两种人工湿地对污水的净化能力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文中以复合垂直流人工湿地(IVCW)和水平潜流人工湿地(HSCW)为研究对象,主要开展了以下研究:通过监测两种湿地的进、出水指标,对其不同季节运行时的最佳水力停留时间(HRT)及污水净化效果进行了研究和对比;通过监测两种湿地进水、湿地侧面不同高度出水的水质指标,初步研究了不同月份时两种人工湿地中不同填料层对污水的净化效果及曝气对两种湿地的污水净化效果的影响。实验中所监测的水质指标有:温度(T)、溶解氧(DO)、pH、总氮(TN)、总磷(TP)、CODCr、铵态氮(NH4+-N)、硝态氮(NO3--N)。主要结论如下:
     (1)两种人工湿地的HRT参数分别为:在IVCW中,最佳HRT在春、秋季为8~10小时;夏季为6小时;冬季为12小时。在HSCW中,最佳HRT在春、秋季为10~12小时;夏季为6~8小时;冬季为24~36小时。可见不同季节下IVCW需要的最佳HRT参数小于HSCW。
     (2)两种人工湿地对CODCr为100~300mg/L、TN为0.50~16.00 mg/L、TP为0.10~4.00 mg/L的生活污水具有相似的去除效果,不同污染物的去除率存在明显的季节性差异。不同季节下两种湿地对CODCr的去除率无显著差异;在不同季节下IVCW对TN的去除效果均高于HSCW;湿地进水中铵态氮占总氮含量的比重影响湿地脱氮效果,比值越大,整个湿地的总氮去除率越低。两种湿地对TP的去除率受到季节性磷负荷、HRT参数及温度变化的影响,在去除率上表现出的规律性较差。两种湿地对NH4+-N的去除效果除冬季较好外,其余季节都较差。
     (3)两种湿地中水温的季节性变化与TN去除率的变化存在一定的正相关;在IVCW中与TP去除率的变化存在正相关性,而在HSCW中与TP去除率的变化存在负相关性。在IVCW中N、P的去除率变化受水温变化的影响比HSCW中明显。
     (4)在两种人工湿地中,对污水中CODCr的去除不随填料层高度的变化而发生显著变化。两种人工湿地的填料表层对TN的平均去除率较高且稳定;不同月份下两种湿地填料的中层和底层对TN的去除率产生较大波动,可见中层和底层填料的TN去除率变化决定了整个湿地的TN去除效果。
     IVCW中,对NH4+-N的去除主要发生在填料的底层,其表层、中层填料的NH4+-N去除效果略差于底层;填料表层对NH4+-N的去除率波动较大。HSCW中,对NH4+-N去除主要发生在填料表层和底层,中层的去除效果最差。
     (5)IVCW的表层、中层填料除磷效果稳定;不同月份下表层填料的去除率存在显著差异。HSCW中,除磷主要发生在填料的底层;受温度、HRT、磷污染负荷条件的共同影响,其表层和中层填料容易出现明显的基质磷释放现象。
     (6)水环境温度对IVCW中TN、NH4+-N、TP的去除具有显著影响;对HSCW中各种污染物的去除影响不显著。湿地填料间隙水中DO含量与IVCW中的TN、TP、CODCr的去除率间均显著正相关,与HSCW中的TP、NH4+-N的去除率间也显著正相关。
     (7)IVCW以气水比为2进行曝气时,对污水的净化效果最好,上行池出水的CODCr、TN、NH4+-N、NO3--N平均去除率比不曝气时分别提高了16.47%、5.15%、13.84%、96.91%;气水比为6时对CODCr去除效果比2稍好,在处理更高负荷污水时可采用此气水比进行曝气。曝气对TP的去除率影响不明显。
     (8)曝气对HSCW的CODCr去除率较不曝气时有显著提高,气水比为6时效果最好,增加30%;TN、NH4+-N平均去除率在气水比为2时较对照无明显改变,NO3--N去除率有大幅提高;气水比继续增大时,脱氮效果有不同程度的降低;对TP的去除率无显著影响。
In this paper, there are two kinds of constructed wetlands to be of the research objects, which are integrated vertical flow constructed wetland and horizontal subsurface flow constructed wetland, to be carried out the following studies, respectively.
