生活垃圾与污水厂污泥一体化处理技术与设备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市污水处理程度的深化以及处理率的提高,污泥的产生量也在不断增加,污泥问题已成为当前影响城市发展的一大环境问题。因此,妥善地处理与处置污泥显得尤为必要,现阶段污泥浓缩厌氧消化脱水填埋处置是主要的处理方式。同样,随着城镇化不断推进,城镇生活垃圾的产量也在逐年增加,垃圾中的有机质含量也随着人民生活水平的提高而增加,垃圾堆肥(消化)作为生活垃圾处理(污泥垃圾稳定化)的工艺,具有减少垃圾体积、杀灭病原微生物、改善垃圾性能、产生沼气(厌氧条件下)等优点,并且堆肥后可再度被利用,既能做到节能减排,有达到循环经济的目的,因而一直备受研究者的关注。本文借鉴垃圾堆肥处理方式及污泥的两相一体式浓缩消化处理技术,设计出了生活垃圾和污水处理厂污泥一体化处理反应器,对其运行效能进行试验研究,并根据结果分析对反应器进行优化。
     生活垃圾和污水处理厂污泥一体化处理反应器有效容积为420L,污泥仓有效容积为220L,设计投配率30%,采用污泥逐步培养法,以10%的投配率启动;垃圾仓有效容积为200L,厌氧发酵处理生活垃圾。试验考察了一体化反应器在启动阶段的运行状况,结果表明垃圾仓pH维持在3~5之间,酸性发酵较活跃,但碱性发酵受到抑制,垃圾发酵成熟所需要的时间需100天以上,且堆肥产物不能利用,但发酵可产生较多的气体(产气量逐渐增大,最大有25L/d),为污泥仓补充搅拌用气体;污泥仓厌氧消化同样受温度的影响较大,出现了较严重的酸化现象,仓内碱度储存不足,产甲烷菌活性受到抑制,VS/TS仅从0.4~0.8下降到0.3~0.45,VSS的去除率在0.18~0.25之间,说明污泥仓消化性能波动较大,持续运行状况不理想,没有达到较好的污泥厌氧消化效果。综上所述,一体化反应器垃圾仓采用厌氧发酵处理垃圾,处理效果与反应器设计初衷不符。
     通过对一体化反应器的运行结果分析,及考虑到反应器设计上的缺陷,对反应器进行了优化,并对优化反应器的运行效能进行研究。优化反应器有效容积为710L,其中污泥仓有效容积为110L,采用污泥逐步培养法,以10%的投配率启动;垃圾仓的有效容积为600L,采用垃圾好氧堆肥方式处理。试验结果表明,垃圾仓在通风量为0.20m3/min.m3时,发酵产热使垃圾仓也可以很快达到30℃以上,垃圾发酵成熟所需要的时间仅需要20~30天的时间,垃圾仓pH维持在6~7左右,虽然有所波动,但仍然可保证发酵反应的顺利进行;污泥仓温度在5天后即达到了30℃以上,符合中温厌氧消化温度条件,启动过程中反应器内部的pH维持在6.5~7.5之间,碱度在800~2500mg/L之间,表明反应器内产甲烷菌较为活跃,厌氧消化状况良好,当搅拌次数2次/d(30min/次),容积负荷为0.65~1.31KgCOD/m3. d时,反应器排泥含水率降到93%左右,含水率较低,浓缩效果良好,排泥VS/TS由0.45~0.69下降到0.38~0.43,有机物去除率为40%以上,有机物去除率较高,排泥效果较好,这说明反应器运行状况良好,能够满足厌氧消化的需要。
With the deepening of the extent to deal with and the increasing of treatment rate, the amount of generated sludge also increased, and the sludge issue has become one of the environment issue affecting urban development. Thus, properly handling and disposal of sludge is necessary,and after anaerobic digestion sludge dewatering landfill is the main approach. Similarly, with the constantly advancing urbanization, the output of domestic refuse is also increasing, and The organic matter content increases with the improvement of people's living standard, and waste composting (digestion) is the domestic refuse processing technology (stabilization). It can reduce trash volume, kill pathogenic microbes and improve performance, produce biogas garbage (anaerobic conditions), etc. After composted it can use again, and it is energy saving and emission reduction, and it can achieve the purpose of recycling economy, and it has been much concerned. This paper refers composting of domestic refuse and TISID technology, and designs domestic refuse and sewage sludge integrating treatment reactors. Experimental studies have been done to its operation efficiency, and according to the results the reactor is optimized.
