雌性大鼠性腺轴系的衰老变化及中药何首乌饮延缓衰老机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
衰老作为一种正常而复杂的生命过程,涉及机体的不同组织、细胞的一系列特定程序性变化。下丘脑-垂体-性腺轴(H-P-G-A)的发生发育、成熟与衰老是生命活动的重要方面。免疫-神经-内分泌网络在衰老过程中起重要作用,而H-P-G-A是该网络的重要组成部分。
     众多研究表明,细胞衰老过程是借助于信号传导途径实现的,许多细胞因子亦参与到这些信号途径中。当这些途径所涉及的关键调节因子发生改变,细胞将延缓衰老或绕过衰老程序继续增殖。本实验采用D-半乳糖致亚急性衰老的雌性大鼠模型,以细胞衰老信号转导途径中涉及的关键调节因子p53、p19ARF、Rb及p16等为介入点,从分子生物学角度探讨何首乌饮对延缓下丘脑-垂体-卵巢轴(H-P-O-A)衰老的作用机制,并且通过检测下丘脑、垂体、卵巢组织IGF-1、IGF-BP、TNF-α、EGF、EGFR的表达及电镜超微结构变化等,从多层次、多环节阐明哺乳动物衰老机制,以及何首乌饮对下丘脑-垂体-卵巢轴的抗衰老作用。
     1.目的
     应用RT-PCR、Western blotting、原位杂交及免疫组化方法检测衰老模型大鼠下丘脑、垂体、卵巢组织p53、p19ARF、Rb和p16、EGF、EGFR、TNF-α、IGF-Ⅰ、IGFBP3的表达,并且从下丘脑、垂体和卵巢三个层次来观察H-P-G-A衰老的组织学变化,以及何首乌饮对该轴的作用,从而探讨大鼠性腺轴的衰老机制,分析何首乌饮抗衰老的作用。
     2.方法
     2.1实验动物的选取、分组及模型的建立:选用8周龄清洁级SD雌性大鼠96只随机分为正常组、模型组、预防组。预防组又分为何首乌饮低剂量组、何首乌饮中剂量组、何首乌饮高剂量组、何首乌丸组,每组动物各16只。用6%的D-半乳糖溶液腹腔注射的方法连续用药60d,建立亚急性衰老大鼠模型。预防组在腹腔注射D-半乳糖溶液的同时给药何首乌饮、何首乌丸。
     2.2标本的采集及研究方法:连续用药60d后,取各组大鼠的下丘脑、垂体前叶和卵巢新鲜组织,应用RT-PCR法检测其p53、p19ARF、Rb、p16及IGFBP3的基因水平,应用Western blotting方法检测Rb及p16蛋白的表达。将各组大鼠用不同的固定液进行左心室灌注,最后取其下丘脑、垂体前叶、卵巢组织,应用免疫组化法检测p53、EGF、EGFR、TNF-α蛋白的表达,应用原位杂交技术检测IGF-ⅠmRNA的水平,应用透射电镜观察下丘脑、垂体前叶及卵巢组织超微结构的变化。
     3.结果
     3.1大鼠下丘脑-垂体-卵巢轴p19ARF/p53/p21Cip1和p16INK4a/Rb衰老途径中关键调节因子发生改变,应用何首乌饮可纠正这些因子的过度表达:
     3.1.1 PCR结果显示,模型组大鼠下丘脑、垂体前叶、卵巢组织中p53基因表达明显高于正常组(P<0.01),给予不同剂量的何首乌饮预处理后,p53基因表达比模型组降低(P<0.05)。在下丘脑和垂体前叶,低剂量组p53基因表达低于何首乌丸组(P<0.05);而在卵巢,高剂量组p53基因表达低于何首乌丸组(P<0.05)。免疫组化结果显示,模型组大鼠下丘脑弓状核、垂体前叶、卵巢组织中p53的染色明显强于正常组(P<0.01),给予不同剂量的何首乌饮预处理后,p53染色比模型组降低(P<0.05)。在垂体前叶组织中,低剂量组p53染色弱于何首乌丸组(P<0.05);而在卵巢组织中,高剂量组p53染色弱于何首乌丸组(P<0.05)。