     The main research contents include: studied the better parameter of seasonal hydraulic retention time and the sewage purification effect of the two kinds of constructed wetlands when they were working in the four seasons of a year, by monitoring the water samples from the import and export of the two kinds of constructed wetlands respectively; researched the purifying effect of pollutants in the different substrate layers in the two kinds of artificial wetlands in the different months and the effects of aeration on sewage purification in two kinds of constructed wetlands, by monitoring the effluent sampled from the side different heights and the inflow of the two kinds of artificial wetlands respectively. In the paper, the water quality indicators monitored: temperature (T), dissolved oxygen (DO), potential of hydrogen (pH), total nitrogen (TN), total phosphorus (TP), chemical oxygen demand(COD), ammonium nitrogen (NH4+-N), nitrate (NO3--N). The main conclusions of this thesis are as follows:
     (1) The optimum parameter of seasonal hydraulic retention time of the two kinds of artificial wetlands are as follows:
     The optimum parameter of seasonal hydraulic retention time of integrated vertical flow constructed wetland are in between eight and ten hours in spring and autumn, six hours in summer, twelve hours in winter.
     The optimum parameter of seasonal hydraulic retention time of horizontal subsurface flow constructed wetland are in between ten and twelve hours in spring and autumn, in between six and eight hours in summer, in between twenty-four and thirty-six hours in winter.
     It can clearly be seen that the optimum parameter of seasonal hydraulic retention time of integrated vertical flow constructed wetland are less than the horizontal subsurface flow constructed wetland.
     (2) The two kinds of constructed wetlands has a similar purification effect to the domestic sewage which contain thetotal nitrogen concentration between 0.50 and 16.0 milligrams per liter, the total phosphorus concentration between 0.10 and 4.00 milligrams per liter and the organic compound concentration between 100 and 300 milligrams per liter. There exists an obvious seasonal variations about the different pollutants removal in the two kinds of constructed wetlands.
     The chemical oxygen demand removal in different seasons is no significant differences between the two kinds of constructed wetlands; The total nitrogen average removal in each of the different seasons is higher in integrated vertical flow constructed wetland than in horizontal subsurface flow constructed wetland. The ratio of ammonium nitrogen content in the proportion of total nitrogen affects the nitrogen removal efficiency in the two kinds of constructed wetlands. The greater the ratio is, the lower the nitrogen removal efficiency is.
     The total phosphorus removal in the two kinds of constructed wetlands shows a poor regularity because of the seasonal effects of phosphorus load, hydraulic retention time parameter and the temperature change. About the removal efficiency of ammonium nitrogen, only in winter is better, the other seasons are lower. (3) The seasonal variations of water temperature in the two kinds of constructed wetlands is significantly correlated with the removal change of total nitrogen, and is not significant with the removal change of total phosphorus. The N, P removal affected by water temperature in integrated vertical flow constructed wetland was significantly more than in horizontal subsurface flow constructed wetland. (4) There is no significant difference about the COD removal in the different substrate layers of the two kinds of constructed wetlands.The TN average removal in the fill material surface of two kinds of constructed wetlands is high and stable; in the different months the TN removal efficiency have a greater volatility in the middle and bottom substrate layers of the two kinds of constructed wetlands, which can be seen filling the TN removal rate changes for the whole wetland TN removal.
     In integrated vertical flow constructed wetland, the ammonium nitrogen removal occurred mainly in the bottom of filler, in its surface and middle filler layers the ammonium nitrogen removal efficiency is slightly worse than the bottom filler; in the surface substrate layer of the two kinds of constructed wetlands there exist the ammonium nitrogen removal wider fluctuation margin phenomenon.
     In horizontal subsurface flow constructed wetland, the ammonium nitrogen removal occurred mainly in the surface and bottom filler, and in the middle substrate layer it is worst.
     (5) In integrated vertical flow constructed wetland, the surface and middle filler have stable phosphorus removal; removal; in different months the phosphorus removal of surface layer there are significant differences. In horizontal subsurface flow constructed wetland, the phosphorus removal occurre mainly in the bottom of filler; because of the combined effect of the temperature, HRT, phosphorus pollution load there exists a serious phenomenon of phosphorus releasing from the matrix in horizontal subsurface flow constructed wetland.
