半连续乳液聚合乳胶粒形态演化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳胶粒形态是乳液聚合比较重要的问题,不同的乳胶粒形态对乳液产品的性能起不同的作用,研究乳胶粒形态产生的机理、发展的过程,一方面可以丰富乳液聚合理论,另一方面有重要的实际应用意义。半连续乳液聚合方法是工业上应用比较普遍的工艺,研究聚合过程中乳胶粒形态问题有重要的意义。本文通过半连续乳液聚合实验和理论研究方法,比较详细研究了多种单体两两之间种子核壳乳液聚合乳胶粒形态问题,重点研究乳胶粒形态在核壳半连续乳液聚合过程中的演化,得到许多乳胶粒形态演化过程的TEM照片,为乳胶粒形态发生、发展的演化过程提供重要的证据。
     PVAc/PBA体系:以PVAc为种子,半连续加入BA,由TEM照片观察,饥饿态过程中得到以PVAc为核,PBA为壳的正向核壳;充溢态过程中得到以PVAc为壳,PBA为核的反向核壳;将饥饿态反应过程中不同时间取出的样品保温到反应结束,正向核壳乳胶粒向反向核壳演化,形成不同程度的反向核壳过渡形态。这些实验现象澄清了在此体系的表面上是矛盾的观点。采用相同的PVAc种子,不同的引发剂和进料速率,研究表观动力学及其对复合乳胶粒形态的影响。提出表观动力学实验表达式:R_(pw)=K*R_a,其中K=1-0.02R_a,R_(pw)是稳定的聚合速率(mole/s),R_a是进料速率(mole/s),K为试验系数。研究表明加料速率严重影响聚合速率,引发剂量/单体量对聚合速率的影响稍小,并对这种现象进行解释。
     PVAc/PST体系:以PVAc为种子,半连续加入ST,低速进料过程中,ST没有完全转化,由TEM照片观察,乳胶粒形态由初期PST处在PVAc表面,类似草莓形状,逐渐发展到后期PST进入PVAc内部的状态,形成反向核壳的过渡形态;充溢态过程中得到以PVAc为壳,PST为核的反向核壳;将低速进料反应过程中不同时间取出的样品保温到反应结束,在低速进料过程中未反应的单体进一步反应,在PVAc表面形成草莓形状,复合乳胶粒的形态为内、外同时存在PST,为PVAc和PST相互包埋的状态。
     PST/PVAc体系:以PST为种子,半连续加入VAc,由TEM照片观察,将低速进料反应过程中不同时间取出的样品保温到反应结束,形成大部分PVAc形成在PST表面,部分PVAc仍然在PST内部的形状,PVAc在PST表面进行铺展是一个逐渐的过程,由初期的补丁状态,发展到对PST表面全包埋的状态;充溢态过程中得到以PVAc为壳,PST为核的正向核壳乳胶粒。
     P(ST-BA)/PVAc体系:以ST和BA共聚物为种子,半连续充溢态加入VAc,由TEM照片观察,充溢态过程中得到以PVAc为壳,P(ST-BA)为核的正向核壳乳胶粒。PVAc在P(ST-BA)表面进行铺展是一个逐渐的过程,由初期的补丁状态,发
    
     半连续乳液聚合乳胶粒形态演化研究
    展到对PpT七A)表面全包埋的状态。
     利用界面张力简单计算方法,并采用Sundberg理论对多体系核壳乳胶粒热力
    学平衡形态进行预测,并进一步进行灵敏度分析,结果表明无单体存在的条件下,
    不同体系平衡形态的灵敏度不同,得出 PVAC/PBA,PVAc/PST,PST/PVAC,
    PpT七A)oVAC体系是平衡形态不敏感体系,灵敏度区间为卜45儿 30们,而
    PST/PMMA和 PMMA/PST体系是敏感体系,其灵敏度区间为(-200,150),其他的敏
    感体系矛灵敏度区间 为陀T/PBA:(-10%,4y),PM帆/PBA:(-100,150)。本文认
    为:对于敏感体系,采用简单计算方法预测的可靠性比较低:对于不敏感体系,
    采用简单计算方法预测的可靠性比较高。初步估计单体存在对不敏感体系
    PVAC/PBA,PVAc/PST,PST/PVAC和 P(ST-BA)/PVAC的平衡形态影响,以 PVAC/PBA t
    体系为对象进行计算,结果表明一定量的单体对平衡形态没有影响,其影响的程
    度没有超过灵敏度区间分析结果,即半连续饥饿态和充溢态过程中,体系
    I’VAC/PBA,PVAC/PST,PST/PVAC和 P(ST-BA)/PVAC的热力学平衡形态是相同的。
    通过半连续饥饿态和充溢态实验和对文献的考察,基本证明本文提出的灵敏度分
    析方法和分析结果是比较合理的。
     在上述分析的基础上,对 PVAc/PBA,PVAC/PST,PST/PVAC和 P(ST-BA)/PVAC
    体系复合乳胶粒形态由不平衡态向平衡形态发展的过程进行热力学分析,计算各
    体系在半连续反应过程对应的八Y,并与实验结果进行对比,本文认为复合乳胶粒
    形态山不平衡态向平衡形态的发展,符合AY减少原则,实验与理论分析是一致的。
     根据热力学分析和实验过程TEM照片观察,对PVAC/PBA体系乳胶粒形态发
    展过程进行计算机模拟,在模拟中,对簇动力学进行了改进,认为饥饿态过程中,
    簇始终产生在种子表面,而充溢态过程中,簇始终产生在种子内部。将这些模拟
    得到的结果与实验得到的结果进行对比,认为两者基本上是相同的,在时间大小、
    形态变化的方式上也基本是一致的。
     本文分析一次性可降解餐具生产工艺,市场行情,测定人体对几种常用单体
    的接受程度,并以此为基础,研究核壳乳液在一次性可降解餐具方面的应用情况。
    以P(ST-BA)/PVAC核壳乳液作为餐具涂料,取得一定的进展,并初步在工业化生
    产线上得到应用;以PVAC?
The morphology of latex is a very important, complicated and interesting topic in emulsion polymerization. Different morphologies of latexes can perform different functions, and so the understanding and controlling of the mechanism and development of the morphology of composite latex are beneficial for the industry application. The semi-continuous emulsion polymerization is a very important procedure and, widely used in industry therefore the research on the morphology of composite latex is useful. This paper studies the mechanism and development of the morphology of composite latex in semi-continuous process, especially the morphological evolution in two stages seeded emulsion polymerization. The TEM of photos of latex in semi-continuous process provides us with the important proof of morphological evolution, and with the basic view of points to calculation and simulation about the thermodynamic equations and morphological evolution.