     3.1.2 PCR结果显示,模型组大鼠下丘脑、垂体前叶、卵巢组织中p19ARF基因明显升高(P<0.01),给予不同剂量的何首乌饮预处理后,与模型组相比,p19ARF基因表达明显降低(P<0.01,P<0.05)。在下丘脑,低剂量组p19ARF基因表达低于何首乌丸组(P<0.05);而在卵巢,高剂量组p19ARF基因表达低于何首乌丸组(P<0.05)。
     3.1.3 PCR结果显示,模型组大鼠下丘脑、垂体前叶、卵巢组织中Rb基因表达明显高于正常组(P<0.01),给予不同剂量的何首乌饮预处理后,Rb基因表达明显比模型组降低(P<0.01,P<0.05)。在下丘脑和垂体前叶,低剂量组Rb基因表达低于何首乌丸组(P<0.05);而在卵巢,高剂量组Rb基因表达低于何首乌丸组(P<0.05)。Western结果显示,模型组大鼠下丘脑、垂体前叶、卵巢组织的Rb蛋白表达明显高于正常组(P<0.05),不同剂量的何首乌饮各组下丘脑、垂体前叶、卵巢组织的Rb蛋白表达明显低于模型组(P<0.05)。在垂体前叶,低剂量组Rb蛋白表达低于何首乌丸组(P<0.05);而在卵巢,高剂量组Rb蛋白表达低于何首乌丸组(P<0.05)。
     3.1.4 PCR结果显示,模型组大鼠下丘脑、垂体前叶、卵巢组织中p16基因表达明显高于正常组(P<0.01),给予不同剂量的何首乌饮预处理后,p16基因表达比模型组降低(P<0.01,P<0.05)。在下丘脑,低剂量组p16基因表达低于何首乌丸组(P<0.05)。Western结果显示,模型组大鼠下丘脑、垂体前叶、卵巢组织的p16蛋白表达明显高于正常组(P<0.01,P<0.05),不同剂量的何首乌饮各组大鼠下丘脑、垂体前叶、卵巢组织的p16蛋白表达明显低于模型组(P<0.01,P<0.05)。
     3.2大鼠下丘脑-垂体-卵巢轴衰老相关细胞因子的表达发生改变,应用何首乌饮可纠正这些因子的异常表达:
     3.2.1大鼠免疫组化结果显示,衰老模型大鼠EGF在卵巢中的染色明显弱于正常组(P<0.01),EGFR在下丘脑弓状核、垂体前叶、卵巢中的染色亦明显比正常组减弱(P<0.01)。给予不同剂量的何首乌饮预处理后,EGF及EGFR的染色比模型组增强(P<0.01,P<0.05)。
     3.2.2免疫组化结果显示,与正常组相比,衰老模型大鼠TNF-α在下丘脑弓状核、垂体前叶、卵巢中的染色明显增强(P<0.01)。给予不同剂量的何首乌饮预处理后,TNF-α染色明显比模型组减弱(P<0.01,P<0.05)。在下丘脑弓状核和垂体前叶,何首乌饮各组TNF-α的表达低于何首乌丸组(P<0.05)。
     3.2.3原位杂交结果显示,衰老模型大鼠卵巢组织中IGF-ⅠmRNA表达明显低于正常大鼠(P<0.01),给予不同剂量的何首乌饮及何首乌丸预处理后,IGF-ⅠmRNA表达比模型大鼠升高(P<0.01)。PCR结果显示,与正常组大鼠相比,模型组大鼠下丘脑、垂体前叶、卵巢组织中IGFBP3基因表达明显上调(P<0.01),给予不同剂量的何首乌饮预处理后,IGFBP3基因表达明显比模型组降低(P<0.01,P<0.05)。
     3.3衰老大鼠下丘脑弓状核、垂体前叶、卵巢的形态学发生损伤性改变,应用何首乌饮可减缓这种损伤:
