重力出水式膜生物反应器处理京郊农村生活污水的参数研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
北京是世界上严重缺水的大城市之一,水资源紧缺已成为制约其经济社会可持续发展的主要瓶颈。北京郊区是首都的生态屏障,也是北京主要的水源涵养区和供给地。农村污水对水源保护和水环境的影响日益显现。本文结合北京市的现实情况和发展需求,以两种不同膜组件为研究对象,研究和探讨两种不同膜组件应用于重力出水式膜生物反应器的可行性。为解决北京市水资源短缺、减少农村污水排放、有效控制河流,水库和水源地污染等提供技术支撑。经启动试验、模拟试验和中试运行试验等,得到以下主要结论。
     1、膜组件A(膜丝材质为聚乙烯,直径0.54 mm,孔径0.4μm,膜面积为9.0 m2)的清水比通量为42.611[L·(m2·h)-1/KPa],纯膜阻力为1.47(108m-1);膜组件B(膜丝材质为聚偏氟乙烯,直径0.80 mm,孔径0.22μm,膜面积为12.5 m2)的清水比通量和纯膜阻力分别为40.839[L·(m2·h)-1/KPa]和2.66(108m-1)。膜组件A在重力出水模式下的初始膜通量在11 L·(m2·h)-1左右,膜组件B在重力出水模式下的初始膜通量在7.5 L·(m2·h)-1左右。启动时期两膜组件对于污水中CODcr的去除率保持在80%以上;污水中NH4+-N的去除率保持在60%以上。
     2、在污泥浓度(MLSS)为2000mg/L~3000 mg/L的情况下,膜组件A的膜通量随着水头重力的增加而增加;在曝气强度为50 m3·(m2·h)-1下,膜组件A在4个给定水头重力下,均达到最大膜通量。在试验期内,曝气强度对膜通量的衰减影响较小,膜通量无明显下降的现象,其经济曝气强度约为50 m3·(m2·h)-1,平均膜通量为8.7 L·(m2·h)-1。膜组件B的膜通量也随着水头重力的增加而增加;曝气强度对于膜组件B膜通量的变化也无明显的影响;当曝气强度在40 m3·(m2·h)-1~60 m3·(m2·h)-1时,对膜通量的衰减影响较小,膜通量无明显下降的现象。其经济曝气强度约为40 m3·(m2·h)-1,在此曝气强度下,膜组件B平均膜通量为3.7 L·(m2·h)-1。膜组件A于长期运行下,具有较好的抵抗膜污染的特性,可以保持较高的膜通量;而膜组件B在长期抵抗膜污染能力上有待加强。同时重力水头对膜组件B的膜通量有较大的影响,单位压力膜通量(J/Δp)的最大递增率可达到168.75%,而膜组件A的单位压力膜通量(J/Δp)的最大递增率仅为16.95%。
     3、经济曝气强度约为40 m3·(m2·h)-1时,重力出水式膜生物反应器的对氨氮、CODcr、浊度的平均去除率分别为:97.8%、90.8%、99.4%。对比膜通量与曝气强度的关系,膜组件A比膜组件B具有更好的经济性,适和于改造为重力出水式膜生物反应器。
     4、空曝气只是对膜表面的污染物质有一定的冲刷作用,而对膜孔内部的污染物质的清洗作用有限。不同空曝气时间后,膜组件A的膜通量只恢复到了重力出水模式下的平均初始膜通量的26.9%~39.8%。而膜组件B则可恢复到了重力出水模式下的平均初始膜通量的49.0%~70.0%。说明膜组件A膜孔内污染严重,而膜膜组件B以膜外污染为主。空曝气对膜组件B的清洗效率优于膜组件A。
     5、负压式膜清洗方式对两种膜组件的清洗效果不同。膜组件A清洗后瞬时膜通量随清洗时间的增加而出现小幅下降的现象;而膜组件B清洗后瞬时膜通量则随清洗时间的增加而出现小幅上升的现象。
     6、次氯酸钠在线反冲的膜清洗方式是一种比较理想的清洗方式,膜组件A的平均膜通量恢复率为78.7%,膜组件B的平均膜通量恢复率为65.4%。其对膜组件A的清洗效果优于膜组件B。
As known, Beijing, a famous age-old capital, is one of the water quite deficient metropolis in the world. Deficiency of water resource has become a bottleneck for the continuable or sustainable development of economy in Beijing. Surburb of Beijing is both a natural ecological safeguard and main water source for the Capital. Therefore, treatment of wastewater in country area plays a more and more important role in protection of citys water source and water environment. Considering the practical situation and development requirement of Beijing, The aims of this thesis is to afford technical support for the reduction of wastewater drainage, pollution control of rivers effectively and control of riverhead, and overcome the crisis of water deficient in Bejing finally. There are two sets of membranes moulds to be tested in the subject, and the aim is to improve the traditional membrane bioreactor and constructed a new membrane bioreactor with gravity flow. The main results as follow:
     1. The results indicated that the pure water permeate flux, the membrane resistance and the permeate flux for membrane mould A (Material: PVDF, Diameter:0.54 mm, Aperture: 0.4μm, Membrane area: 9.0 m2) are 42.611[L·(m2·h)-1/KPa], 1.47(108m-1) and 11 L·(m2·h)-1. the pure water permeate flux, the membrane resistance and the permeate flux for membrane mould B (Material: PE, Diameter: 0.80 mm, Aperture: 0.2μm, Membrane area: 12.5 m2) are 40.839[L·(m2·h)-1/KPa], 2.66(108m-1) and 7.5 L·(m2·h)-1. The removal efficiency of CODcr and NH4+-N for the membrane mould A and the membrane mould B were over 80% and 60%.