     Effective volume of the reactors is 420L, and effective volume of the sludge storage is 220L. The reacter designs with the feeding rate of 30%, and using sludge gradually cultivation, the reacter starts with the feeding rate of 10%; effective volume of the rsfuse storage is 200L, and the refuse is processed with anaerobic fermentation. Test inspects operation conditions of startup stage in the integrated reactor. Results show that pH of the rsfuse storage is 3-5. Acid fermented is more active, but the alkaline fermentation is restrained. Garbage fermentation time to mature need 100 days, and compost product cannot use, but fermentation can produce more gas(gas production increase gradually, the most 25L/d), it can give gas complement mixing for sludge; anaerobic digestion of the sludge storage also influences by temperature, and appeares more serious acidification phenomenon, and the basicity is insufficient in storage, and methanogens activity is restrained, and VS/TS drops from 0.4~0.8 to 0.3~0.45, and VSS removal rate is between 0.18~0.25. It shows that sludge digestion performance is volatile, and continuous operation condition is not ideal, and sludge anaerobic digestion is not good. Experimental study of integration in the start-up phase reactor operating conditions, the results show that the waste storage pH maintained at between 3 to 5, more active acid fermentation, but the basic fermentation was inhibited, garbage fermentation time needed to mature more than 100 days required , and the compost product can not be used, but the fermentation can produce more gas (gas production increases, the maximum a 25L/d), added to stir the sludge storage gas; sludge anaerobic digestion of the same positions affected by temperature than large, there has been more severe acidification, alkalinity storage warehouse insufficient activity of methanogenic bacteria was inhibited, VS/TS only from 0.4 to 0.8 down to 0.3~0.45, VSS removal rate of 0.18~0.25 shows the performance of sludge digestion and volatile storage, continuous operating conditions are not ideal, did not meet a better effect anaerobic digestion. In summary, the refuse of the integrated reactor is treated by anaerobic fermentation, and the treatment effect is not incompatible with the reactor designed.
     Through the analysis to operation results of the integrated reactor and regarding to reactor flaws, the reactor was optimized, and operation performance to the optimized reactor is studied. Effective volume of Optimized reactor is 710L, and effective volume of the sludge storage is 220L. And using sludge gradually cultivation, the reacter starts with the feeding rate of 10%; effective volume of the rsfuse storage is 600L, and the refuse is processed with anaerobic fermentation. Through test results, when the rsfuse storage is ventiled to 0.20 m3/min.m3, ferment producing hot can make rsfuse storage quickly reach above 30℃, and the time of refuse fermentation to mature needs only 20~30 days. PH of the rsfuse storage is at 6-7, and although somewhat fluctuations, it still can ensure the fermentation of reaction smooth. Temperature of the sludge in 5 days reaches above 30℃, and it is with conditions of Temperature anaerobic digestion, and with startup of the reactor pH maintain between 6.5~7.5, basicity is between 800~2500mg/L, and it shows that reactor methanogens is more active and anaerobic digestion is in good condition. When mixing number 2 times/d (30min/times) and Volume load for 0.65~1.31 KgCOD/m3.d, moisture content drops to 93%, and it shows concentration effect is good. Through VS/TS drops from 0.45~0.69 to 0.38~0.43 and organics removal rate is above 40%, it shows that organics removal rate is high and row mud effect is good. In summary, the reactor operation condition is very good, and it meet the need of anaerobic digestion.
引文
[1]袁霄梅,黄广霞,李光.我国生活垃圾处理现状及对策[J],环境卫生工程, 2009, 17(2): 31- 32.