     3.3.1下丘脑弓状核形态学改变:光镜下观察,下丘脑弓状核包括神经元细胞和神经胶质细胞。在模型组,尚发现有大量反应胶质细胞。透射电镜下观察,下丘脑弓状核有暗细胞和亮细胞两类神经元。模型组可见核膜凹陷增多,核膜溶解;溶酶体增多;线粒体嵴断裂、膜融合或消失;粗面内质网脱颗粒;高尔基体扩张。突触前、后膜模糊不清,突触间隙融合。预防各组可见部分核膜溶解;可见溶酶体;线粒体嵴部分断裂、膜部分模糊不清;粗面内质网轻度脱颗粒;高尔基体轻度扩张。突触前、后膜尚清晰,突触间隙部分融合。
     3.3.2垂体前叶形态学改变:光镜下观察,垂体前叶腺细胞包括嗜酸性细胞和嗜碱性细胞和嫌色细胞。模型组可见腺细胞排列紊乱,血管增生、变性。嗜酸性细胞及嗜碱性细胞数量减少。透射电镜下观察,模型组垂体促性腺激素细胞可见核内异染色质增多,核膜部分溶解;粗面内质网扩张明显;高尔基体增多、扩张;线粒体肿胀,嵴断裂、融合或消失;分泌颗粒增多。预防各组可见促性腺激素细胞粗面内质网丰富,轻度扩张;高尔基体轻度扩张;线粒体肿胀不明显,嵴部分断裂;分泌颗粒轻度增多。
     3.3.3卵巢形态学改变:光镜下观察,可见各级卵泡及黄体。衰老模型大鼠卵巢中原始卵泡、生长卵泡及黄体均明显少于正常大鼠(P<0.05,P<0.01)。各级卵泡颗粒细胞层次减少,细胞排列紊乱,囊性扩张的卵泡增多。可见颗粒细胞小巢或条索,尚可见炎细胞浸润。预防各组大鼠卵巢中原始卵泡、生长卵泡及黄体多于模型大鼠(P<0.05,P<0.01)。透射电镜下观察,模型组可见细胞内线粒体减少,呈不同程度的肿胀,嵴部分断裂甚至消失;滑面内质网不丰富,轻度扩张;高尔基体肥大。何首乌饮低剂量组可见线粒体扩张显著;滑面内质网轻度扩张;高尔基复合体扩张;脂滴增多,体积较大。何首乌饮中剂量组可见线粒体数目增多,体积增大,部分线粒体肿胀,核膜扩张;胞质内脂滴较多。滑面内质网数目丰富,中度扩张。何首乌饮高剂量组可见细胞结构接近于正常组,线粒体丰富;胞浆中脂滴电子密度高;滑面内质网扩张;有丰富的高尔基复合体。何首乌丸组可见线粒体数目增多,体积增大,部分线粒体肿胀,核膜扩张;胞质内脂滴较多。
     4.结论
     1衰老模型大鼠H-P-O-A性腺轴p19ARF/p53/p21Cip1和p16INK4a/Rb衰老途径中关键的调节因子p19ARF、p53、Rb、p16基因及蛋白表达上调,预防性应用何首乌饮对此可以起到抑制作用。
     2衰老模型大鼠H-P-O-A性腺轴衰老相关细胞因子EGF及其受体EGFR、IGF-Ⅰ及其结合蛋白IGFBP3表达均降低,预防性应用何首乌饮可增加这些细胞因子的表达。
     3衰老模型大鼠H-P-O-A性腺轴衰老相关细胞因子TNF-α蛋白表达增高,预防性应用何首乌饮可以使TNF-α水平下降。
     4 D-半乳糖可致大鼠下丘脑弓状核、垂体前叶和卵巢的超微结构发生损伤,预防性应用何首乌饮可以减缓这种超微结构的损伤,从而改善H-P-O-A性腺轴的功能,延缓其衰老。
As a normal and complicated life process, senescence was involved in a series of routine changing in various tissues and cells. The development and aging of hypothalamus- pituitary-gland axis (H-P-G-A) was important in life proceeding. Immune-neuroendocrine network played an important role in aging and H-P-G-A was an important component in this network.
