓度化工废水[J].工业水处理,2000,20(8):8-10.
    [154] Salkinoja-Salonen M. et al.. Biodegradation of Chlorophenolic compounds in Wastew from wood processing industry, in Current Perspective in Microbiol Ecology [M]. 1984, 668-676.
    [155] Bode H. Anaerobic-aerobic treatment of industrial waste-water [J]. Wat. Sci. Tech., 1988, 20 (4/5): 189-198.
    [156] Dienem ann E A, Kosson D S, A hlert R C. Evaluation of serial anaerobic/ae robic packed bed bioreactors for treatment of a superfund leachate [J]. Journal of Hazardous Materials, 1990, 23: 21-42.
    [157] Atuanya E I, Purohit H J, Chakrabarti T. Anaerobic and aerobic biodegradation of chlorophenols using UASB and ASG bioreactors [J]. World Journal of Microbiology & B iotechnology, 2000, 16: 95-98.
    [158] Tilche. A. Biological phosphorus and nitrogen removal in a full scale sequencing batch reactor treating piggery wastewater [J]. Wat. Sci. Tech., 1999, 40 (1): 199-206
    [159] Obaja D. Nitrification, denitrification and biological phosphorus removal in p iggery wastewater using a sequencingbatch reactor [J]. Bioresource Technology, 2003, 87(1): 103-111.
    [160] 王东海,文湘华,钱易.处理难降解有机物的新型SBR反应器的发展[J].环境科学进展,1999,7(6):38-44.
    [161] 王凯军,贾立敏.城市污水生物处理新技术开发和应用.北京:化学工业出版社,2001.138-222.
    [162] Fahmy M. Anaerobic-aerobic fluidized bed biotreatment of sulphite pulp bleaching effluents - Ⅰ: Global parameters [J]. Wat. Res., 1994, 28 (9): 1987-1996.
    [163] Fahmy M. Anaerobic aerobic f luidized bed biotreatment of sulphite pulp bleaching effluents - Ⅱ: Fate of individual chlorophenolic compounds [J]. Wat. Res., 1994, 28 (9): 1997-2010.
    [164] Ascon M A, Lebeault J M. High efficiency of a coupled aerobic-anaerobic recycling biofilm reactor system in the degradation of recalcitrant chloroaromatic xenobiotic compounds [J]. Appl. Microbiol Biotechnol, 1999, 52: 592-599.
    [165] Yu Haibo, Bruce E. Rittmann. Predicting bed expansion and phase holdups for three-phase fluidized-bed reactors with and without biofilm [J]. Water Research, 1997, 31(10): 2604-2616.
    [166] H. Schrever, R. Coughlin. Effects of stratification in a fluidized bed bioreactor during treatment of metalworking wastewater [J]. Biotechnology and Bioengineering, 1999, 63(2): 129-140.
    [167] 王世和,曾苏.生物流化床水处理基本特性研究.中国环境科学,1991,11(4):290-295
    [168] 周平,何嘉汉,钱易.内循环三相生物流化床反应器的相含率及氧传递特性研究[J].环境科学学报,1996,16(2):211-215.
    [169] 周平,钱易.内循环三相生物流化床反应器理论分析[J].环境科学,1995,16(2):88-90.
    [170] 周平,钱易.空气提升内循环三相生物流化床反应器动力学研究[J].环境科学,1996,17(6):9-17.
    [171] 欧阳铭,徐培.生物流化床反应器水力混合特性研究.环境科学[J].1993,14(3):32-35.
    [172] 陆永生,华彬,胡龙兴.循环流化床的流体混合时间及充氧特性[J].上海环境科学, 2000,19(11):523-525
    [173] 刘津,李敏,于洗,范晓鹏新型内循环生物流化床反应器氧传质特性研究[J].环境工程,2004,22(4):12-14.
    [174] 曹玉成,王平,常银子.废水处理生物流化床中载体选择的研究进展[J].青海环境,2004,14(4):158-161.
    [175] 谢波,韦朝海,等.缩放型导流筒气升式内环流生物反应器相含率研究[J].华南理工大学学报(自然科学版),1999(6):10-15.
    [176] 欧阳平凯.气升式反应器中三相体系进行半连续操作的气含率和传质特性研究[J].化学反应工程与工艺,1991,7(1):59-67.
    [177] 颜涌捷.提升管三相流化床内的气液传质系数[J].高校化学工程学报,1996,10(1):52-58.
    [178] 周平,何嘉汉,钱易.内循环三相生物流化床反应器的相含率及氧传递特性研究[J].环境科学学报,1996,16(2):211-215.
    [179] 张玉魁,张硌,施汉昌.新型生物流化反应器氧转移的特性[J].中国环境科学,2003,23(5):547-551.
    [180] LAMOTTA E J. Kinetics of growth and substrate uptake in a biological film system [J]. Applied and Environmental Microbiology, 1976, 31: 286-293.
    [181] 周平,王世和.生物膜厚度对流化床反应器性能影响分析[J].环境科学,1994,15(2),1-5.
    [182] 温沁雪,施汉昌,陈志强.内循环生物流化床处理废水参数选择[J].哈尔滨工业大学学报,2005,6,721-723.
    [183] 王兆熊,郭崇涛,张英等.化工环境保护和三废处理技术[M].北京:化学工业出版社.1982.18~29
    [184] Randall C W, Baamard J L, Stensel H D. desin and Retrofit of Wastewater Treatment Plants for Biological Nutrient Removal [M]. Pennsylvania: Technomic Publishing Com, 1992.
    [185] 戚新.气浮-厌氧-好氧工艺处理高浓度印染废水[J].环境污染与防治,1997,19(1):16-19.
    [186] 文湘华,王东海,钱易,内循环SBR处理含染料废水的研究,环境科学,2000,9,vol.20,Supph:54-57.
    [187] Kapdan I K, Kargi F Simultaneous biodegradation and adsorption of textile dyestuff in an. activated sludge unit[J]. Process Biochemistry, Biochemistry, 2002, 37(2): 973-981.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700