     (6) In integrated vertical flow constructed wetland there is significant impact on the removal of TN, NH4+-N and TP with the change of water environment temperature within constructed wetland; while the removal impact of various pollutants in horizontal subsurface flow constructed wetland is not significant. DO concentration in the interstitial water, has a significant positive correlation with the removal of TN, TP and COD of integrated vertical flow constructed wetland; with the NH4+-N removal of horizontal subsurface flow constructed wetland.
     (7) The results show that using the gas-water ratio of 2 to do aeration experiment in integrated vertical flow constructed wetland can get the best effects of sewage purification. The average removal rate of chemical oxygen demand、total nitrogen、ammonia nitrogen and nitrate nitrogen of the effluence of upstream pond respectively increase 16.47%, 5.15%, 13.84% and 96.91% than non-aerated experiment. The results indicate that the effect of removal COD at the gas-water ratio of 6 is better than 2, In dealing with domestic higher load can use this gas-water ratio to aerate.
     (8) In horizontal subsurface flow constructed wetland, aeration can make the treating effect of COD improve more obviously than non-aerated experiment, especially when gas-water ratio is 6 the increase can be up to 30%; the average removal rate of TN and NH4+-N is not obvious change when the gas-water ratio is 2, and there is a substantial increase in the removal rate of NO3--N; when gas-water ratio continues to increase, nitrogen removal have varying degrees of reduction. In the two kinds of constructed wetlands, the removal rate of total phosphorus is no significant change in the two conditions of aeration and non-aeration.
引文
[1]艾平,张衍林,袁巧霞.农村生活污水分散式处理技术浅析[J].环境保护科学,2008, 34 (6): 8-10.
    [2]杨俊,龚琴红.人工湿地在我国农村生活污水治理中的应用[J].农业环境与发展, 2007, 2:71-74.
    [3]张鑫,付永胜,范兴建等.农村生活污水排放规律及处理方法分析[J].广东农业科学,2008, 8: 139-142.
    [4]R.M. Gersberg, B.V. Elkins, C.R. Goldman. Nitrogen removal in artificial wetlands [J]. Water Research, 1983, 17(9): 1009-1014.
    [5]吴振斌.复合垂直流人工湿地[M].北京:科学出版社,2008.
    [6]K.F. Janning, X. Le Tallec , P. Harremo?s. Hydrolysis of organic wastewater particles in laboratory scale and pilot scale biofilm reactors under anoxic and aerobic conditions [J].water science and technology, 1998, 38(8-9): 179-188.
    [7]Anne L. Simi, Cynthia A. Mitchell. Design and hydraulic performance of a constructed wetland treating oil refinery wastewater [J]. Water Science and Technology, 1999, 40(3): 301-307.
    [8]籍国东,孙铁珩,常士俊等.自由表面流人工湿地处理超稠油废水[J].环境科学, 2001a, 22(4):95-99.
    [9]许春华,周琪,宋乐平.人工湿地在农业面源污染控制方面的应用[J].重庆环境科学, 2001, 23(3):70-72.
    [10]毕慈芬,王富贵,赵光耀.发展沟道人工湿地改善基岩产沙区生态[J].中国水土保持, 2001, 5:6-7.
    [11]籍国东,隋欣,孙铁珩,等.封闭式芦苇湿地处理钻井泥浆的可行性研究[J].环境科学学报, 2001b,21(4):426-430.
    [12]胡焕斌,周化民,王桂珍,等.人工湿地处理矿山炸药污水[J].环境科学与技术,1997,3:16-18.
    [13]籍国东,孙铁珩,常士俊,等.人工潜流湿地处理稠油采出水的实验研究[J].环境科学学报, 2001c,21(5):619-621.
    [14]刘文祥.人工湿地在农业面源污染控制中的应用研究[J].环境科学研究,1997,10(4):15-19.
    [15]House C.H., et al. .Combining constructed wetlands and aquatic and soil fiber for reclamation and reuse of water [J]. Ecological Engineering, 1999, (12):27-38.
    [16]Brix H., et al. Use of constructed wetland in water pollution control: Historical development, present status, and future perspectives [J].Wat.Sci.Tech. 1994, 30(8):209-223.
    [17]魏志刚,阮启刚,邓祥义.人工湿地技术的应用与发展[J].大众科技, 2005, (11):95-97.
    [18]Brix H. Use of constructed wetland in water pollution of duck weed based wastewater treatment systems [J]. Wat.Sci.Tech.1994, 35(5):239-246.