     Many studies indicated that cellular senescence was implemented via some signaling transduction pathways which a lot of cytokines were involved in. When the key regulators in these pathways were changed, cellular senescence would be delayed. In this study, we had investigated the changes of some key regulators including p53, p19ARF, Rb, p16, IGF-Ⅰ, IGF-BP, TNF-α, EGF, EGFR and the changes of the ultrastructure of arcuate nucleus in the hypothalamus, adenohypophysis, ovary after taking traditional Chinese medicine Heshouwuyin (HSWY) by using the sub-acutely aging female model rats induced by D-galactose, so as to find the senescent mechanism of hypothalamus-pituitary-ovary axis (H-P-O-A) and the mechanism of HSWY in anti-aging.
     1. Objective
     We deteceted the level of mRNA p53, p19ARF, Rb, p16 and IGFBP3 by reverse transcription-polymerase chain reaction (RT-PCR), and examined the expression of protein Rb and p16 by Western-blotting, and evaluated the expression of p53, TNF-α, EGF and EGFR by immunohistochemistry (IH), and analysised the mRNA level of IGF-Ⅰby hybridization in situ (HIS) in order to find out the senescent mechanism of hypothalamus-pituitary-ovary axis (H-P-O-A) of the aging model rats and the effect of HSWY in anti-aging, so as to provide theoretical and experiment evidence to anti-aging in the female’sexual gland.
     2. Methods
     2.1 Choosing of the experimental animal and establishment of the aging model. Eight-week-old female SD rats (n=96) were separated into three groups at random: normal group, aging model group, preventing aging group. The rats in preventing aging group were re-divided into four groups: HSWY low dosage group, HSWY medium dosage group, HSWY high dosage group and Heshouwan(HSWW) group (n=16 in each group). The sub-acutely aging model rats were induced by D-galactose, and the rats in preventing aging group accepted intragastric administration of HSWY and HSWW while accepting D-galactose intraperioneal injection for 60 days.
     2.2 Experimental procedures. Hypothalamus, adenohypophysis and ovary tissues of each group were obtained after the rats undergoing experiment for 60 days. We detected the gene mRNA expression of p53, p19ARF, Rb, p16 and IGFBP3 by RT-PCR, and examined the protein expression of Rb and p16 by Western-blotting, evaluated the expression of p53, TNF-α, EGF and EGFR by IH, analysised the level of mRNA IGF-Ⅰby HIS, and observed the ultrastructure by transmission electron microscope (TEM).
     3. Results
     3.1 Key regulators—p53, p19ARF, Rb, p16 of signaling transduction pathways: p19ARF/p53/p21Cip1 and p16INK4a/Rb in H-P-O-A were changed in aging model, and the overexpression of these regulators could be retrieved by using HSWY.
     3.1.1 The result of PCR had shown that gene expression of p53 in hypothalamus, adenohypophysis and ovary tissues were up-regulated in model rats than in normal rats (P<0.01). After pretreatment of HSWY in preventing aging group, the gene expression of p53 were significantly decreased (P<0.05). In the hypothalamus and adenohypophysis tissues, the gene expression of p53 in HSWY low dosage group were significantly lower than in HSWW group (P<0.05). However, in the ovary tissue, it was HSWY high dosage group in which the gene expression of p53 was significantly lower than in HSWW group (P<0.05). The results of IH had shown that immunostaining for p53 in arcuate nucleus, adenohypophysis and ovary tissues were significantly more intense in model rats than in normal rats (P<0.01). After pretreatment of HSWY in preventing aging group, the intensity of immunostaining for p53 were significantly decreased (P<0.05). In the adenohypophysis tissue, the immunostaining for p53 in HSWY low dosage group was significantly weaker than in HSWW group (P<0.05). However, in the ovary tissue, it was HSWY high dosage group in which the immunostaining for p53 was significantly weaker than in HSWW group (P<0.05).
     3.1.2 The result of PCR had shown that gene expression of p19ARF in hypothalamus, adenohypophysis and ovary tissues were up-regulated in model rats than in normal rats (P<0.01). After pretreatment of HSWY in preventing aging group, the gene expression of p19ARF were significantly decreased (P<0.01, P<0.05). In the hypothalamus tissue, the gene expression of p19ARF in HSWY low dosage group was significantly lower than in HSWW group (P<0.05). However, in the ovary tissue, it was HSWY high dosage group in which the gene expression of p19ARF was significantly lower than in HSWW group (P<0.05).