     2. The permeate flux for membrane mould A increased with the increase of water gravity in the MLSS from 2000 mg/L to 3000 mg/L. The permeate flux for membrane mould A could be achieved the biggest permeate flux under the four given water gravities when the aeration intensity was 50 m3·(m2·h)-1. The weak effect of aeration intensity on permeate flux was small and the permeate flux decreased not significantly. The economical aeration intensity was 50 m3·(m2·h)-1 and the average permeate flux was 8.7 L·(m2·h)-1. The permeate flux for membrane mould B increased with the increase of water gravity. The effect of aeration intensity on the permeate flux for membrane mould B was not significant. The weak effect of aeration intensity on permeate flux was small when the aeration intensity was from 40 m3·(m2·h)-1 to 60 m3·(m2·h)-1and the permeate flux decreased not significantly. The economical aeration intensity was 40 m3·(m2·h)-1 and the average permeate flux for membrane mould B was 3.7 L·(m2·h)-1. The permeate flux for membrane mould A had good resistance membrane pollution properties and kept higher permeate flux. However, the permeater flux for membrane mould B remained to strengthen on the ability of resistance membrane pollution. Meanwhile, the effect of water gravity for membrane mould B was large. The maximum increasing rate of J/Δp for membrane mould B was 168.75% and the permeate flux for membrane mould A was only 16.95%.
     3. The economical aeration intensity was 40 m3·(m2·h)-1 for this membrane bioreactor with gravity flow. The average removal efficiency of NH4+-N, CODcr, and turbidity were 97.8%, 90.8% and 99.4%. Compared permeate flux and aeration intensity, the mould A was economical efficiency than the mould B, and the mould A was fit for membrane bioreactor with gravity flow.
     4. Aeration played a certain role in the scouring of membrane foulants but had no obvious effect on the cleaning of membrane pore fouling. After different aeration time, membrane mould A recovered 26.9%~39.8% flux of average flux in gravity flow while membrane mould B recovered 49.0%~70.0% flux of average flux in gravity flow which indicated that cleaning efficiency of membrane mould B was better than that of membrane mould A.
     5. The effect of minus pressure cleaning on the two membrane mouldes was different. After cleaned, instantaneous flux of membrane mould A appeared a slight decrease with the increase of cleaning time, whereas instantaneous flux of membrane mould B appeared a slight increase with the increase of cleaning time.
     6. Membrance cleaning way of NaClO online backwashing was a relatively ideal cleaning way. The average flux recovery ratio of membrane mould A and membrane module B were 78.7% and 65.4%.The cleaning effect of NaClO online backwashing on membrane mould A was better than membrane mould B.
