低温污水曝气生物滤池处理技术中试试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国东北地区冬季气候寒冷,城市污水水温最低可达4~7℃,寒冷的气候条件对污水的生物处理极为不利。目前,这些地区虽然采取了一定的措施来保证低温污水处理达标排放,但这些措施不仅会增加工程投资和运行费用,而且污水处理效果也很难得到保证。
     为了保证低温污水出水效果更好,本试验采用低温菌种利用曝气生物滤池工艺处理低温生活污水。通过中试试验,研究了低温菌种曝气生物滤池的挂膜启动、对污染物的去除效能及影响因素,最终确定了工艺运行的最佳控制参数和反应动力学模型;比较了低温菌挂膜和自然挂膜曝气生物滤池处理低温污水的效果,研究了反应器内生物膜的生态结构和微生物的种群组成及分布。
     试验结果表明:水温13℃左右时曝气生物滤池利用低温菌悬液挂膜,18天左右就可以完成。挂膜过程中当CODcr的去除率达到77%左右,NH4+-N的去除率达到31%左右并且呈直线增长时挂膜就已完成。当进水水温为9~13℃、水力负荷为1.6 m3/(m2·h)、气水比为5:1时,反应器出水中各污染物的浓度均优于国家规定的排放标准。通过试验确定了水力负荷应控制在1.6 m3/(m2·h)左右,有机负荷应在3.71~15kgCODcr/(m3·d)范围内,NH4+-N负荷应保持在0.61~0.70 kgNH4+-N/(m3·d)范围内较为合适。研究了利用低温菌种曝气生物滤池工艺处理大庆市生活污水的反应动力学模型可表示为:。进水水力负荷不同时,反应器沿程污染物去除规律不同。当水力负荷为2.4 m3/(m2·h)时,反应器对CODcr和NH4+-N的去除率均与滤层高度呈正相关;当水力负荷为1.6 m3/(m2·h)时, CODcr的去除率仅与滤池下部滤层高度呈正相关性,且大部分的CODcr在这高度被去除;而NH4+-N的去除率与滤层高度无一致的相关性。在所有水力负荷下SS的去除率均与填料高度无相关性,70%~80%以上的SS均被900mm以下的滤料所截留。曝气生物滤池采用气水联合反冲洗,试验确定了反冲洗条件。
     通过比较低温菌种挂膜和自然挂膜两种方式处理大庆市生活污水表明:两种方式反应器出水中污染物的浓度差别不大。试验研究了反应器中的生物膜形态结构特征和微生物的种群组成及分布。稳态运行时,曝气生物滤池中生物膜沿水流方向厚度减小,表面粗糙和伸展起伏程度下降,颜色逐渐变浅。反应器内的微生物有细菌类、真菌类、原生动物、后生动物、寡毛类等微生物,并且微生物种群有沿反应器高度变化的趋势。
     本文以处理水量为10000m3/d的生活污水为例进行经济分析表明:曝气生物滤池工艺工程总投资和运行成本均优于生物接触氧化工艺。
It’s cold in winter of northeast in our country and sometimes the lowest temperature of sewage can reach to 4~7℃. It’s disadvantage for biological treatment of sewage. At present, we have taken some measures to make low- temperature sewage conform to the discharging standards, but the measures increased project investments. Moreover, the processing effect of sewage could’t conform to the discharging standards.
     We adopted cold-adapted microorganisms and sued biological aerated filter to treat the low-temperature sewage. The experiment investigated many problems such as start-up of biological aerated filter by cold-adapted microorganisms, the treatment efficiency for pollutants and some effect factors. At last, the study found the best controlling parameters and the dynamics model. The experiment also made the comparision between cold-adapted microorganisms and natural microorganisms, and investigated biofilm pattern and characteristics of microorganism population in BAF.