     3.1.3 The result of PCR had shown that gene expression of Rb in hypothalamus, adenohypophysis and ovary tissues were up-regulated in model rats than in normal rats (P<0.01). After pretreatment of HSWY in preventing aging group, the gene expression of Rb were significantly decreased (P<0.01, P<0.05). In the hypothalamus and the adenohypophysis tissues, the gene expression of Rb in HSWY low dosage group were significantly lower than in HSWW group (P<0.05). However, in the ovary tissue, it was HSWY high dosage group in which the gene expression of Rb was significantly lower than in HSWW group (P<0.05). The result of Western blotting had shown that expression of protein Rb in hypothalamus, adenohypophysis and ovary tissues were increased in aging rats (P<0.05). After pretreatment of HSWY in preventing aging group, the expression of protein Rb were significantly decreased (P<0.05). In the adenohypophysis tissue, the expression of protein Rb in HSWY low dosage group was significantly lower than in HSWW group (P<0.05). However, in the ovary tissue, it was HSWY high dosage group in which the expression of protein Rb was significantly lower than in HSWW group (P<0.05).
     3.1.4 The result of PCR had shown that gene expression of p16 in hypothalamus, adenohypophysis and ovary tissues were up-regulated in model rats than in normal rats (P<0.01). After pretreatment of HSWY in preventing aging group, the gene expression of p16 were significantly decreased (P<0.01, P<0.05). In the adenohypophysis tissue, the gene expression of p16 in HSWY low dosage group was significantly lower than in HSWW group (P<0.05). The result of Western blotting had shown that expression of protein p16 in hypothalamus, adenohypophysis and ovary tissues were increased in aging rats (P<0.05). After pretreatment of HSWY in preventing aging group, the expression of protein p16 were significantly decreased (P<0.05).
     3.2 Cytokines related to senescence in H-P-O-A were changed in aging model, and the abnormal expression could be retrieved by using HSWY.
     3.2.1 The results of IH had shown that immunostaining for EGF in ovary tissue was significantly weaker in model rats than in normal rats (P<0.01). After pretreatment of HSWY in preventing aging group, the intensity of immunostaining for EGF was significantly increased (P<0.01). The results of IH had shown that immunostaining for EGFR in arcuate nucleus, adenohypophysis and ovary tissues were significantly weaker in model rats than in normal rats (P<0.01). After pretreatment of HSWY in preventing aging group, the intensity of immunostaining for EGFR were significantly increased (P<0.05).
     3.2.2 The results of IH had shown that immunostaining for TNF-αin arcuate nucleus, adenohypophysis and ovary tissues were significantly more intense in model rats than in normal rats (P<0.01). After pretreatment of HSWY in preventing aging group, the intensity of immunostaining for TNF-αwere significantly decreased (P<0.01, P<0.05). In the arcuate nucleus and adenohypophysis tissues, the immunostaining for TNF-αin HSWY group were significantly weaker than in HSWW group (P<0.05).
     3.2.3 The results of HIS had shown that the expression of IGF-ⅠmRNA in ovary tissue was significantly decreased in model rats (P<0.01). After pretreatment of HSWY in preventing aging group, the expression of IGF-ⅠmRNA was significantly increased (P<0.01). The result of PCR had shown that gene expression of IGFBP3 in hypothalamus, adenohypophysis and ovary tissues were up-regulated in model rats than in normal rats (P<0.01). After pretreatment of HSWY in preventing aging group, the gene expression of IGFBP3 were significantly decreased (P<0.01, P<0.05).