引文
[1]甘治国等.北京市水资源配置模拟模型研究[J].水利学报, 2008, 39(1): 191-95
    [2]北京市环境保护局. 2007年北京市环境状况公报[R]. 2008
    [3]王亚娟等.北京地区未来2 -3年降水趋势分析[J].北京水务, 2008, 3: 45-47
    [4]朱铭捷.北京山区分散点源污染防止对此探讨[J].农业环境与发展. 2007, 4:91-93
    [5]北京市发展和改革委员会.北京市“十一五”时期水资源保护及利用规划[R].北京:北京市发展和改革委员会, 2006
    [6]张寿全.总结经验不断创新扎实推进生态清洁小流域建设[J].中国水土保持, 2007, 9:2-4
    [7]中华人民共和国建设部.关于村庄整治工作的指导意见[J].小城镇建设. 2005, 11:23-24
    [8]北京市人民政府. 2006年北京市政府工作报告[R].北京:北京市人民政府, 2006
    [9]井艳文,廖日红,楼春华.京郊水环境综述[J].北京水利, 2002, (1): 19-20
    [10]朱铭捷.北京山区分散点源污染防治对策探讨[J].农业环境与发展, 2007, 24(4): 91-93
    [11] CHIN JIN-MING.美国管理分散污水处理系统的政策和经验[J].中国给水排水, 20(6): 104-106
    [12]曾令芳.简评国外农村生活污水处理新方法[J].中国农村水利水电, 2001, (9): 30-32
    [13]陈德春.北京市郊区水环境污染现状及防治对策[J].北京水利, 2000, (3): 38-39
    [14]汪洪生.德国偏远乡村散居居民生活污水处理[J].环境导报, 1998, 40-41
    [15]梁祝,倪晋仁.农村生活污水处理技术与政策选择[J].中国地质大学学报(社会科学版), 2007, 7(3): 18-22
    [16]沈东升,贺永华,冯华军等.农村生活污水地埋式无动力厌氧处理技术研究[J].农业工程学报, 2005, 21(7): 111-115
    [17]刘春梅,储金宇. SBR法在农村生活污水处理中的应用[J].农机化研究, 2007, (6):229-231
    [18]池金萍,安丽.农村生活污水处理实用技术新进展[J].云南环境科学, 2004, 23(4): 8-10
    [19]曹大伟,李先宁,李孝安,等.地埋式一体化生物滤池工艺处理农村生活污水[J].中国给水排水, 2008, 24(1): 30-34
    [20]李先宁,李孝安.冬季溅水充氧滴滤池处理农村生活污水的启动研究[J].环境工程学报, 2007, 1(9): 26-30
    [21]李先宁,李孝安,蒋斌,等.溅水充氧生物滤池处理农村生活污水的优化研究[J].中国给水排水, 2007, 23(23): 26-30
    [22]李先宁,李孝安,吕锡武.溅水充氧生物滤池处理农村污水的研究[J].环境工程学报, 2008, 2 (2): 175-179
    [23]邱光磊,程建光,向连城,等.生物接触氧化工艺用于分散型污水处理的中试[J].中国给水排水, 2007, 23(5): 78-81
    [24]吴文学,郝阳,张利伟.中国农村小型分散式污水处理系统研究[J].中国科技信息, 2006, (19): 56-57
    [25]成先雄,严群.农村生活污水土地处理技术[J].四川环境, 2005, 24(2): 39-43
    [26]刘超翔,等.人工复合生态床处理低浓度农村污水[J].中国给水排水, 2002, 18(7):1-4.
    [27]刘超翔,等.表面流与潜流式生态床处理农村污水[J].中国给水排水, 2002, 18(11):5-8.
    [28]刘超翔,等.滇池流域农村污水生态处理系统设计[J].中国给水排水, 2003, 19(2):93-94.
    [29]刘超翔,等.不同深度人工复合生态床处理农村生活污水的比较[J].环境科学,2003,24(5):92-96.
    [30]赵璇,王琳,陆继来,等.适合农村生活污水处理的技术[J].农业环境与发展, 2007, (2): 9-12
    [31]黄翔峰,池金萍,何少林,等.高效藻类塘处理农村生活污水研究[J].中国给水排水, 2006, 22(5): 35-39
    [32]陈广,黄翔峰,何少林.水花生塘去除高效藻类塘出水中藻类的研究[J].中国给水排水, 2006, 22(9) : 43-45
    [33]吴彩斌,向速林,鲁秀国.处理农村生活污水的生物接触氧化-人工湿地组合工艺[J].湖北农业科学, 2008, 47(1): 44-46
    [34]白永刚,吴浩汀.滴滤池-人工湿地组合工艺处理农村生活污水[J].中国给水排水, 2007, 23(17): 55-57
    [35]孙宗健,滕彦国,王金生.人工土壤渗滤-湿地系统农村污水分散式处理[J].水处理技术, 2007, 33(22): 82-84
    [36]吴磊,吕锡武,李先宁,等.厌氧/跌水充氧接触氧化/人工湿地处理农村污水[J]. 2007,中国给水排水, 2007, 23(3): 57-59
    [37]李彬,吕锡武,宁平,等.自回流生物转盘/植物滤床工艺处理农村生活污水[J].中国给水排水, 2007, 23(17): 15-18
    [38] C. Visvanathan, R. B. Aim, K. Parameshwaran. Membrane separation bioreactors for wastewater treatment[J]. Critical Reviews in Environmental Science and Technology. 2000, 30(1): 1~48
    [39] P. Cote,H. Buisson, M. Praderie, Immersed membranes activated sludge process applied to the treatment of municipal wastewater[J]. Water Sci. Technol . 38 (1998)437–442.
