半集中式污水与固体废弃物综合处理系统
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国城市化进程的快速推进,中小城镇经济得到了迅速发展,但与此同时,也给生态环境带来了巨大压力,“半集中式污水、固体废弃物综合处理系统”正是在这样的背景下提出的一种能够促进中小城镇物质循环利用、废物资源化、污染物减量化的环境保护新理念,符合“可持续发展”的原则。生活污水中的灰水具有污染轻、水量大的特点,对其进行回用可以节约城市用水、减少城市污水排放量,具有良好的社会效益、环境效益和经济效益。目前,我国在灰水回用方面的研究还处于起步阶段,研究开发适合我国国情的灰水处理技术对于提高污水资源化技术水平、解决水资源短缺的问题具有重要的意义。
     本课题以洗浴废水作为灰水的代表性水源,研究了新型曝气生物滤池和传统混凝工艺处理灰水的可行性及应用前景。主要研究内容包括:
     (1)新型曝气生物滤池工艺处理灰水的试验研究
     从曝气生物滤池的启动挂膜、对灰水中各类主要污染物的去除效果、滤池的压力损失等几个方面,对比研究了黏土生物陶粒和新型轻质陶瓷滤料对灰水的处理效果,探讨适于灰水处理的滤料特性。
     (2)传统混凝工艺处理灰水的试验研究
     通过正交试验研究两种水质条件(Ⅰ为洗浴废水原水,Ⅱ为厌氧储存后的洗浴废水)下灰水的混凝效果,考察了混凝剂的种类、投加量、pH、搅拌速度、助凝剂等因素对灰水混凝效果的影响,得出较优的混凝条件范围,再通过单因素优化试验进一步确定灰水处理的最优混凝条件。
     试验结果表明:
     (1)新型曝气生物滤池工艺处理灰水的试验研究
     a.黏土生物陶粒具有孔隙率大、粗糙度高、比表面积大的特点,滤料表面适于微生物的附着生长,可以使曝气生物滤池具有较强的生化降解能力、抗冲击负荷能力。系统稳定运行期间,COD、氨氮、LAS、SS、浊度的去除率分别可达到85%、80%、90%、80%和95%,出水浓度可分别在50mg/l、5mg/l、1.0 mg/l、10mg/l、5mg/l以下,满足生活杂用水的水质标准(CJ25.1-89)要求。但由于黏土生物陶粒的机械强度不高、反冲洗时滤床膨胀性能较差,容易使滤床堵塞产生较高的过滤阻力,并使反冲洗的频率与强度也随之提高,从而增加系统能耗。
     b.新型轻质陶瓷滤料机械强度较高,耐磨擦性能好,比重轻,利于曝气生物滤池反冲洗,不易堵塞,可以达到节能低耗的目的,稳定处理运行期间,新型轻质陶瓷滤料对COD、氨氮、LAS、SS、浊度的去除率分别可达到75%、50%、90%、65%和95%,出水浓度可分别在50mg/l、10mg/l、1.0mg/l、20mg/l、5mg/l以下。但由于其表面粗糙度低、孔隙率小,比表面积小,在洗浴废水较多表面活性剂的作用下,会使生物膜的附着生长不稳定,反冲洗时易脱落,削弱了曝气生物滤池系统对废水的生化降解、过滤截流能力,导致系统处理效果不稳定,出水悬浮物较多。
     (2)传统混凝工艺处理灰水的试验研究
     a.通过正交试验得出了洗浴废水混凝的较优条件范围:pH≈7、转速为中速、混凝剂种类为聚合氯化铝或聚合氯化铝铁、投加量(以铝、铁离子浓度计量)对于Ⅰ水质为30mg/l、对于Ⅱ水质为20mg/l。
     b.本试验条件下加入助凝剂可使絮体的沉降性能提高,但对污染物去除率的提高作用不明显。
     c.通过单因素优化试验得到洗浴废水混凝的最佳试验条件:
     Ⅰ水质条件下:投加量为10~20mg/l、转速为50~100r/min。
     Ⅱ水质条件下:投加量为10~15mg/l、转速为30~80r/min。
     综上所述,本试验通过对新型曝气生物滤池工艺和传统混凝工艺处理灰水的研究,得到以下结果:
     (1)通过对比研究黏土生物陶粒、新型轻质陶瓷滤料对洗浴废水的处理效果,总结出最适宜处理灰水的滤料特性,为滤料的优化、筛选提供了重要参考依据。
     (2)曝气生物滤池对进水要求较高,试验发现即使是灰水这类低污染的污水也要进行相应的预处理。混凝工艺可作为灰水处理的预处理单元(实际应用中根据具体的灰水水质选择最经济的混凝剂投加量),去除绝大部分胶体、颗粒态悬浮物和难降解的表面活性剂,为后续的生化处理系统提供更加有利的生化降解环境。
With the course of rapid urbanization in our country, economy of city and town has got prompt development, which has brought about enormous pressure to ecological environment at the same time. Under this background the concept of "semicentralized wastewater and solid waste integrated treatment system" was proposed, which could promote reduce, reuse, and recycle in the city as a new philosophy of environmental protection. As an important component of domestic sewage, greywater has characteristics of low-pollution and large volume, and its reuse could save water and reduce discharge in the city, which has great social, environmental and economic effectiveness. So far, the research of greywater reuse in our country is still in its beginning stages, so research and development of greywater treatment technology is great important to resolve the problem of water shortage and promote the level of wastewater recycling technology.