     3.3 Morphologic structure of H-P-O-A in aging model was damaged, and the impairment could be restored by using HSWY.
     3.3.1 The morphological changes of the arcuate nucleus in the hypothalamus: By light microscope, it could be seen that there were two kinds of cells in arcuate nucleus: neurone and neuroglial cell. In model rats, there were a lot of reactive colloid cells except for the two kinds of cells above-mentioned. By transmission electron microscope(TEM), arcuate nucleus was constituted of dark neurons, pale neurons. In model rats′arcuate nucleus, it was found that the nucleolemma was indented or dissolved, and the number of lysosome was increased, and mitochondriales cristae were broken and even vanished, and rough endoplasmic reticulum losted its granules, and Golgi complex swelled, and pre- and postsynaptic membranes were unclear and synaptic cleft was fusional. In preventing aging rats′arcuate nucleus, part of the nucleolemma was dissolved, and lysosome could be seen. Part of the mitochondriales cristae was broken. Rough endoplasmic reticulum losted its granules lightly. Golgi complex swelled lightly. Pre- and postsynaptic membranes were clear and part of synaptic cleft was fusional.
     3.3.2 The morphological changes of the adenohypophysis: By light microscope, it could be seen that the gland cells were including three kinds of cells: acidophil, basophi and chromophobe cells. In model rats, it could be seen that the gland cells were arranged disorderly and the blood vessels were proliferated. The number of acidophil and basophi cells was decreased. By TEM, the gonadotroph of model rats changed obviously. The heterochromatin became more and the nucleolemma was dissolved. GER dilated obviously and Golgi complex increased and swelled. Mitochondriales cristae were broken and even vanished. The secretary granules were increased. In preventing aging rats′gonadotroph, rough endoplasmic reticulum were increased and dilated lightly. Golgi complex swelled lightly and part of the mitochondriales cristae was broken. The secretary granules were increased lightly.
     3.3.3 The morphological changes of the ovary: By light microscope, the ovary was characterized by follicles in every grade and corepus luteums. The number of primordial follicles, growing follicles and corepus luteums in model rats was less than that in normal rats. The granulosa cells were arranged disordered and the number of the saccular ectasia follicles was increased. Compared with model rats, the number of primordial follicles, growing follicles and corepus luteums was more in preventing aging rats. By TEM, in the model rats′granulosa cell, it was found that mitochondria were droped and swelled, cristae were broken and even vanished, and smooth endoplasmic reticulum were decreased and dilated, and Golgi complex swelled. In HSWY low dosage rats′granulosa cell, it could be seen that mitochondria were swelled obviously, and smooth endoplasmic reticulum were dilated lightly, and Golgi complex swelled, and lipid droplets were increased. In HSWY medium dosage rats′granulosa cell, it was found that mitochondria were increased and swelled lightly, and many smooth endoplasmic reticulum were dilated lightly, and lipid droplets were increased. The ultrastructure of HSWY high dosage rats′granulosa cell was similar to nomal rats′. And the ultrastructure of HSWW rats′granulosa cell was similar to HSWY medium dosage rats′.
     4. Conclusion
     4.1 The genes and proteins of key regulators—p53, p19ARF, Rb, p16 of signaling transduction pathways: p19ARF/p53/p21Cip1 and p16INK4a/Rb in H-P-O-A were overexpressing in aging model, and this could be depressed by using HSWY.
     4.2 Cytokines related to senescence—EGF and its receptor EGFR, IGF-Ⅰand its binding protein IGFBP3 were decreased in H-P-O-A in aging model, and the expression of these cytokines could be increased by using HSWY.
     4.3 The protein of TNF-α—a cytokine related to senescence was overexpressing in H-P-O-A in aging model, and the level of TNF-αcould be reduced by using HSWY.
     4.4 Morphologic structure of H-P-O-A in aging model was damaged by D-galactose. The impairment could be restored by using HSWY, so as to the function of H-P-O-A could be improved and senescence could be delayed.
引文
1 Kamijo T, Zindy F, Roussel MF, et al. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF[J]. Cell, 1997; 91(5): 649~659.
    2 Sugrue MM, Shin DY, Lee SW, et al. Wide-type p53 triggers a rapid senescence programin human rumor cells lacking functional p53[J]. Proc Natl Acad Sci U S A, 1997; 94(18): 9648~9653.
    3 Obata M, Imamura E, Yoshida Y, et al. Resistance of primary cultured mouse hepatic tumor cells to cellular senescence despite expression of p16(Ink4a), p19(Arf), p53, and p21(Waf1/Cip1)[J]. Mol Carcinog, 2001; 32(1): 9~18.