    [40] Y. Miura, Y. Watanabe, S. Okabe, Membrane fouling in pilot-scale membrane bioreactors (MBRs) treating municipal wastewater: Impact of biofilm formation. Environ[J]. Sci. Technol. 2007. 41(2): 632–638
    [41] Z.W. Wang, Z.C. Wu, G.P. Yu, et al. Relationship between sludge characteristics and membrane flux determination in submerged membrane bioreactors[J]. Membr. Sci. 284 (2006) 87–94
    [42] Smith C V, Gregorio D O and Talcott R M. The use of ultrafiltration membranes for activated sludge separation. In: Proceedings of the 24th Annual Purdue Industrial Waste Conference[A]. West Lafayette, Indiana, USA, 1969.1300-1310
    [43] Kimura S. Japan’s Aqua Renaissance’90 project[J]. Water Science and Technology 1991, 23(7-9):1573-1582
    [44] Yamamoto K, Hiasa M, Mahmood T, et al. Direct solid-liquid separation using hollow fiber membrane in an activated sludge aeration tank[J]. Water Science and Technology 1989, 21:43-54
    [45] Chang J, Manem J and Beaubien A. Membrane bioprocesses for the denitrification of drinking water supplies[J]. Journal of Membrane Science 1993, 80:233-239
    [46] Urbain V, Benoit R and Manem J. Membrane bioreactor: A new treatment tool[J]. Journal American Water Works Association 1996, 88(5):75-86
    [47] Rosenberger S, Kruger U, Witzig R, et al. Performance of a bioreactor with submerged membrane for aerobic treatment of municipal waste[J]. Water Research 2002, 36(2):413-420
    [48] Rojas M E H, Van Kaam R, Schetrite S, et al. Role and variations of supernatant compounds insubmerged membrane bioreactor fouling[J]. Desalination 2005, 179(1-3):95-107
    [49] Cho J W, Ahn K H, Lee Y H, et al. Investigation of biological and fouling characteristics of submerged membrane bioreactor process for wastewater treatment by model sensitivity analysis[J]. Water Science and Technology 2004, 49(2): 245-254
    [50] Bouhabila E, Ben Aim R and Buisson H. Fouling characterization in membrane bioreactor[J]. Separation and Purification Technology 2001,22-23(1-3):123-132
    [51] Li H, Fane A G, Coster H G L, et al. Direct observation of particle deposition on the membrane surface during cross flow microfiltration[J]. Journal of Membrane Science 1998, 149(1):83-97
    [52] Mores W D and Davis R H. Direct visual observation of yeast deposition and removal during microfiltration[J]. Journal of Membrane Science 2001, 189(2):217-230
    [53] Nagaoka H, Yamanishi and Miya A. Modeling of biofouling by extra cellular polymers in a membrane separation activated sludge system[J]. Water Science and Technology 1998, 38(4-5): 497-504
    [54] Li X Y and Wang X M. Modelling of membrane fouling in a submerged membrane bioreactor[J]. Journal of Membrane Science 2006, 278(1-2): 151-161
    [55] Ognier S, Wisniewski C, and Grasmick A. Characterisation and modelling of fouling in membrane bioreactor[J]. Desalination 2002, 146(1-3): 141-147
    [56] Yu H Y, Xie Y, Hu M X, et al. Surface modification of polypropylene microporous membrane to improve its antifouling property in MBR: CO2 plasma treatment[J]. Journal of Membrane Science 2005, 254(1-2): 219-227
    [57] Chang S and Fane A G. Filtration of biomass with laboratory-scale submerged hollow fibre modules– effect of operating conditions and module configuration[J]. Journal of Chemical Technology and Biotechnology 2002, 77(9):1030-1038
    [58] Yoon S H and Collins J H. A novel flux enhancing method for membrane bioreactor (MBR) process using polymer[J]. Desalination 2006, 191(1-3):52-61
    [59] Kim J and DiGiano F A. Defining critical flux in submerged membrane: Influence of length-distributed flux[J]. Journal of Membrane Science 2006, 280(1-2):752-761
    [60] Psoch C and Schiewer S. Critical flux aspect of air sparging and back flushing on membrane bioreactor[J]. Desalination 2005, 175(1):61-71
    [61] Nuengjamnong C, Kweon J H, Cho J, et al. Influence of extracellular polymeric substances on membrane fouling and cleaning in a submerged membrane bioreactor[J]. Colloid Journal 2005, 67(3):351-356