    [19]Kickuth R. Degradation and incorporation of nutrients from rural wastewaters by plant rhizophere under limnic conditions [M]. London: Comm. of the communities, 1997:55-56.
    [20]梁继东,周启星,孙铁晰.人工湿地污水处理系统研究及性能改进分析[J].生态学杂志, 2003,(2):49-55.
    [21]张毅敏,张永春.利用人工湿地治理太湖流域小城镇生活污水可行性探讨[J].农业环境保护, 1998, 17(5):232-234.
    [22]李羚.人工湿地处理污水技术及其在我国的应用现状和对策[J].现代城市研究, 2004, (12):33-39.
    [23]J. Vymazal, R. A. Brooks, J. W. M. Bulte, et al.. Iron uptake by ferritin: NMR relaxometry studies at low iron loads [J].Journal of Inorganic Biochemistry, 1998, 71(3-4):153-157.
    [24]Timothy M. Werner, Robert H. Kadlec. Application of residence time istributions to storm water treatment systems [J]. Ecological Engineering, 1996, 7 (3): 213-234.
    [25]吴献花,候长定,王林,等.人工湿地处理污水的机理[J].玉溪师范学院学报, 2002, 18(l): 103-105.
    [26]王凯军,贾立敏.城市污水生物处理新技术开发与应用[M].北京:化学工业出版社, 2001: 340-348.
    [27]李小霞,谢庆林,游少鸿.人工湿地植物和填料的作用与选择[J].工业安全与环保, 2008, 34(3):54-56.
    [28]张克强,杨莉,杨鹏,等.适合农村污水分散处理的廊道式人工湿地设计参数研究[J].西北农业学报,2008,17(1):286-291.
    [29]陈德强,吴振斌,成水平,等.不同湿地组合工艺净化污水效果的比较[J].中国给水排水, 2003, 19(9):12-15.
    [30]赵桂瑜,杨永兴,杨长明.人工湿地污水处理系统工艺设计研究[J].四川环境, 2005, 24(6): 24-28.
    [31]李占华.人工湿地处理系统在长城以北地区的设计应用[J].科技纵横, 2004, (11):26-27.
    [32]A Drizo. Physic-chemical screening of phosphate removing substrates for using constructed wetland systems [J]. Water Research, 1999, 33(17):3596-3602.
    [33]郭本华,宋志文,韩潇源.碎石、沸石和页岩陶粒构建人工湿地的除磷效果[J].工业用水与废水, 2005, 36(2):46-48.
    [34]严立,刘志明,陈建刚,等.潜流式人工湿地净化富营养化景观水体[J].中国给水排水, 2005, 21(12):11-13.
    [35]谭洪新,周琪.湿地填料的磷吸附特性及潜流人工湿地除磷效果研究[J].农业环境科学学报, 2005, 24(2):353-356.
    [36]A Drizo. Phosphate and ammonium distribution in a pilot scale constructed wetland with horizontal subsurface flow using shale as a substrate [J]. Water Research, 2000, 34(9): 2483-2490.
    [37]李丽娜,李亚治,达良俊,等.复合垂直流人工湿地处理废纸造纸废水的研究[J].中国造纸,2009,28(9):43-46.
    [38]张强,唐娜,梁帮强,等.潜流人工湿地填料除磷性能模拟研究[J].西南师范大学学报(自然科学版), 2009, 34(3):68-71.
    [39]朱夕珍,崔理华,刘雯,等.垂直流美人蕉模拟人工湿地对化粪池出水的净化效果[J].农业环境科学学报, 2004, 23(4):762-765.
    [40]袁东海,景丽洁,张孟群,等.几种人工湿地基质净化磷素的机理[J].中国环境科学. 2004, 24(5):614-617.
    [41]Pant H K, Reddy K R, Lemon E. Phosphorus retention capacity of root bed media of subsurface flow constructed wetlands [J]. Ecological Engineering. 2001,(17): 345-355.
    [42]李旭东,周琪,张荣社,等.三种人工湿地脱氮除磷效果比较[J].地学前缘, 2005, 12(特刊): 73-76.
    [43]Runying Wang, Nathalie Korboulewsky, Pascale Prudent, et al. Feasibility of using an organic substrate in a wetland system treating sewage sludge: Impact of plant species.[J]. Bioresource Technology, 2010, 101(1):51-57.