     This subject tends to research the feasibility and prospect of Biological Aerated Filter and Coagulation process to treat greywater. The main content includes:
     (1) Research of Biological Aerated Filter for greywater treatment
     From the aspects of startup of BAF, removal of main pollutants and pressure loss, Clay ceramsite agitator and new type sphere ceramics filter material were individually studied in BAF, to research the most suited characteristics of filters media to greywater treatment.
     (2) Research of Coagulation process for greywater treatment
     Orthogonal experiment is carried out to research the Coagulation effect of bathing wastewater in two water qualities, and find out better range of reaction conditions and finally determine the best coagulation condition for greywater.
     The results show that:
     (1)Research of Biological Aerated Filter for greywater treatmenta. Clay ceramsite has characteristics of high porosity, high roughness and big specific surface, which is good to microbes' growth. So the ability of biochemical degraded and shock load of BAF is high. In steady-going stage, removal rate of COD, NH_3-N, LAS, SS, turbidity was individually 85%, 80%, 90%, 80%, 95%, and effluent concentration was individually bellow 50mg/l, 5mg/l, 1.0 mg/1, 10 mg/1, 5mg/l, which could satisfied the reuse criteria for urban non-potable household. But the mechanical strength and filter bed expansibility when backwashing of this filter media is not good, so the filter bed was blocked easily which load to more frequently backwashing and high energy consumption.
     b. New type sphere ceramics filter material has characteristics of high mechanical strength and low specific gravity, which is good to backwash of BAF and prevent blockage. In steady-going stage, removal rate of COD, NH_3-N, LAS, SS, turbidity was individually 75%, 50%, 90%, 70%, 95%, and effluent concentration was individually bellow 50mg/l, 10mg/l, 1.0mg/l, 20mg/l, 5mg/l. But characteristics of lower porosity, lower roughness and smaller specific surface lead to unstable growth of biomass, which weaken the ability of BAF treatment, for example the unstable treatment effect and higher SS.
     (2) Research of Coagulation process for greywater treatment
     Orthogonal experiments were carried out to research the Coagulation effect of Bathing wastewater in two water quality (one was bathing wastewater; the other was bathing wastewater after storied ), and find out better range of reaction conditions and finally determine the best coagulation condition for greywater.
     a. Through orthogonal experiment, the better range of coagulation reaction conditions for bathing wastewater was got: pH≈7, middle mixing speed, PAC or PAFC, dosing amount of coagulant is 150mg/l for "I water quality" and 100mg/l for "II water quality".
     b. In this experiment, adding coagulant aid could promote the settling ability, but the effect of pollutant removal didn't increase.
     c. The best coagulation reaction conditions for bathing wastewater was got by single factor experiment: I water quality: dosing amount of coagulant was 50~100mg/l, mixing speed was 50~100 r/min. II water quality: dosing amount of coagulant was 50~75mg/l, mixing speed was 30~80 r/min.
     As a whole, through the research of Biological Aerated Filter and Coagulation process for greywater treatment we got results as follow:
     (1) The most suited characteristics of filters media for greywater treatment were got by research of comparison of Clay ceramsite agitator and new type sphere ceramics filter material in BAF, which would supply important reference to choose and optimize filter media.
     (2) BAF demands higher influent quality, even greywater which is low polluted also need pretreatment. Coagulation process could be chosen for greywater pretreatment to remove most SS and LAS, providing better biochemical degraded condition for subsequent treatment system.