     The experiment demonstrated that it took about 18 days to complete the start-up under the condition of about 13℃with the cold-adapted microorganisms as seed. When the removal efficiency of CODcr and NH4+-N respectively reached to about 77% and 31%, and the removal efficiency of NH4+- N growing with Linear, the start-up of BAF have been completed. The concentration of pollutants in effluent completely excelled the requirement of discharging standards, under the condition that the influent temperature varied between 9~13℃, the hydraulic load was 1.6 m3/(m2·h), the proportion of aerated intensity and sewage intensity was 5:1. The experiment demonstrated that it was suitable that the hydraulic load was about 1.6 m3/(m2·h), the organic load was at the scope of 3.71~15kgCODcr/(m3·d)and the NH4+-N load varied between 0.61~0.70 kgNH4+-N/(m3·d).And we found the dynamics model equation of BAF that treated domestic sewage by using cold-adapted microorganisms, which expressed ln. The removal rules of pollutants varied following the water flow direction in BAF, under different hydraulic load conditions. The removal efficiency of CODcr and NH4+-N have positive correlation with the height of filter, for hydraulic load being 2.4 m3/(m2·h).When hydraulic load was 1.6 m3/(m2·h), the removal efficiency of CODcr only have positive correlation with the height of lower section in filter and the great mass of CODcr were removed at this section. However, the removal efficiency of NH4+-N have no correlation with the height of filter. Under all hydraulic load operated during the experiment, removal efficiency of SS have no correlation with the height of filter, and up to 70%~80% of SS was captured in the first 900mm. BAF adopted air-water backwash, the backwashing parameters had been decided during the experiment.
     The experiment demonstrated that the concentration of pollutants in effluent was similar in the two filters. The experiment studied biofilm pattern and the characteristics of microorganism population in BAF. The thickness of biofilm in BAF is thiner, the surface of biofilm is smoother, the extension and fluctuation of biofilm becomes smaller and the colour of biofilm changes shallower following the water flow direction, when the reactor was at the state of stable operating. There were many kinds of microorganism in BAF, such as bacterium, fungi, protozoan, metazoan, and oligochaetes. And the characteristics of microorganism population changed gradually along reactor height.
     With the example of 10000m3/d sewage treatment project, the results of the economic analysis showed that the total investments and the operating cost of BAF was excelled the biological oxidation.
引文
1新华社. 3月22日:世界水日. http://www.tj.xinhuanet.com. 2005-03-22
    2吴瑞林.生命之水·生命之源. http://www.grengz.cn. 2005-03-24
    3钱易.中国水资源可持续发展战略.第二届环境模拟与污染控制学术研讨会.北京, 2001: 1~2
    4国家环境保护总局.中国环境状况公报. 2000-2003
    5国家环境保护总局.中国环境状况公报. 2002: 1~4
    6 Friedman A.A., Schroeder E.D.. Temperature Effects on Growth and Yield of Activated Sludge. J. Jour. WPCF. 1972, 7, (2): 105~114
    7张自杰,戴爱临.国内城市污水低温生物处理试验.环境工程. 1983, 37: 4~5
    8陈滢,彭永臻. SBR法处理生活污水时非丝状菌污泥膨胀的发生与控制.环境科学学报. 2005, 25(1): 105~108
    9郑兴灿,李亚新.污水除磷脱氮技术[M].北京:中国建筑工业出版社. 1998: 98~122
    10朱乐辉.污水处理新工艺—曝气生物滤池.世界环境. 2000(1): 34~37
    11马军,邱立平.曝气生物滤池及其研究进展.环境工程. 2002, 20(3): 7~11