    This article studies the morphological evolution of composite latex in semi-continuous Uvo-stages seeded emulsion polymerization process, in the systems of PVAc(Vinyl acetate)/PBA(butyl acrylate), PVAc/PST(styrene), PST/PVAc ,P(ST-co-BA) (styrene-co-butyl acrylate)/PVAc,PSt/PMMA(methyl methacrylate) and PMMA/PS, and the conclusions are as follows, in which the same emulsifier(Sodium Dodecyl Sulfate and Octylphenoxy Polyethoxy Ester), initiator(Potassium Persulfate) are adopted for the seed and the second stage polymerization, in starved and overflowed semi-continuous process, and polymerization is in the same reaction vessel. PVAc/PBA: When the PVAc as seed, BA is injected in semi-continuous process in starved or overflowed conditions and polymerized, in the process the latex is taken out and investigated by the TEM. The conclusion is as follows: The core-shell composite latex is found in the process of starved condition, with the PVAc as core and the PBA as shell. The inverted core-shell composite latex, with the PVAc as shell and the PBA as core, is got in the process of overflowed condition. When the latex is taken out in different time and kept warm to the end of the reaction in the starved condition, the morphology of composite latex inverts and the inverted core-shell, with much of PBA as the core and PVAc as the shell, is found. The morphological evolution to the thermodynamic equilibrium in some degree can be got in the process of starved or overflowed condition, and kept warm to the end of reaction in the starved condition. The facts of the morphological evolution of latex in experiments help us to understand the paradoxical points of view about the morphology of latex in the system of PVAc/PBA, which is investigated by many people and the contrary views exists. Besides the investigation about the morphological evolution, the apparent dynamics of BA monomer polymerization, as well as its effect on the morphology of latex, is studied, in the process the amount
    
    
    
    of initiator and injection speed of BA. monomer varied and the others are kept unchangeable. The apparent kinetics of emulsion polymerization for PVAc/PBA core-shell in semi-continuous process is found in the experimental equation: Rpw=K*Ra, with K=l-0.02Ra,where Ra is the injection speed of BA monomer(mole/s), Rpw is the stable polymerization speed(mole/s) and K is the experimental coefficient(no unit).The relation between Rpw, Ra and initiator/monomer shows that the injection speed of BA exerts a main effect on the polymerization speed and the morphology of latex in the process,-and the action on them from the initiator/monomer is less.