    [44]蔡明,邓春光.评述影响人工湿地除磷的因子[J]中国水运, 2007, 7(6):74-75.
    [45]李晓东,孙铁珩,李海波,等.人工湿地除磷研究进展[J].生态学报, 2007, 27(3):1226-1232.
    [46]谭学军,唐利,周琪.人工湿地污水处理技术原理与数学模型[J].哈尔滨商业大学学报(自然科学版), 2008, 24(2):156-161.
    [47]李林锋,年跃刚,蒋高明.植物吸收在人工湿地脱氮除磷中的贡献[J].环境科学研究, 2009, 22(3):337-342.
    [48]Haberl R, Perfler R., Mayer H. Constructed wetlands in Europe [J]. Wat. Sci. Tech., 1995, 32(3): 306- 315.
    [49]Kadlee R H, Knight R L. Treatment Wetlands[M]. Florida: Lewis Publishers, 1996: 51-59.
    [50]Bankston J L. Degradation of trichloroethylene in wetland microcosms containing broad-leaved cattail and eastern cottonwood[J]. Water Research, 2002, (36): 539-546.
    [51]成水平,况琦军,夏宜峥.香蒲、灯心草人工湿地的研究:Ⅰ.冶化污水的效果[J].湖泊科学, 1997, 9(4): 351-358.
    [52]陈志澄,郭丹桂,熊明辉,等.处理生活污水的植物品种的筛选[J].环境污染治理技术与设备, 2006, 7(4): 90-93.
    [53]时应征,王晓,栾晓丽,等.耐寒人工湿地植物石龙芮和酸模联用研究[J].环境工程学报, 2009, 3(2):268-270.
    [54]陈永华,吴晓芙,蒋丽鹃,等.处理生活污水湿地植物的筛选与净化潜力评价[J].环境科学学报, 2008, 28(8):1549-1555.
    [55]张甲耀,林清华,夏盛林,等.不同植物构成的潜流式人工湿地处理系统的净化能力及其异养细菌数量的研究[J].环境工程, 1998, 16(3):17-20.
    [56]沈耀良,王宝贞.人工湿地系统的除污机理[J].江苏环境科技, 1997, 10(3):1-6.
    [57]王爱萍,周琪.人工湿地处理污水的研究[J].四川环境, 2005, 24(2): 76-80.
    [58]宋志文,毕学军,曹军.人工湿地及其在我国小城市污水处理中的应用[J].生态学杂志, 2003, 22(3): 74-78.
    [59]Mars R. The role of the submergent macrophyte trigloeh in Huegdii in domestic grey water treatment[J]. Ecological Engineering, 1999, (12): 57-66.
    [60]王平,周少奇.人工湿地研究进展及应用[J].生态科学, 2005, 24(3): 278-281.
    [61]贺锋,吴振斌,陶著,等.复合垂直流人工湿地污水处理系统硝化与反硝化作用[J].环境科学, 2005, 26(1): 47-50.
    [62]张甲耀,邱克明,夏盛林,等.潜流型人工湿地污水处理系统氮去除及氮转化细菌的研究[J].环境科学学报, 1999, 19(3):323-327.
    [63]靖元孝,杨丹箐.风车草(Cyperus alternifolius)人工湿地系统氮去除及氮转化细菌研究[J].生态科学, 2004, 23(1):89-91.
    [64]梁继东,周启星,孙铁晰.人工湿地污水处理系统研究及性能改进分析[J].生态学杂志, 2003, 22(2):49-55.
    [65]戴兴春,徐亚同,谢冰.浅谈人工湿地法在水污染控制中的应用[J].上海环境保护, 2004, (10):7-9.
    [66]周巧红,王亚芬,吴振斌.人工湿地系统中微生物的研究进展[J].环境科学与技术, 2008, 31(7):58-61.
    [67]王薇,俞燕,王世和.人工湿地污水处理工艺与设计[J].城市环境与城市生态, 2001, 14(l):59-62.
    [68]吴振斌,张晟,张金莲,等.人工湿地组合系统除磷的净化空间研究[J].环境科学与技术, 2007, 30(11):77-81.
    [69]陈德强,吴振斌,成水平,等.不同湿地组合工艺净化污水效果的比较[J].中国给水排水, 2003, 19(9):13-15.