    12郑俊,吴浩汀,程寒飞.曝气生物滤池污水处理新技术及工程实例.化学工业出版社, 2002: 39~54
    13张恒建,赵玉军,叶晓亮.曝气生物滤池工艺处理医药废水工程实例.江苏环境科技. 2003, 16(1): 16~17
    14张杰,曹相生,孟雪征.曝气生物滤池的研究进展[J].中国给水排水. 2002, 18(8): 26~29
    15 Pujol R., Hamon M., Kadel X.. Biofilters: Flexible, Reliable Biological Reactors [J]. Water Science and Technology. 1994, 29(10-11): 33~39
    16 Chen J.J., McCarty D., Slack D., et al. Full Scale Studies of a Simplified Aerated Filter(BAF)for Organic and a Nitrogen Removal [J]. Water Science and Technology. 2000, 41(4-5): 1~4
    17 Chudoba P., Pujol R.. A Three-stage Biofiltration Process: Preformances of a Pilot Plant. Water Science and Technology. 1998, 38(8-9): 257~265
    18雷国元,齐兵强,王占生.二级曝气生物滤池处理城市污水的研究.武汉科技大学学报. 2000, 23(4): 373~376
    19 Peladan J.G., Lemmel H. and Pujol R.. High Nitrification Rate With Upflow Biofiltration. Water Science and Technology. 1996, 34(1-2): 347~353
    20 Mann A.T., Mendoza-Espinosa L. and Stephenson T.. Performance of Floating and Sunken Media Biological Aerated Filters under Unsteady State Conditions. Water Research. 1999, 33(44): 1108~1113
    21 Edz-polanco F., Mendez E., Uruena M.A., et al. Spatial Distrbution of Hetertroohs and Nitrifiers in a Submeiged Biofilter for Nitrification. Water Research. 2000, 34(16): 4081~4089
    22 Mendoza-Espinosa L.G., tephenson T.S.. Organic and Hydraulic Shock Loading on a Biological Aerated Filter. Environmental Technology. 2001, 22(3): 321~350
    23郑俊,程寒飞,王晓焱.上流式曝气生物滤池工艺处理生活污水.中国给水排水. 2001, 17(1): 51~53
    24刘建广.水解—BAF—纤维过滤工艺处理卷烟废水.中国给水排水. 2003, 19(1): 62~64
    25张征,周兴求,方江敏等.生物滤塔/射流曝气/BAF法处理制糖废水.中国给水排水. 2003, 19(11): 69~70
    26钟华文,张钧正,李晓明等.二段BAF工艺处理炼油厂汽提废水的研究.工业水处理. 2004, 24(2): 29~32
    27 Lacalle M.L., Villaverde S., Fdz-Polanco F., etal.CombinedAnaerobic/aerobic(UASB+UBAF)System for Organic Matter and Nitrogen Removal from a High Strength Industrial Wastewater. Water Science and Technology. 2001, 44(4): 255~262
    28 Omil F., Juan M.G., Arrojo B., et al. Anaerobic Filter Reactor Performance for the Treatment of Complex Dairy Wastewater at Industrial Scale. Water Research. 2003, 37(17): 4099~4108
    29武江津,孙长虹,马健驹等. BAF—BAC工艺在炼油厂二级出水深度处理中的应用.环境科学. 2003, 24(6): 135~138
    30黄全家,谢忱.改进型BAF水处理及回用装置节能工艺与投资效益分析.自动化与仪器仪表. 2004, 24(4): 64~66
    31 Payraudeau M., Goldsmith A.R., et al. Experience with an Up-flowBiological Aerated Filtor(BAF) for Tertiary Treatment: form Pilot Trials to Full Scale Implementation. Water Science and Technology. 2001, 44(2-3): 63~68
    32 Kyeong-Ho L., Hang-Sik S.. Operating Characteristic of Aerated Submerged Biofilm Reactors for Drinking Water Treatment. Water Science and Technology. 1997, 36(12): 101~109
    33桑军强,王占生. BAF在微污染源水生物预处理中的应用.中国给水排水. 2003, 19(2): 21~23
    34朱建文,吴浩汀. BAF+常规工艺+UF工艺在微污染源水生物预处理中的应用展望.工业水处理. 2004, 24(1): 12~16
    35 Bedard P.. High Rate Biofiltration.Proceedings of 3rd International Meeting on Biological Aerated Filters, Cranfield University, 1999. UK:13
    36 Pujol R.. Process Improvements for Upflow Submerdge Biofilters. Water21. 2000, 4: 25~29
    37 Won-seok C., Seok-Won H. and Joonkyu P.. Effect of Zeolite Media for the Treatment of Textile Wastewater in a Biological Aerated Filter. Process Biochemistry. 2002, 37(7): 693~698
    38 Kantardjieff A., Jones J.P..Aerobic Biofilter Treatment of Slaughterhouse Effluent.In51st Purdue Industrial Waste Conference Proceedings. Water21. 2000, 4: 25~29