    PVAc/PST: When the PVAc as seed, St is injected in semi-continuous process in low-speed or overflowed conditions and polymerized, in the process the latex is taken out and investigated by the TEM. Although the injection speed of St is very low, the polymerization speed is less than that and the residual ST monomer is accumulated in the process At the beginning of polymerization, the PST is found in the form of strawberry outside the seed of PVAc, however, at last the PST is get
引文
1.成国祥,盛京,沈宁祥等,[J]高分子通报,1989,4,32
    2.曹同玉,刘庆普,胡金生.聚合物乳液合成原理、性能及应用,化学工业出版社,1997
    3. Chacko V P et al. U. S. P. 4495324
    4. Settlage P H. U.S.P. 3309330
    5. Borden. B P. 1009486
    6. Hahn F J, Heap J F. U.S.P. 3256
    7. Min T I et.al. J.Poly. Sci: Poly. Chem. Ed.,1983,21:2845
    8. Sundberg D C. J.Appl.Poly. Sci,1990,41:1425
    9. Winzor C L, Sundberg D C. Polymer 1992,33:3797
    10. Croxton C A et.al. Macromoecules, 1992,26:3563
    11. Chen Y C et.al. Macromolecules, 1991,24:3779
    12. Chen Y C et al. J.App.Poly. Sci, 1991,42:1049
    13. Chen Y C et.al. Pure & App.Chem.,1992,64(11),1691
    14. Chen Y C et.al. J.App. Poly. Sci.,1992,45:487
    15. Chen Y C et.al. Polymer Intenational,1993,30:185
    16. Luis J,Gonzalez-Ortiz and Jose M,Asua. Macromolecules,1995,28:3135
    17. Luis J,Gonzalez-Ortiz and Jose M,Asua. Macromolecules,1996,29:383
    18. Luis J,Gonzalez-Ortiz and Jose M,Asua. Macromolecules,1996,29:4520
    19.孙培勤,刘大壮,赵科等,[J]高分子学报,1998,5,542
    20.霍东霞,刘大壮,孙培勤.[J]高分子学报.2000,1,55
    21. Sun Pei-Qing, Zhao Ke, Liou Da-Zhuang and Huo Dong-Xia, J.App. Poly. Sci.,2002, 83: 2930-2937
    22. Gerrens H.J.Polymer Sci.,Part C, 1969,27:77
    23. Snuparek J.Angew. Makromole. Chem., 1972,25:105
    24. Snuparek J.Angew. Makromole. Chem., 1972,25:113
    25. Morgan L W, Jensen D P. Makromole. Chem.,Suppl., 1985, 10/11:59
    26. Wessling R A,Gibbs D S.J. Makromole. Sci.Chem., 1973,A7(3):647
    27. Dimitratos J,El-Aasser M S,Georgakis C et al. J.Applied Polymer Sci., 1990,40:1005
    28. El-Aasser M S,Loncar F V, Vanderhoff J.W. Makromole. Chem.,Suppl., 1985,10/11:335
    29. Wessling R A. J.Applied Polymer Sci., 1968,12:309
    30. Okubo M et.al. J.Polym. Sci: Poly. Chen. Ed.,1980,16:3219
    31. Okubo M et.al. J.Polym. Sci.: Polym. Letters Edition, 1981.19:143
    32. Gasperowicz A et.al. Polymer, 1980,23:839
    33. Okubo M et.al. J.Poly. Sci: Polym.Letters Ed., 1982,20:45
    34. Noolandi J et.al. Macromolecules, 1982,15:482
    35. Yanagihara T Progress in Organic Coating, 1983,11:205
    36. Lee D L et.al. J.Poly. Sci: Poly. Chem. Ed.,1983,21:147
    37. Misra S C, Pihot C, EL-AAsser M, Vanderhoff J W. J. Polym. Sci:
    