    [2]黄亚军.重庆市城市生活垃圾现状及综合处理探讨[J],环境卫生工程, 2007, 15(6):54-56.
    [3]国家环境环保总局. 2005年中国环境公报[R],北京:国家环境环保总局, 2006.
    [4]刘则华,刘锡建,陈思浩,肖稳发.日本的污泥处理现状及对策[J].上海工程技术大学学报, 2006, 20(4):291-294.
    [5]李季,吴为中.国内外污水处理厂污泥产生处理及处置分析[M].徐强主编《污泥处理处置技术及装置》.北京:化学工业出版社, 2003. 7:1-11.
    [6]李季,吴为中,国内外污水处理厂污泥产生处理及处置分析[R],污泥处理处置技术与装备国际研讨会,深圳.
    [7]丁文川,郝以琼,汤子华.重庆市城市污水厂污泥的处理与处置[J].重庆环境科学, 2000, 22(2):14-19.
    [8]邱兆富,周琪.国内城市污水污泥的特点及处理对策[J],中国沼气, 2004, 22(2):22-25.
    [9]刘京媛,徐海云.我国城市生活垃圾分类收集与收费方式探讨[J].环境卫生工程, 2004, 12(1): 23-27.
    [10]杨波等.剩余污泥的处理与处置技术[J].华东大学学报, 2005, 31(4):126-130.
    [11]张自杰,林荣忱等.排水工程(第四版)[M].北京:中国建筑工业出版社, 2000. 6.
    [12]许保玖,龙腾锐.当代给水与废水处理原理[M].北京:高等教育出版社. 2000. 9.
    [13]廖利编著.城市垃圾清运处理设施规划[M].北京:科学出版社, 1999.
    [14]聂永丰主编.三废处理工程技术手册.固体废物卷[M].北京:化学工业出版, 2000.
    [15]张乐观,朱新锋.我国生活垃圾的处理现状及发展趋势[J].工业安全与环保, 2006, 32(9):37-39.
    [16]朱金城.开拓我国城市食杂性有机生活垃圾资源化综合利用产业化的道路[J].再生资源研究. 2001, (4):22-26.
    [17]李国学,张福锁编著.固体废物堆肥化与有机复混肥生产[M].北京:化学工业出版社, 2000.
    [18]国家环境保护总局污染控制司.城市固体废物与处理处置技术[M].北京:中国石化出版社, 2000.
    [19]陈玉芳.浅谈城市生活垃圾处理[J].黑龙江科技信息, 2008(5):26.
    [20]尹军.污水污泥处理处置与资源化利用[M] .北京:化学工业出版社, 2005.
    [21]李里,曹雪.城市生活垃圾无害化资源化处理[J].现代农业科技, 2008(5):232-235.
    [22]石吉,邵青.城市污水污泥的处理利用及发展[J].中国资源综合利用, 2004, 02:15-18.
    [23] JINY, LIYX, CHENTB, etal. Strategy of soil environmental p rotection for new century (in Chinese) [J]. Chinese Agri2culture Technology, 2001, 18 (1):28-32.
    [24]尹军,陈雷,王鹤立.城市污水的资源再生及热能回收利用[M].北京:化学工业出版社, 2003, 04, 117-192.
    [25] M. Inguanzo, On t he pyrolysis of sewage sludge:he influence of pyrolysis conditions on solid, liquid and gas f ractions[J], Jour nal of Analytical and Applied Pyrolysis 2002 (63) 209-222.
    [26] Brian A. Bolto. Soluble polymers in water purification. Prog. Polym. Sci[J]. 1995, 20 (6):1014 -1016.
    [27]张辰主编.污泥处理处置技术与工程实例[M].北京:化学工业出版社, 2006. 5.
    [28] MARTIN M J, ARTOLA A. BALAGUER D M,et al. Activated carbons developed from surplus sewage sludge for the removal of dyes from dilute aqueous solutions [J]. Chemical Engineering Journal, 2003, 94 ( 3 ):231-239.