    [62] Ken Sutherland. Water and sewage:The membrane bioreactor in sewage treatment[J]. Filtration & Separation,2007,44(7):18,20-22
    [63] Fakhru’l-Razi A. Ultrafiltration membrane separation for anaerobic wastewater treatmen[J]. Water Science and Technology 1994, 30(12):321-327
    [64] Davis W J, Le MS, Health C R. Intensified activated sludge process with submerged membrane microfilteration[J]. Wat.Sci.Trch, 1998, 38: 421–428
    [65] Bailey A D, Hansford B S and Dold P L. The use of cross-flow microfiltration to enhance the performance of a activated sludge reactor[J]. Water Research 1994, 28(1):297-301
    [66] Cote P, Buisson H, Pound C, et al. Immersed membrane activated sludge for the reuse of municipalwastewater[J]. Desalination 1997, 113(2-3):189-196
    [67] Muller E B, Stouthamer A H, Vanverseveld H W, et al. Aerobic domestic waste-water treatment in a pilot-plant with complete sludge retention by cross-flow filtration[J]. Water Research 1995, 29(4): 1179-1189
    [68] Chiemchaisri C and Yamamoto K. Enhancement of oxygen transfer and nitrogen removal in a membrane separation bioreactor for domestic wastewater treatment[J]. Water Science and Technology 2005, 51(10):85-92
    [69] Matsui Y, Yamaguchi F, Suwa Y, et al. Growth-characteristics of activated sludges acclimated to para-nitrophenol in batch and continuous-modes[J]. Water Science and Technology 1994, 29(7):327-333
    [70]桂萍.一体式膜-生物反应器污水处理特性及膜污染机理研究[D]: [博士学位论文].北京:清华大学环境科学与工程系, 1999
    [71]杨造燕,匡志花,顾平,等.膜生物反应器无剩余污泥排放的研究[J].城市环境与城市生态, 1999, 12(1): 16-18
    [72]顾维国,何义亮.膜生物反应器在污水处理中的研究与应用[M].北京:化学工业出版社
    [73]张军,王宝贞,聂梅生. MBR污水处理与回用工艺的经济分析和评价[J].给水排水, 2001, 27(6): 9-12
    [74] Yang W B, Cicek N and Ilg J. State-of-the-art of membrane bioreactors: Worldwide research and commercial applications in North America[J]. Journal of Membrane Science 2006, 270(1-2): 201-211
    [75]蔡亮,杨建州,白志辉.全球膜生物反应器污水处理系统工程应用现状与展望[J].中国建设信息(水工业市场). 2007. 12: 31-35
    [76] Zenon Environmental Inc.Interest in Zenon’s MBR technology continues to grow[N]. 2004(6): 10
    [77] Ken Sutherland. Water and sewage: The membrane bioreactor in sewage treatment[J]. Filtration & Separation, 2007, 44(7): 18, 20-22
    [78]密云县再生水厂:我国最大的膜生物反应器再生水厂竣工[J].北京水务. 2006, (4)
    [79] http://www.bjpc.gov.cn/zt/07zyjy_xwfbh/200705/t176038.htm
    [80]http://www.bjpg.gov.cn/News/lgxw/lgxw_nr.jsp?code=lgxw_mtjj&id=2c904def153f604801153f7bd66d0006&keyword=%E6%97%A0
    [81]黄霞,曹斌,文湘华,等. 2008.膜-生物反应器在我国的研究与应用新进展[J].环境科学学报, 2008, 28(3): 416~432
    [82]罗敏. ZeeWeed浸没式超滤系统在北京清河再生水厂中的应用[J].中国建设信息(水工业市场) . 2008, (07): 58~59, 61
    [83]引温济潮调水工程中的膜生物反应器污水处理技术[J].北京水务. 2008, (05)
    [84] Mulder M著,李琳译.膜技术基本原理[M]. (第二版).北京:清华大学出版社, 1999: 270~293
    [85] A. L. Lim, Ren bi Bai. Membrane fouling and cleaning in microfiltration of activated sludge wastewater[J]. Journal of Membrane Science, 2003, 216(1-2): 279~290
    [86]魏春海.一体式膜—生物反应器水动力学与在线清洗的膜污染控制[D]: [博士学位论文].北京:清华大学环境科学与工程系, 2006
    [87] Lee J, Ahh w, Lee C H. Comparison of the filtration characteristics between attached and suspended growth rnicroorganisms in submerged membrane bioreactor. Water Research, 2001, 35(10):2435-2445
    [88]陈少华,郑祥,刘俊新.重力出流式膜生物反应器的膜通量及膜污染控制研究[J].环境科学. 2006, 27(12): 2518-2524
    [89] Chang I S, Bag S O and Lee C H. Effects of membrane fouling on solute rejection during membrane filtration of activated sludge[J]. Process Biochemistry. 2001, 36(8-9): 855-860
    [90] Meireles M, Aimar P, Sanchez V. Effects of protein fouling on the apparent pore size distribution of sieving membranes[J]. Journal of Membrane Science 1991, 56: 13-8
    [91] S.Chang, A.G. Fane, Filtration of biomass with axial inter-fibre upward slug flow: performance and mechanisms[J]. J. Membr. Sci. 180 (2000): 57-68.
    [92]俞开昌.气水两相流微滤膜-生物反应器膜污染控制机理研究[D]: [硕士学位论文].北京:清华大学环境科学与工程系, 2003
    [93] Magara Y , ltoh M. The effect of operational factors on solid/liquid separation by ultra-membrane filtration in a biological denitrification system for collected human excreta treatment plants[J]. Water Science and Technology 1991, 23: 1583-1590