    [70]周正伟,吴军,夏金雨,等.我国南方农村生活污水处理技术的研发现状[J].山东建筑大学学报, 2009, 24(3):261-266.
    [71]Hans Brix, Carlos A. Arias. The use of vertical flow constructed wetlands for on-site treatment of domestic wastewater: New Danish guidelines[J]. Ecological Engineering, 2005, 25:491-500.
    [72]Marco A. Belmont, Eliseo Cantellano, Steve Thompson, et al. Treatment of domestic wastewater in a pilot scale natural treatment system in central Mexico[J]. Ecological Engineering, 2004, 23:299-311.
    [73]Prochaska C A, Zouboulis A I. Treatment performance variation at different depths within vertical subsurface-flow experimental wetlands fed with simulated domestic sewage[J]. Desalination, 2009,237:367-377.
    [74]Shaoyong Lu, Pengyi Zhang, Xiangcan Jin, et al. Nitrogen removal from agricultural runoff by full-scale constructed wetland in China[J]. Hydrobiologia, 2009, 621:115-126.
    [75]Prithviraj V. Chavan, Keith E. Dennett ,Eric A. Marchand, et al. Potential of constructed wetland in reducing total nitrogen loading into the Truckee River[J]. Wetlands Ecol. Manage, 2008, 16:189-197.
    [76]夏宏生,蔡明,向欣.人工湿地优化设计研究[J].人民黄河, 2008, 30(7):54-56.
    [77]李雄勇,张帆,袁英兰,等.对人工湿地污水处理系统工艺设计技术关键的探讨[J].环境保护科学, 2009, 35(1):42-44.
    [78]刘雯,朱映川,周遗品,等.垂直流-表面流复合人工湿地系统对污水的净化效果研究[J].安徽农业科学, 2008, 36(24):10577-10579.
    [79]SIMCH,YUSOFFMK,SHUTESB, et al. Nutrient removal in a pilot and full scale constructed wetland, Putrajaya city, Malaysia[J]. Journal of Environmental Management, 2008, 88(2): 307-317.
    [80]Mayo A W, Mutamb A J. Modeling nitrogen removal in a coupled HRP and unplanted horizontal flowsubsurface gravel bed constructed wetland[J]. Physics and Chemistry of the Earth, 2005, 30: 673-679.
    [81]Gearheard R A, Finney B A, Lang M, et al. 6th International Conference on wetland Systems for Water Pollution Control[C]. FL: Pergamon Publishers, 1998.
    [82]国家环境保护总局.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社, 2002.
    [83]陈金发,阮尚全,卿东红.组合人工湿地对渗滤液中有机物和氨氮的去除研究[J].节水灌溉, 2009, 3:41-43.
    [84]李海波,杨瑞崧,李晓东,等.水淬渣人工湿地强化除磷作用研究[J].环境科学, 2009, 30(8): 2302-2308.
    [85]王媛媛,张衍林.人工湿地的基质及其深度对生活污水中氮磷去除效果的影响[J].农业环境科学学报, 2009, 28(3):581-586.
    [86]陈明利,吴晓芙,陈永华,等.蛭石人工湿地中吸附-生物转化系统脱氮能力及其机理研究[J].环境工程学报, 2009, 3(2):223-228.
    [87]李晓东,师晓春,晁雷,等.高炉矿渣基质人工湿地除磷特性研究[J].气象与环境学报, 2009, 25(1):45-48.
    [88]朱文玲,崔理华,朱夕珍,等.混合基质垂直流人工湿地净化废水效果[J].农业工程学报, 2009, 25(增刊1):44-48.
    [89]王青璐,彭明春,赵安娜,等.人工湿地中影响微生物空间分布因素的探讨[J].环境科学导论, 2009, 28(2):1-3.
    [90]黄娟,王世和,鄢璐,等.潜流型人工湿地的脲酶活性分布特性[J].东南大学学报(自然科学版), 2008, 38(1):166-169.
    [91]Li Wen,Friedrich Recknagel. Balancing phosphorus adsorption and consumption processes in experimental treatment ponds for agricultural drainage water[J]. Ecological Engineering, 2006, 28:14-24.
    [92]Richardson C J.Mechanisms controlling phosphorus retention capacity in freshwater wetlands[J]. Science, 1985, 228(4706):1424-1427.