    4 Lundberg AS, Hahn WC, Gupta P, et al. Genes involved in senescence and immortalization[J]. Curr Opin Cell Biol, 2000; 12(6): 705~709.
    5 Smogorzewska A, de Lange T. Different telomere damage signaling pathways in human and mouse cells[J]. EMBO J, 2002; 21(16): 4338~4348.
    6 Kim H, You S, Farris J, et al. Expression profiles of p53-, p16(INK4a)-, and telomere-regulating genes in replicative senescent primary human, mouse, and chicken fibroblast cells[J]. Exp Cell Res, 2002; 272(2): 199~208.
    7 Collado M, Gil J, Efeyan A, et al. Tumour biology: senescence in premalignant tumours[J]. Nature, 2005; 436(7051): 642.
    8 李积胜, 汪超, 王静, 等. 补锌对衰老大鼠睾丸细胞凋亡和一氧化氮合酶的影响[J]. 中国老年学杂志, 2000; 20(2): 93~94.
    9 陈志宏, 齐聪儒, 高福禄, 等. 天年饮对亚急性衰老大鼠睾丸组织SOD 活性及生精细胞凋亡的影响[J]. 四川中医, 2004; 22(8): 11~12.
    10 邵迎红, 母义明, 李江源, 等. 衰老大鼠睾丸间质细胞形态学观察[J]. 中国男科学杂志, 2005; 19(2): 10~12.
    11 章振保, 田生平, 杨镜秋, 等. 淫羊藿苷与睾酮治疗亚急性衰老雄性大鼠的实验研究[J]. 中国男科学杂志, 2006; 20(8): 13~18.
    12 陈志宏, 龚秀云, 李健, 等. 何首乌丸加味干预后衰老模型大鼠睾丸生精细胞 p53 基因表达的变化[J]. 中国组织工程研究与临床康复, 2007; 11(17): 3379~3381.
    13 Jackson MW, Lindstrom MS, Berberich SJ. MdmX binding to ARF affects Mdm2 protein stability and p53 transactivation[J]. J Biol Chem. 2001; 276(27): 25336~25341.
    14 Itahana K, Campisi J, Dimri GP. Mechanisms of cellular senescence in human and mouse cells[J]. Biogerontology, 2004; 5(1): 1~10.
    15 Campisi J. Senescent cells, tumor suppression, and organismal aging: Good citizens, bad neighbors[J]. Cell, 2005; 120(4): 513~522.
    16 Zebedee Z, Hara E. Id proteins in cell cycle control and cellular senescence[J]. Oncogene, 2001; 20(58): 8317~8325.
    17 Fang X, Jin X, Xu HJ, et al. Expression of p16 induces transcriptional downregulation of the RB gene[J]. Oncogene, 1998; 16(1): 1~8.
    18 Tamrakar S, Rubin E, Ludlow JW. Role of pRB dephosphorylation in cell cycle regulation[J]. Front Biosci, 2000; 5 (1): 121~137.
    19 Carnero A, Hudson JD, Price CM, et al. p16INK4A and p19ARF act in overlapping pathways in cellular immortalization[J]. Nat Cell Biol, 2000; 2(3): 148~155.
    20 Yap DB, Hsieh JK, Chan FS, et al. mdm2: a bridge over the two tumour suppressors, p53 and Rb[J]. Oncogene, 1999; 18(53): 7681~7689.
    21 方泽强, 李慧增, 王常勇, 等. Bcl-2 和 p53 基因对永生化软骨细胞端粒酶活性影响的实验研究[J]. 重庆医学, 2003; 32(1): 41~44.
    22 胡建成, 雷颖, 洪夏, 等. p53 的过量表达能迅速诱导 NIH3T3 细胞衰老[J]. 科学通报, 2000; 45(21): 2306~2310.
    23 白雪源, 陈香美, 侯剀, 等. 细胞周期抑制因子 p19ARF 对人二倍体细胞衰老的影响[J]. 中国科学, 2007; 37(1): 15~19.
    24 Tyner SD, Venkatachalam S, Choi J, et al. p53 mutant mice that display early ageing-associated phenotypes[J]. Nature, 2002; 415(6867): 45~53.