    [94] Baker J, Stephenson T, Dard S, et al. Characterization of fouling of nanofiltration membranes used to treat surface waters[J]. Environmental Technology 1995,16(10): 977-985
    [95] Zhang B, Yamamoto K, Ohgaki S, et al. Floc size distribution and bacterial activities in membrane separation activated sludge processes for small scale wastewater treatment/reclamation[J]. Water Science and Technology 1997, 35(6): 37-44
    [96] Wisniewski C, Grasmick A and Cruz A L. Critical particle size in membrane bioreactors-Case of a denitrifying bacterial suspension[J]. Journal of Membrane Science 2000, 178(l-2): 141-150
    [97] Lahoussine-Turcaud V. Fouling in tangential-flow and ultrafiltration: The effect of colloid size and coagulation pretreatrment[J]. Journal of Membrane Science 1990, 52(2): 173-190
    [98] Sethi S and Wiesner M R. Modeling of transient permeate flux in cross-flow membrane filtration incorporating multiple particle transport mechanisms[J]. Journal of Membrane Science 1997, 136(1-2): 191-205
    [99] Wisniewski C and Grasmick A. Floc size distribution in a membrane bioreactor and consequences for membrane fouling[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects 1998, 138(2-3): 403-411
    [100] Defrance L. Jaffrin M Y. Gupta B. et al. Contribution of various constituents of activated sludge to membrane bioreactor fouling[J]. Bioresource Technology 2000, 73(2): 105-112
    [101] Bouhabila E, Ben Aim R and Buisson H. Fouling characterization in membrane bioreactor[J]. Separation and Purification Technology 2001,22-23(1-3): 123-132
    [102] Chang I S and Lee C H. Membrane filtration characteristics in membrane-coupled activated sludge system the effect of physiological states of activated sludge on membrane fouling[J]. Desalination 1448, 120(3): 221-233
    [103] Nagaoka H, Yamanishi and Miya A. Modeling of biofouling by extra cellular polymers in a membrane separation activated sludge system[J]. Water Science and Technology 1998, 38(4-5): 497-504
    [104] Chang I S, Le Clech P, Jefferson B, et al. Membrane fouling in membrane bioreactors for wastewatertreatment[J]. Journal of Environmental Engineering-Asce 2002, 128(11): 1018-1029
    [105] Choi J G, Bae T H, Kim J H, et al. The behavior of membrane fouling initiation on the crossflow membrane bioreactor system[J]. Journal of Membrane Science 2002, 203(1-2): 103-113
    [106]刘锐.一体式膜-生物反应器的微生物代谢特性及膜污染控制[D]: [博士学位论文].北京:清华大学环境科学与工程系, 2000
    [107] Huang X, Gui P and Qian Y. Effect of sludge retention time on microbial behaviour in a submerged membrane bioreactor[J]. Process Biochemistry 2001, 36(10): 1001-1006
    [108] Laspidou C S and Rittmann B E. A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass[J]. Water Research 2002, 36(11): 2711-2720
    [109] Field R W, Wu D, Howell J A, et al. Critical flux concept for microfiltration fouling[J]. Journal of Membrane Science 1995, 100(3): 259-272
    [110] Howell J A. Subcritical flux operation of microfiltration[J]. Journal of Membrane Science 1995, 107(1-2):165-171
    [111] Kwon D Y, Vigneswaran S, Fane A G, et al. Experimental determination of critical flux in cross-flow microfiltration[J]. Separation and Purification Technology 2000, 19(3): 169-181
    [112] Yu K C, Wen X H, Bu Q J, el al. Critical flux enhancements with air sparging in axial hollow fibers cross-flow microfiltration of biologically treated[J]. Journal of Membrane Science 2003, 224(1-2): 69-79
    [113] Ognier S, Wisniewski C and Grasmick A. Membrane bioreactor fouling in sub-critical filtration conditions: a local critical flux concept[J]. Journal of Membrane Science 2004, 229(1-2):171-177
    [114] Ueda T, Hata K and Kikuoka Y. Treatment of domestic sewage from rural settlements by a membrane bioreactor[J]. Water Science and Technology 1996, 34(9): 189-196
    [115] Thomas M H and Judd S J. Fouling characteristics of membrane filtration in membrane bioreactors[C]. In: Hillis P, eds. Proceedings of Membrane technology in water and wastewater treatment. Cambridge, UK: Royal Society of Chemistry, 2000. 159-165