引文
[1]P.伦斯,G.泽曼,G.莱廷格.分散式污水处理和再利用[M].北京:化学工业出版社,2004
    [2]Ramon G,Green M,Semiat R,Dosoretz C.Low strength graywater characterization and treatment by direct membrane filtration[J].Desalination,2004,17(5):241-250.
    [3]Nolde E.Greywater reuse systems for toilet flushing in multi-storey buildings over 10 years experience in Berlin[J].Urban Water,2000,1(4):275-278
    [4]B.Jefferson,A.Palmer,P.Jeffrey,R.Stuetz,S.Judd.Greywater characterization and its impact on the selection and operation of technologies for urban reuse[J].Wat.Sci.Tech.,2004,50(2):157-164.
    [5]崔福义,马放等.洗浴废水循环再利用技术的探讨和分析[J].环境治理技术与设备,2004,5(5):67-71
    [6]Karpiscak M,Foster M,Schmidt N.Residential water conservation[J].Wat.Res.,1990,26(6):939-948.
    [7]王炜亮、毕学军、张波.曝气生物滤池的特点、应用及发展[J].青岛建筑工程学院学报,2004,25(4):62-67
    [8]Bruce Jefferson,Joannae Burgess,Aude Pichon,Joanne Harkness and Simon J.Judd.Nutrient Addition To Enhance Biological Treatment Of Greywanter[J],Wat.Res.,2001,11(4):2702-2710
    [9]Folke Gunther.Wastewater treatment by greywater separation:Outline for a biologically based greywater purification plant in Sweden[J].Ecological Engineering,2000,15(4):139-146
    [10]王晓云,付爱民.洗浴废水处理与回用的试验研究[J].河北建筑工程学院学报,2004,22(1):69-73
    [11]杜茂安,丁玉海等.洗浴废水回用处理的水质控制研究[J].哈尔滨建筑大学学报,2002,35(5):52-54
    [12]张云霞,邢国平等.膜生物反应器处理洗浴废水的中试研究[J].中国给水排水,2003,49(3):49-51
    [13]江霜英,高廷耀.洗衣、洗浴废水再生回用作生活杂用水[J].中国给水排水,2003,93(2):93-94
    [14]韩剑宏.中水回用技术及工程实例[M].北京:化学工业出版社,2004:6-10
    [15]周彤.污水回用决策与技术.化学工业出版社,2002
    [16]肖锦.城市污水处理及回用技术.化学工业出版社,2002
    [17]张智等.城市污水回用技术.重庆建筑大学学报[J],2000,22(4):103-107
    [18]郑俊,吴浩汀,程寒飞.曝气生物滤池污水处理新技术及工程实例.北京:化学工业出版社,2002.26-27
    [19]李汝琪,钱易,孔波等.曝气生物滤池去除污染物的机理研究.环境科学,1999,20(6):49-52
    [20]王凯军,贾立敏.城市污水生物处理新技术开发与应用[M].化学工业出版社,2001
    [21]郑俊、吴浩汀.曝气生物滤池工艺的理论与工程应用.北京:化学工业出版社,2005.31-33,82-89
    [22]李亚新等.生物曝气滤池处理生活污水工艺特性研究.给水排水.2001,27(9):31-33
    [23]胡玉民.天津市纪庄子污水处理厂二级出水深度处理--好氧生物陶粒滤池过滤的研究[J].天津大学硕士论文.1990
    [24]郑俊等.上流式曝气生物滤池处理生活污水[J].中国给水排水.2001,17(1):51-53
    [25]邹利安等.二级城市污水处理厂出水直接过滤回用的研究与实践[J].给水排水.1997,23(8):21-24
    [26]张智等.复合生物滤池深度处理城市污水研究[J].中国给排水.2000,16(1):5-8
    [27]方振东等.生物陶粒反应器中硝化自养菌与异养菌生长关系的研究[J].中国给水排水.1998,14(1):18-20
    [28]Kent D T,et al.Testing of Biological Aerated Filter.Media Wst Sci Tech,1996,34(3-4):363-370
    [29]Lei Yang,L in2Sen Chou,Wen K.Shieh.Biofiler treat2ment of aquaculture water for reuse applications.Watl Sci.Tech.,2001,35(13):3097- 3108
    [30]A.Mann.Performance of floating and sunken media biolog2ical aerated filters under unsteady state condition.Water Research,1999,33(4):1108-1113
    [31]Moore R,Quarmby J,Stephenson T.The effects of media size on the performance of biological aerated filters[J].Wat.Res.,2001,35(10):2514-2522
    [32]Pujol R.Process improvements for up-flow submerged biofilters[J].Water,2000,32(1):25-29
    [33]Tschui M,Boiler M,Gujer W,et Tertiary nitrification in aerated pilot biofilters[J].Wat.Sci.Tech.,1994,29(10-11):53-60
    [34]Polanco F F.Mendez E,Auruena M.et nf.Spaial distribution of heterotrophs and nitriers in a submerged biofilter for nitrification[J].Wat.Res.,2000,34(10):4081-4089
    [35]Cromphout J.Design of an upflow biofilm reactor for the elimination of high ammonia concentrations in eutrophic surface water ammonia concentrations in eutrophic surface water[J].Water Supply.1992,10(3):145-150.