    Polym.Chem.Ed, 1983,21:2363
    38. Misra S C, Pihot C, EL-AAsser M, Vanderhoff J W. J. Polym.Sci: Polym.Chem.Ed, 1983,21:2383
    39. Hourston D J et.al. J.Appl.Poly.Sci., 1984,29:2969
    40. Makgawinata T et.al. J.Dispersion Sci. and. Tech.,1984,5(384) ,301
    41. Eliseeva V I. Progress in Organic Coatings. 1985,13:195
    42. Fitch R M et.al. J.Poiy.Sci: Poly. Symp.
    43. Vanderhoff J W. J.Poiy.Sci: Poly.Symp.,1985,22:161
    44. Hourston D C et.al. J.Appl.Polym.Sci. 1985,31:1995
    45. Cavaille J Y et.al. Polymer 1986,27:693
    46. Chern C S, Poehlein G W. J.Poly.Chem.Ed., 1987,25:617
    47. Hourston D C et.al. J.Appl.Poly.Sci, 1987,34:215
    48. .Hourston D C et.al. J.Appl.Poly.Sci, 1987,34:901
    49. Kong X Z et.al. Colloid & Polym. Sci.,1987,265:791
    50. Okubo M et.al. J.APPl.Poly.Sci., 1987,73:1511
    51. Broseta D, Leibler L. et.al. Macromolecules,1987,20:1935
    52. Kong X Z et.al. Eur.Polymer,1988,74:(5) 487
    53. Mead RN et.al. J.App.Poly.Sci., 1989,38:105
    54. Hergeth et.al. Polymer,1989,60:1913
    55. Delacal J C et.al. J.Poly.Sci.:Part A:Poly.Chem.,1990,28:1011
    56. Chern C S, Poehlein G W. J.Poiy.Sci: Part A: Poly.Chem.,1990,28:3055
    57. Mills M F et.al. Macromolecules, 1990,23:4247
    58. Devon M J et.al. J.App.Poly.Sci.,1990,39:2119
    59. Tongyn C, Long F. J.App. Poly.Sci., 1990,41:1965
    60. Daniels E S et.al. J.App.Poly.Sci., 1990,41:2463
    61. Yang S L et.al. Macromelecules, 1990,23:4582
    62. Muscato M R, Sundeberg D C. J.Poiy.Sci.:Part B:Poly.Phy. 1991,29:1021
    63. Lee S, Rudin A. J.Polymer Sci: Part A ,Poly.Chem,1992,30:865
    64. Vandezande G A et.al. Polymer Latexes 1992
    65. Dwrant Y G, Guillot. Colloid & Poly.Sci.,1993,271:607
    66. El-Ghaffat et.al. J.Elastomers and Plastics, 1992,24:192
    67. Jonsson J E et.al. Macromolecules,1994,27:1932
    68. Segall I et.al. J.App.Poly.Sci.,1995,58:385
    69. Segall I et.al. J.App.Poly.Sci.,1995,58:401
    70. Segall I et.al. J.App.Poly.Sci.,1995,58:419
    
    
    71. M Lu and D R Paul. Polymer. 1996,37:115
    72. M Lu,H Keskkula and D R Paul.Polymer. 1996,37:125
    73. Yvon G.Durant,Donald C.Sundberg. Macromolecules, 1996,29:8466
    74. Yvon G.Durant,Eric J.Sundberg,Donald C.Sundberg. Macromolecules, 1997,30:1028
    75. Ola Karlsson,Helen H,Bengh Wesslen. J.Appl Polymer Sci, 1997,63:1543
    76. M F. Cunningham,H K.Mahabadi,H M.Wright.J.Polymer Sci:Part A:Polymer Chemistry,2000,38:345