    [116] Ohnishi M, Okuno Y and Ohkuma N. Decoloration system using rotating membrane UF module[J]. Water Science and Technology 1998, 38(6): 35-43
    [117] Visvanathan C, Yang B S, Muttamara S, et al. Application of air backflushing technique in membrane bioreactor[J]. Water Science and Technology 1997, 36(12)259-266
    [118]邹联沛,王宝贞,范延臻,等. SRT对膜生物反应器出水水质的影响研究[J].中国给水排水, 2000,16(7): 16-18
    [119] Chang I S, Le Clech P, Jefferson B, et al. Membrane fouling in membrane bioreactors for wastewater treatment[J]. Journal of Environmental Engineering-Asce 2002, 128(11): 1018-1029
    [120] Huang X, Gui P and Qian Y. Effect of sludge retention time on microbial behaviour in a submerged membrane bioreactor[J]. Process Biochemistry 2001, 36(10): 1001-1006
    [121] Gander M A, Jefferson B and Judd S J. Membrane bioreactors for use in small wastewater treatment plant: membrane materials and effluent quality[J]. Water Science and Technology 2004, 41(1): 205-211
    [122] Yu H Y, Hu M X, Xu Z K, et al. Surface modification of polypropylene microporous membranes to improve their antifouling property in MBR: NH3 plasma treatment[J]. Separation and PurificationTechnology 2005, 45(1):8-15
    [123] Tyszler D, Zytner R G, Batsch A, et al. Reduced fouling tendencies of ultrafiltration membranes in wastewater treatment by plasma modification[J]. Desalination 2006, 189(1-3): 119-129
    [124] Altman M, Semiat R and Hasson D. Removal of organic foulants from feed waters by dynamic membranes[J]. Desalination 1999, 125(1-3): 65-75
    [125]范彬,黄霞,文湘华,等.动态膜-生物反应器对城市污水的处理[J].环境科学, 2002, 23(6): 51-56
    [126]范彬,黄霞,文湘华,等.微网生物动态膜过滤性能的研究[J].环境科学, 2003, 24(1): 91-97
    [127]张立秋,封莉,邹联沛,等.一体式与复合式MBR运行特性对比研究[J].给水排水, 2002, 28(12): 17-19
    [128]李春杰,耿琰,周琪,等. SMSBR中PAC对膜污染的防治作用[J].中国给水排水, 2002, 18(6):5-9
    [129]罗虹,顾平,杨造燕.投加粉末活性炭对膜阻力的影响研究[J].中国给水排水, 2001, 17(2): 1-4
    [130] Shon H K, Vigneswaran S, Kim I S, et al. The effect of pretreatment to ultrafiltration of biologically treated sewage effluent: a detailed effluent organic matter (EfOM) characterization[J]. Water Research 2004, 38(7): 1933-1939
    [131] Itonaga T, Kimura K and Watanabe Y. Influence of suspension viscosity and colloidal particles on permeability of membrane used in membrane bioreactor(MBR)[J]. Water Science and Technology 2004, 50(12): 301-309
    [132]吴金玲.膜-生物反应器混合液性质对膜污染影响及调控方法研究[D]: [博士学位论文].北京:清华大学环境科学与工程系, 2006
    [133] Liu R, Huang X, Wang C W, et al. Study on hydraulic characteristics in a submerged membrane bioreactor process[J]. Process Biochemistry 2000, 36(3): 249-254
    [134] Liu R, Huang X, Sun Y F. et al. Hydrodynamic on sludge effect accumulation over membrane surfaces in a submerged membrane bioreactor[J]. Process Biochemistry 2003, 39(2): 157-163
    [135] Le-Clech P, Jefferson B and Judd S J. Impact of aeration, solids concentration and membrane characteristics on the hydraulic performance of a membrane bioreactor[J]. Journal of Membrane Science 2003, 218(1-2):117-129
    [136] Ueda T, Hata K, Kikuoka Y. et al. Effects of aeration on suction pressure in a submerged membrane bioreactor[J]. Water Research 1997, 31(3): 489-494
    [137] Schoeberl P, Brik M, Bertoni M, et al. Optimization of operational parameters for a submerged membrane bioreactor treating dyehouse wastewater[J]. Separation and Purification Technology 2005,44(1):61-68
    [138] Gui P, Huang X, Chen Y, et al. Effect of operational parameters on sludge accumulation on membrane surfaces in a submerged membrane bioreactor[J]. Desalination 2003, 151(2): 185-194
    [139]李春杰,何义亮,欧阳铭.错流膜生物反应器水力清洗特性研究[J].环境科学, 1999, 20(2): 57-60
    [140]刘恩华,环国兰,杜启云,等.一种有效的膜清洗方法一海绵球管式膜清洗系统研究[J].膜科学与技术, 2003, 23(6): 65-68
    [141]刘锐,黄霞,汪诚文,等.一体式膜-生物反应器长期运行中的膜污染控制[J].环境科学, 2000,21(2): 58-61
    [142]孙新,徐国勋,祝信贤.在线反冲洗控制MBR膜污染的试验[J].城市环境与城市生态, 2005,18(1): 36-38
    [143]迪莉拜尔·苏力坦,莫罹,黄霞. PAC-MBR组合工艺处理微污染水源水的研究[J].水处理技术, 2003, 29(3):143-146
    [144]孙友峰.过滤/曝气两用型膜-生物反应器处理生活污水的试验研究[D]: [硕士学位论文].北京:清华大学环境科学与工程系, 2003
    [145]李娜,李国德,郑治国,等.膜生物反应器中膜污染的研究[J].矿冶, 2007, 16(2):68-71