    39 Kantardjieff A., Jones J.P.. Practical Experiences with Aerobic Biofilters in TMP(Thermomechanical Pulping), Sulfite and Fine Paper Mills in Canada. Water Science and Technology. 1997, 35(2-3): 227~234
    40 Westerman P.W., Bicudo J.R. and Kantardjieff A.. Upflow Biological Aerated Filters for the Treatment of Flushed Swine Manure.Bioresoure Technology. 2000, 74(3): 181~190
    41王璟,杨宝红,王正江等.曝气生物滤池—气浮工艺处理电厂废水及回用.工业水处理. 2002, 22(12): 57~59
    42李玉华,赵可,霍明昕.气浮—曝气生物滤池工艺处理印染废水.中国给水排水. 2003, 19(11): 41~42
    43国家环境保护总局.水和废水监测分析方法(第四版) [M].北京:中国环境科学出版社, 2002
    44赵兵等.生物滤池挂膜的生产实践.交通环保. 1999, 20(4): 25~27
    45郑俊,吴浩汀.曝气生物滤池工艺的理论与工程应用.化学工业出社, 2004: 55~58
    46谢曙光,张晓健,王占生.曝气生物滤池的低温挂膜研究[J].中国给水排水. 2003, 19(13): 58~59
    47江萍等.国产轻质球型陶粒用于曝气生物滤池的研究.环境科学学报. 2002, 22(4): 459~464
    48腾济林等.废水处理新型填料的挂膜试验研究.电力建设. 2002, 23(2): 54~57
    49张文妍.曝气生物滤池预处理黄浦江上游水的生产试验研究.河海大学硕士论文. 2003: 28~32
    50孙卫星.一体式生物滤池处理城市污水试验研究.河海大学硕士论文. 2005: 27~28
    51王国平,张林军等.曝气生物滤池处理生活污水主要参数试验研究.徐州建筑职业技术学院学报. 2004, 4(3): 25
    52郭天鹏,汪诚文,陈吕军等.升流式曝气生物滤池深度处理城市污水的供医特性[J].环境科学. 2002, 23(1): 58~61
    53 Gilmore K.R., Husovitz K.J., Holst T., et al. Influence of Organic and Ammonia Nitrogen Loading on Nitrifier Activety and Nitrification Performance for a Two-stage Biological Aerated Filter System. Water Science Technology. 1999, 39(7): 227~234
    54王立立,胡勇有.曝气生物滤池去除有机物及硝化氨氮的影响因素研究.环境污染与防治. 2006, 28(4): 259
    55肖文胜,徐文国,齐兵强.上流式曝气生物滤池处理城市污水.中国给水排水. 2003, 19(2): 50
    56马晓辉,孙驰等. O-A-O曝气生物滤池对COD和NH3-N的去除效果的试验研究.辽宁化工. 2006, 35(5): 279~280
    57 Mann A .T. Modeling Biological Aerated Filters for Wastewater Treatment. Wat. Tes. 1997, 31(10): 2443~2448
    58顾夏声.废水生物处理模式.第2版.清华大学出版社, 1993: 199~201
    59刘雨,赵庆良.生物膜法污水处理技术.中国建筑工业出版社, 2000: 112~115
    60王春荣.曝气生物滤池用于污水处理和回用的净化效能与机理研究.哈尔并工业大学博士论文. 2005: 50~52
    61刘旭东,杨正松等. A/O一体式曝气生物滤池处理生活污水.工业安全与环保. 2002, 28(5): 15
    62许保玖等.当代给水与废水处理原理.北京:中国建筑工业出版社, 2000: 54~56
    63张自杰.排水工程(下册).第四版.北京:中国建筑工业出版社, 1999: 309
    64 Polanco F, Garcia P. Influence of Design and Operation Parameters on the Flow Pattern of Submerged Filters [J]. Chem Tech Biotechnol. 1994, 61(3): 153~158
    65 Seguet F, Racault Y. Hydrodynamic Behavior of a Full-scale Submerged Biofilter and Its Possible Tnfluence on Performance [J]. Water Science Technology. 1998, 38(819): 249~256
    66 Hanaki K., Wantawin C.. Effects of the Activity of Heterotrophs on Nitrificationg in a Suspended-growth Reactor [J]. Water Research. 1990, 24(3): 289~296
    67任南琪,马放.污染控制微生物学.哈尔滨工业大学出版社, 2002: 57~61
    68刘荣光,罗辉荣.滤池气水反冲洗机理综述与初探.重庆建筑大学学报. 1998, 20(6): 7~11
    69张杰,陈秀荣.曝气生物滤池反冲洗的特征.环境科学. 2003, 24(5): 86~91
    70严煦世,范瑾初.给水工程(第四版).北京:中国建筑工业出版社, 1999: 333
    71 David Hall, Caroline S., Fitzpatrick B.. Research Note-Specitral Analysis of Pressure Variations during Combined Air and Water Backwash of Rapid Gravity Filters. Water Science Techonoly. 1999, 33(17): 3666~3672
    72 Cao Y.S., Alaerts G.J.. Influence on Reactor Type and Shear Stress on Aerobic Biofilm Morophlogy Population and Kinetics. Water Research. 1995, 29(1): 107~118
    73徐亚明,蒋彬.曝气生物滤池的原理及工艺.工业水处理. 2002, 22(6): 1
    74刘红叶,程晓如.污水生化处理中污泥减量技术的应用.广州环境科学. 2005, 20(4): 6~8
    75 Witzig R., Manz W., Rosenbergr S., et al. Water Research. 2002, 36(2): 394~402

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700