    [29]昝元峰,王树众等.污泥处理技术的新进展[J],中国给水排水, 2004, 20(6):26-28.
    [30] Alexandre Valoand soon. Thermal, Chemical and thermo-chemical pre-treatment of waste activated sludge for anaerobic digestion. [J]. ChemTechnol Biotechnol, 2004, 79:1197-1203.
    [31] PAN S C, LN C C, TSENG D H. Reusing sewage sludge ash as adsorbent for copper removal from wastewater. Resources[J], Conservation and Recycling, 2003, 39 (1):79-90.
    [32] ZHAI Y B, WEIX X, ZENG GM, et a l. Study of adsorbent derived from sewage sludge for the removal of Cd2+, Ni2+ in aqueous solutions[J]. Separation and Purification Technology, 2004, 38 (2):191 -196.
    [33] Mulin Cai, Junxin Liu, Yuansong Wei. Enhanced biohydrogen production from sewage sludge with alkaline pretreatment[J]. Environmental Science& Technology. 2004, 38(11): 3195.
    [34]杨晓奕,蒋展鹏.湿式氧化—两相厌氧消化处理剩余污泥[J].中国给水排水, 2003, 19(4):48-51
    [35]马娜,陈玲.城市污泥资源化利用研究[J].生态学杂志, 2004, 23(1):86-89.
    [36] Yoon, Seong-Hoon, Lee Sangho. Critical operational parameters for zero sludge production in biological Wastewater treament plant processes combined with sludge disintegration[J]. Water Research, 2005, 39:3738-3754.
    [37] Lutz H, Romeiro G A, Damasceno R N. Low temperature conversion of some Brazilian municipal and industrial sludges[J]. Bioresource Technology , 2002, 7 (1):103-107.
    [38]梁鹏,黄霞,钱易.污泥减量化技术的研究进展[J].环境污染治理技术与设备, 2003, 4(1): 44-51.
    [39]程丽华,倪福祥.剩余活性污泥处理的清洁生产方向[J].青岛理工大学学报, 2006, 27(1):105-109.
    [40] W ILSON S, STOFFLELLA P. Compost amended media for growth and development of Mexican Heather[J]. Compost scienceand ulitization, 2001, 9 (1):60-64.
    [41]董保澎.国内外城市生活垃圾处理概况及我国垃圾处理发展趋势[M].第四届全国固体废物处理与资源综合利用技术交流会论文集(一), 2001, 8-10.
    [42]朱兰保,盛蒂.我国城市生活垃圾处理现状及其对策[J].环境卫生工程, 2006, 14(3):35-39.
    [43]何强,王祥勇,方俊华,刘海舰.新型内循环污泥浓缩消化反应器研究[J]. 2005, 21(4):5-8.
    [44]李玉文,宋国锋.城市生活垃圾处理技术比对,社会管理[J], 2009, 1:127.
    [45]戴前进,李艺,方先金.城市污水处理厂剩余污泥厌氧消化试验研究[J],中国给水排水, 2006, 22(23):95-98.
    [46]任南琪,王爱杰.著厌氧生物技术原理与应用[J].北京:化学工业出版社, 2004, 03:43-45.
    [47]胡纪翠,顾夏生.废水厌氧处理理论与技术[J].北京,中国建筑工业出版社, 2003, 05:82- 96.
    [48]室外排水设计规范GB50101-2005[R].北京,中国计划出版社, 2005.
    [49]戴前进,李艺,方先金.城市污水处理厂剩余污泥厌氧消化试验研究[J],中国给水排水, 2006, 22(23):95-98.
    [50]陆卫亚.厌氧发酵技术在有机垃圾处理方面的应用[J],城市环境与城市生态, 2002, 15(6):55-57.
    [51]代以春,徐庆元等.厌氧消化技术在生活垃圾堆肥处理中的应用[J],环境卫生工程, 2005, 13(1):50-52.
    [52]张元兴,许学书.生物反应器工程[M],上海:华东理工大学出版社, 2001年10月第1版.