    [146]魏源送,郑祥,刘俊新.国外膜生物反应器在污水处理中的研究进展[J].工业水处理. 2003, 23(1): 1-7
    [147]杨小丽,王世和.污泥浓度与曝气强度对MBR运行的综合影响[J].中国8给水排水.2007,23(1): 77~80
    [148]王琳,李世峰,孙磊,等. MBR中微生物对膜污染的影响研究[J].广西轻工业.2007(4): 10-11
    [149]张传义,袁丽梅,张雁秋.曝气强度对膜污染的影响[J].环境污染与防治. 2005, 27(8): 580-582
    [150]魏源送,郑祥,刘俊新.国外膜生物反应器在污水处理中的研究进展[J].工业水处理.2003,23(1):1-7
    [151] S. Chang, A. G. Fane. The effect of fibre diameter on filtration and flux distribution—relevance to submerged hollow fibre modules[J]. Journal of Membrane Science. 2001, 184(2): 221-231
    [152]单学敏,刘长峰.膜生物反应器中膜的清洗研究[J].辽宁化工. 2006, 35(6): 326-327, 339
    [153] A. G. Fane, Membrane bioreactors: design & operational options[J]. Separation and Filtration, 2002, 39(5): 26-29
    [154] Cicek N, Franco J P, Suidan M T, et a1. Using a membrane bioreactor to reclaim wastewater[J]. J. Am. Water Works Assoc. 1998, 90: 105-ll3
    [155] Muller E B, Stouthamer A H, Verseveld H W. et a1. Aerobic domestic wastewater treatment in a pilot plant with complete sludge retention by cross-flow filtration[J]. Water Res., 1995, 29: ll79-ll89
    [156] Yamagiwa K, Yoshida M, Ito A, et.a1. A new oxygen supply method for simultaneous organic carbon removal and nitrificationby a one-stage biofilm process[J]. Water Sci. Technol., 1998, 37: ll7-124
    [157] Shim J K, Yoo 1 K, Lee Y M. Design and operation considerations for wastewater treatment using a flat submerged membrane bioreactor[J]. Process Biochemistry, 2002, 38: 279-285
    [158] Urbain V, Mobarry B, Silva V, et a1. Integration of performance,molecular biology and modeling to describe the activated sludge process[J]. Wat. Sci. Tech., 1998,37(3): 223- 229
    [159] Fan X J, Urbain V, QJan Y, et a1. Nitrification and mass balance with a membrane bioreactor for municipal wastewater treatment[J]. Water Sci. Techno1., 2000, 42(3~4): 421-428
    [160]李红岩,高孟春,杨敏,等.组合式膜生物反应器处理高浓度氨氮废水[J].环境科学, 2002, 23(5): 62-66
    [161] Hofken M W A, Huber P, Schafer M, et a1. Membrane aerators and stirring systems for the operation in large and small wastewater treatment plants[J]. Water Sci. Technol., 1996, 34: 329-338
    [162] Zhang B, Yamamoto K, Ohgaki S, et a1. Floc size distribution and bacterial activities in membrane separation activated sludge processes for small—scale wastewater treatment/reclamation[J]. WaterSci. Techno1., 1997, 35: 37-44
    [163] Cicek N, Winnen H, Suidan M T, et. a1. Effectiveness of the membrane bioreactor in the biodegradation of high molecular weight compounds[J]. Wat. Res., 1998, 32(5): 1553-1563
    [164]耿琰,周琪,屈计宁. SMSBR反应器去除焦化废水中的氨氮[J].中国给水排水, 2002, 18(7): 8-11
    [165]奚旦立,孙欲生,刘秀英.《环境监测》[M]第三版.北京:高等教育出版社,2004
    [166] GB/T18920-2002,《城市污水再生利用城市杂用水水质》[S]
    [167] GB3838-2002,《地表水环境质量标准》[S]
    [168]于衍真,冯岩,韩雯雯等.水渣填料曝气生物滤池去除氨氮特性研究[J].中国给水排水. 2007,23(19): 40-43
    [169]董佳驹,张可方,荣宏伟等.序批式生物膜法硝化特性研究[J].哈尔滨商业大学学报:自然科学版. 2007,23(2): 171-174
    [170]何少林,黄翔峰,乔丽等.高效藻类塘氮磷去除机理的研究进展.环境污染治理技术与设备. 2006. 1(8), 6-11
    [171] Cai G X, Fan X H, Zhu Z L. Gaseous loss of nitrogen from fertilizers applied to wheat on a calcareous soil in North China Plain. Pedosphere, 1998, 8: 45-52
    [172] Rosenberger S, Kraume M. Filterability of activated sludge in membrane bioreactors[J]. Desalination,2002,151(2):195-200.
    [173] STERAPORE SUR系列中空纤维膜组件使用说明书. Mitsubishi Rayon Engineering Co., Ltd.2004
    [174] FP-AⅠ中空纤维帘式膜组件产品性能表.天津膜天膜科技有限公司
    [175]张国俊,刘忠洲.膜过程中膜清洗技术研究进展[J].水处理给水. 2003, 19(4): 187-190
    [176]张晓云,顾香玉.食品工业中膜污染与膜清洗研究[J].食品研究与开发. 2007, 28(6): 169-173
    [177]王志强,蔡振宇,张志刚,等.气-水联合反冲洗膜污染防治技术研究[J].环境污染治理技术与设备, 2005, 6(8): 61~63
    [178]王晓丽,陈蕊,高博,等.超声波辅助清洗啤酒发酵液污染微滤膜的研究[J].天津工业大学学报. 2005, 24(5): 76-80
    [179] Kobayashi T, Fujii N. Efect of ultrasound on enhanced permeability during membrane water[J]. Treatment. Japanese Journal of Applied Physics, 2000, 39(5): 2980-2981
    [180]张斌,龚泰石. MBR处理生活污水试验中膜污染的清洗[J].水处理技术, 2006, 32(10): 80-83
    [181]刘晓东,田爱军,孙秀云,等.膜生物反应器中膜的污染与清洗[J].工业水处理, 2003, 23(12): 37-40 [ 182 ]黄守斌,王卓艺.浅述膜生物反应器中的膜污染问题[J].水利科技与经济. 2007, 13(11):832-833

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700