    77. T Chen,H Liu,and Y Hu.J. Macromolecules, 2000,33:1904
    78. J K Kim,W Y Jeong el at.J. Macromolecules, 2000,33:9161
    79. S Omi,T Senba,M Nagai el at. Appl Polymer Sci,2001,79:2200
    80.何卫东,潘才元.[J]功能高分子学报.1997,1,110
    81.阚成友,焦书科等.[J]合成橡胶工业,1999,2,65
    82.武利民,李伯耿,于在璋等,[J]高分子通报,1990,2,71
    83.Torza S, Mason Y.J.Colloid Interface. Sci. 1970,33:67
    84.黄光速,李克友,[J]高分子材料科学与工程,1995,11(6):53
    85.Van Krevelen D W. Properties of Polymers [M]. Amsterdam: Elsevier, 1990: Chapters 15, 16
    86.S.吴著,潘强余,吴敦汉译.高聚物的界面与粘合,北京:纺织工业出版社,1987:p72-104
    87.孙培勤,赵科,刘大壮等,[J]高等学校化学工程学报,2000,4,340
    88.陈志明,邵利,马全红,[J]高分子材料科学与工程,2001,17(3):75
    89.Hergeth, W.D.; Steinau, V. J. et al, Prog. Colloid Polym. Sci. 1991, 85,82
    90.Jonsson Jan-Erik L, Hassander Helen, et al, Macromolecules, 1991, 24: 126
    91.Lee S F, Lin K R, Chiu W Y. Appl Polymer Sci,1994,51:1621
    92.范宏,王建黎,[J]高分子材料科学与工程,2000,16(6):75
    93.龙复,唐黎明等,[J]材料科学进展,1992,4:343
    94.王艳祥,马荣堂等,[J]高分子材料科学与工程,1999,(1):64
    95.夏成林,吴忠辉,谭作勤等.[J]高分子材料科学与工程,1999,(5):72
    96.王福安,蒋登高编,化工数据导引,北京:化学工业出版社,1995:p197
    97.林青,胡力平,焦书科,[J]应用化学,1988,5(5),25
    98.夏成林,吴忠辉,谭作勤等.[J]高分子材料科学与工程,1999,(4):52
    99.Kaning G, Neff H. Colloid Polym. Sci., 1975,29:253
    100.Misra S C, Pichot C. et. al. J. Polym. Sci: Polym. Chem. Ed. 1983, 21:2363
    101.Cavaille J Y. et. al. Polymer, 1986,27: 693
    102.周晓奇,张开,邹明国,徐僖,[J]高等学校化学学报,1988,9(11),1160
    103.孔祥正,Guilot J.[J] 高分子学报,1992,(1):68
    104.W. D. Hergeth, H,J. Bittricj et. al. Polymer,1989,60: 1913
    105.李建宗,程时远等,[J]涂料工业,1994,2:13
    106.郑灿,吴东义等,[J]天津城市建设学院学报,1997,4:70
    107.Jun-yeob Song, Jin-woong Kim, et. al. Appl Polymer Sci, 1999,71:1607
    108.Sun peiqin, Liudazhuang, Huo dongxie, ISPMC2000, 23
    
    
    109.GB 18006.1—1999:一次性可降解餐饮具通用技术条件,北京:中国标准出版社,p1-6
    110.GB 18006.2—1999:一次性可降解餐饮具降解性能试验方法,北京:中国标准出版社,p1-17
    111.GB/T 5009. 60—1996:食品包装用聚乙烯、聚苯乙烯、聚丙烯成型品卫生标准的分析方法,北京:中国标准出版社,p310-312
    112.GB 11677—89:水基改性环氧易拉罐内壁涂料卫生标准,北京:中国标准出版社,p1-3
    113.SH/T 1154—1999:合成橡胶胶乳总固物含量的测定,北京:中国标准出版社,p1-2
    114.SH/T 1150—1999:合成橡胶胶乳PH值的测定,北京:中国标准出版社,p1-3
    115.SH/T 1152—1999:合成橡胶胶乳粘度的测定,北京:中国标准出版社,p1-3
    116.李建宗,程时远,贺火明,[J].合成橡胶工业,1992,(6):342
    117.国标GB9685-94:食品容器、包装材料用助剂使用卫生标准,北京:中国标准出版社,p1-3
    118.GB9683—88:食品包装用复合包装袋理化和感官指标,北京:中国标准出版社,p20

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700