    [36]F.Goncalves,L.Le Grand,F.Rogalla.Biological phosphorus up take in submerged biofiters with nitrogen removal.Wat.Sci.Tech.,1993,29(10-11):135-143
    [37]A.Aesoy,H.Odegaard,K,Bach,et al.Dentrification in a packed biofilm reactor(biofor)2experiments with different carbon sources.Water Research,1998,32(5):1463 -1470
    [38]D.Pak,W.Chang.Simultaneous removal of nitrogen and phosphorus in a two2biofilter system.Water Science & Technology,2000,41(12):101-106
    [39]Concalves R F,DeAraujo V L,BOf V S.Combining upflow anaerobic sludge blanket(UASB)reactors and submerged aerated biofilters for secondary domestic wastewater treatment[J],wat.Sci.Tech.,1998.40(8):71-79
    [40]Coneaires R F.DeAraujo V L.Association of a UASB reactor and a submerged aerated biofiher for domestic sewage treatment[J].Wat.Sci.Tech.,1998.40(8-9):189-195
    [41]Melln E S,Bohne RA,Sjvold F,et nf.Treatment of ozonated water in biofhers containing diferent media[J].Wat.Sci.Tech.,2000.41(4-5):57-60
    [42]马军,邱立平.曝气生物滤池及其研究进展[J].环境工程,2002,20(3):7-11
    [43]邹伟国等.新型BIOSMEDI滤池的开发研究[J].中国给水排水.2001,17(1):1-4
    [44]张忠波等.新型曝气生物滤池BIOSTYR[J].给水排水.2000,26(6):15-18
    [45]齐兵强,王占生.曝气生物滤池在污水处理中的应用.给水排水[J],2000,26(10):4-8
    [46]徐丽花,李亚新.一种好氧生物处理有机废水的新工艺设备--生物曝气滤池[J].给水排水,1999,25(11):1-4
    [47]李汝琪.污水处理新技术--曝气生物滤池[J].中国环保产业,1999.(12):38-39
    [48]刘旭东,等.A/O一体式曝气生物滤池处理生活污水[J].工业安全与环保,2002.28(5):14-17
    [49]万平,陈建军,钟理.新型污水处理工艺--曝气生物滤池[J].工业水处理,2004,5(5):1-4
    [50]邹伟国,孙群.高效生物滤池在污水处理中的应用[J].中国给水排水.2002.18(2):77-79
    [51]孙立平,等.改进的BAF工艺在工业废水处理中的应用[J].给水排水,2000,26(11):37-39
    [52]姜应和,张发根.混凝法在城市污水强化处理中的应用[J].中国给水排水,2002.18(3):30-32.
    [53]邓风.城市污水深度处理工艺及回用途径.节能[J].2002,(4):41-42
    [54]李尔,范跃华.采用强化混凝法提高污水处理技能[J].华中科技大学学报(城市科学版),2002,19(3):92-94
    [55]Freese S D,Nozaic D J,Pryor M J,et al.Enhanced coagulation:aviable option to advance treatment technologies in the South African context[J].Water Science and Technology:Water Supply,2001,1:33-41
    [56]Singer P C,Bilyk.K.Enhances coagulation using a magneticion exchange resin[J].Water Research,2002,36:4009-4022
    [57]崔福义,杨海燕.洗浴废水处理工艺中混凝与处理的作用于效果研究[J].给水排水,2005,31(1):33-36
    [58]黄继国等.混凝法用于污水处理的实验研究[J].吉林大学学报,2002,32(3):255-257
    [59]陈钦安等.混凝法处理洗浴废水的研究[J].水处理技术,2004,30(5):303-306
    [60]阮文权.废水生物处理工程设计实例详解[M].北京:化学工业出版社,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700