    [93]徐进,徐力刚,张奇.磷素在湖滨湿地基质-上覆水界面中的迁移过程[J].湖泊科学, 2009, 21(5):675-681.
    [94]张甲耀,夏盛林,邱克明,等.潜流型人工湿地污水处理系统氮去除及氮转化细菌的研究[J].环境科学学报, 1999, 19(3):323-327.
    [95]成水平,吴振斌,况琪军.人工湿地植物研究[J].湖泊科学, 2002, (2): 180-181.
    [96]肖海文,邓荣森,翟俊,等.溶解氧对人工湿地处理受污染城市河流水体效果的影响[J].环境科学, 2006, 27(12):2426-2431.
    [97]Claudiane O P, Florent C, Yves C, et al.. Artificial aeration to increase pollutant removal efficiency of constructed wetlands in cold climate[J]. Ecological Engineering, 2006,27: 258-264.
    [98]Gabriel M L, Roxane M, Jacques B, et al.. Nitrogen transformations and retention in planted and artificially aerated constructed wetlands[J]. Water Research, 2009, 43:535-545.
    [99]Tao W D, Wang J. Effects of vegetation, limestone and aeration on nitritation, anammox and denitrification in wetland treatment systems[J]. Ecological Engineering, 2009,35: 836-842.
    [100]Tang X Q, Huang S L, Miklas S, et al.. Nutrient removal in pilot-scale constructed wetlands treating eutrophic river water: assessment of plants, intermittent artificial aeration and polyhedron hollow polypropylene balls[J]. Water Air Soil Pollution, 2009,197:61-73.
    [101]汤显强,李金中,李学菊,等.间歇曝气对生物填料人工湿地氮磷去除性能的影响[J].农业环境科学学报, 2008, 27(1): 318-322.
    [102]李想,崔莉凤.曝气增强垂直潜流型人工湿地脱氮效果研究[J].北京工商大学学报(自然科学版), 2009, 27(1):6-10.
    [103]王磊,李文朝,柯凡,等.低氧接触氧化/微曝气人工湿地工艺净化污染河水[J].中国给水排水, 2008, 24(5):22-26.
    [104]Zhang L Y , Zhang L, Liu Y D, et al.. Effect of limited artificial aeration on constructed wetland treatment of domestic wastewater[J]. Desalination, 2010,250:915-920.
    [105]鄢璐,王世和,钟秋爽,等.强化供氧条件下潜流型人工湿地运行特性[J].环境科学, 2007, 28(4): 736-741.
    [106]孔小松,干爱华,刘瑞轩,等.气水比对生物膜法处理废水各阶段的影响[J].工业水处理, 2005, 25(7):50-52.
    [107]钟秋爽,王世和,孙晓文,等.曝气气水比对人工湿地处理效果的影响[J].环境工程, 2008, 26(6):42-44.
    [108]Lu S L, Hu H Y, Sun Y X.et al.. Effect of carbon source on the denitrification in constructed wetlands[J]. Journal of Environmental Sciences, 2009,21:1036-1043.
    [109]张传义,王勇,黄霞,等.一体式膜-生物反应器经济曝气量的试验研究[J].膜科学与技术, 2004, 24(5):11-15.
    [110]刘志华,陈建中.溶解氧对膜生物反应器硝化反硝化的影响[J].水处理技术, 2007, 33(2): 21-23.
    [111]孔繁翔.环境生物学[M].北京:高等教育出版社, 2000, 280-281.
    [112]黄娟,王世和,鄢璐,等.潜流型人工湿地硝化和反硝化作用强度研究[J].环境科学, 2007, 28(9):1965-1969.
    [113]吕锡武,李丛娜,稻森悠平.溶解氧及活性污泥浓度对同步硝化反硝化的影响[J].城市环境与城市生态, 2001, 14(1): 33-35.
    [114]闫骏,王淑莹,高守有.低溶氧下低C/N值生活污水的同步硝化反硝化[J].中国给水排水, 2007,23(3):44-48.
    [115]李培培,郑正.人工湿地填料的磷吸附特性研究[J].河南科学, 2008, 26(1):88-91.
    [116]王庆安,孙铁珩.多藻浅水体中pH值和溶解氧协同周期性变化初探[J].四川环境, 2001, 20(2): 4-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700