    [53]贺延龄.废水的厌氧生物处理[M].北京:中国轻工业出版社, 1998.
    [54]陈世和,张所明.城市垃圾堆肥原理与工艺[M].上海:复旦大学出版社, 1990.
    [55]郑伟青.基于FLUENT模拟的两相一体式污泥浓缩消化反应器(TISTD)流态及其优化研究[D].重庆大学, 2008.
    [56] Robert C·W·, David R·L. CRC Handbook of Chemistry and Physics[M]. Boca Raton, Florida:CRC Press, Inc. , 1990. 57.
    [57]李承强,魏源送,樊耀波,等.不同填充物料污泥好氧堆肥的性质变化及腐熟度[J].环境科学, 2001, 22(3):60-65.
    [58]杨国清主编.固体废物处理工程[M].北京:科学出版社, 2000.
    [59] GAVALA H N, YENAL U, SKIADAS I V, et al. Mesophilic and thermophilic anaerobic digestion of primary and secondary sludge. Effect of pretreatment at elevated temperature[J]. Water Res, 2003, 37(19):4561-4571.
    [60]国家环境保护总局污染控制司.城市固体废物与处理处置技术[M].北京:中国石化出版社, 2000.
    [61]聂永丰主编.三废处理工程技术手册.固体废物卷[M].北京:化学工业出版, 2000.
    [62]黄春花.论我国城市垃圾处理的现状与对策[J].生态与环境, 2010:144.
    [63]徐强.污泥处理处置技术及装置[M].北京:化学工业出版社, 2003.
    [64] Pei S Y, Chen L C, Chien C Y, et al. 2002. Network strength and dewaterability of flocculated activated sludge[J]. Water Research, 36: 539-550.
    [65]李海英等,铃木荣二.城市污水污泥热解实验及产物特性[J].天津大学学报. 2006, 39(6)739-744.
    [66]叶子瑞.国内外污泥处置和管理现状[J].环境卫生工程,2002, 10(2):85-88.
    [67]梁鹏,贾霞,钱易,等.污泥减量化技术的研究进展[J].环境污染治理技术与设备, 2003, 4(1):44-52.
    [68]张峥嵘,黄少斌.污泥减量化的分析与研究[J].化学与生物工程, 2006, 23(9):4-6.
    [69] M. Inguanzo, On t he pyrolysis of sewage sludge:the influence of pyrolysis conditions on solid, liquid and gas f ractions[J], Jour2 nal of Analytical and Applied Pyrolysis 2002 (63) 209-222.
    [70]魏源送,樊耀波.污泥减量技术的研究及其应用[J].中国给水排水, 2001, 17 (7) :23-26.
    [71] Liang P , Huang X , Qian Y, et al . Determination and comparison of sludge reduction rates caused by microfaunas′predation[J] . Wat Res , 2006 , 97 (6) : 854-861.
    [72] DuGC, ChenJ, YuJ, et al. Kinetic studies on poly-3-hydrobutyrate formation by Ralstoniaeutropha in a two-stage continuous culture system[J]. Process Biochemistry, 2001, 37(3): 219-227.
    [73] Nie Y Q, Liu H, Du G C, et al. Enhancement of acetate production by a novel coupled syntrophic acetogenesis with homoacetogenesis process[J]. Process Biochemistry, 2007, 42 (4): 599-605.
    [74]王志玉,金宜英,王兴润,等.城市污水污泥中有机质的资源化技术综述[J].给水排水, 2007, 33(增刊):41-44.
    [75]李建国,陈世和等编.城市垃圾处理与处置[M].北京:中国环境科学出版社, 1992.
    [76]张守君,杜永林.污水处理中污泥处理技术分析[J].云南环境科学, 2001, 20(4):40-41.
    [77]史晰龙,陈绍伟.城市污水污泥的处置与利用[J].环境保护. 2001, 3:4.
    [78] LEE J G, HUR J M. Performance characterization of anaerobic sequencing batch reactor process for digestion of night soil[J]. Water Sci Technol , 2001, 43(1):27-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700