    25 李珉, 张卫, 王刚, 等. 电针涌泉穴对 D-半乳糖致衰老模型大鼠的p53 和 bcl_2 基因表达的影响[J]. 华西医大学报, 2002; 33(4): 589~591.
    26 Duan J, Zhang Z, Tong T. Senescence delay of human diploid fibroblast induced by anti-sense p16INK4a expression[J]. J Biol Chem, 2001; 276(51): 48325~48331.
    27 黎志萍, 赵伟康, 徐品初, 等. 益气活血方药对老年大鼠肝脏衰老相关基因表达的影响[J]. 中西医结合杂志, 2005; 3(5): 370~373.
    28 张鹏霞, 汤晓丽, 朴金花, 等. 何首乌对 D-半乳糖致衰大鼠的抗衰益智作用机制的研究[J]. 中国康复医学杂志, 2005; 20(4): 251~253.
    29 许爱霞,王彩琴,杨社华, 等. 何首乌多糖和枸杞多糖的协同抗衰老作用机制的实验研究[J]. 兰州大学学报(医学版), 2005; 31(2): 13~16.
    30 张雅萍, 王秀霞, 张丽, 等. 坤宁安丸对更年期大鼠卵巢颗粒细胞超微结构的影响[J]. 中国中医基础医学杂志, 2001; 7(12): 30~32.
    31 李洁, 杨菁, 陈媛, 等. D(+)半乳糖对小鼠卵巢功能影响的实验性研究[J]. 中国优生与遗传杂志, 2006; 14(12): 98~100.
    32 温海霞, 肖晓辉, 赵薇, 等. 大豆异黄酮对围绝经期大鼠卵巢 Bax mRNA 表达和 Ca2+-ATP 酶活性的影响[J]. 中国应用生理学杂志, 2007; 23(1): 117~120.
    1 O'Mahony L, Holland J, Jackson J, et al. Quantitative intracellular cytokine measurement: age-related changes in proinflammatory cytokine production[J]. Clin Exp Immunol, 1998; 113(2): 213~219.
    2 史进方, 顾国浩, 张学光. 白细胞介素 2、4、6 水平在衰老过程中的表达及其意义[J]. 中华老年医学杂志, 2006; 25(1): 46~47.
    3 Bruunsgaard H, Andersen-Ranberg K, Jeune B, et al. A high plasma concentration of TNF-alpha is associated with dementia in centenarians[J]. J Gerontol A Biol Sci Med Sci, 1999; 54(7): M357~364.
    4 Forsey RJ, Thompson JM, Ernerudh J, et al. Plasma cytokine profiles in elderly humans[J]. Mech Ageing Dev, 2003; 124(4): 487~493.
    5 叶雪清, 葛杏林主编. 更年期综合征神经内分泌免疫网络的变化. 西安: 陕西科学技术出版社, 1996: 57.
    6 Przylipiak A, Kiesel L, Rabe T, et al. Epidermal growth factor stimulates luteinizing hormone and arachidonic acid release in rat pituitary cells[J]. Mol Cell Endocrinol, 1988; 57(1-2): 157~162.
    7 吴雪梅, 张荣, 狄安稞, 等. 生长因子和雌激素对大鼠垂体前叶细胞增殖活性及催乳素基因表达的影响[J]. 中国医学科学院学报, 1999; 21(5): 331~337.
    8 Yamaguchi F, Itano T, Mizobuchi M, et al. Insulin-like growth factor I (IGF-I) distribution in the tissue and extracellular compartment in different regions of rat brain[J]. Brain Res, 1990; 533(2): 344~347.
    9 夏雅仙, 黄荷凤. IGF-Ⅰ, 胰岛素和雌二醇对雌性大鼠垂体细胞分泌LH 的影响[J]. 中华内分泌代谢杂志, 2001; 17(3): 184~185.
    10 Belgorosky A, Rivarola MA. Irreversible increase of serum IGF-Ⅰ and IGFBP-3 levels in GnRH-dependent precocious puberty of different etiologies: implications for the onset of puberty[J]. Horm Res, 1998; 49(5): 226~232.
    11 Duleba AJ, Spaczynski RZ, Olive DL. Insulin and insulin-like growth factor I stimulate the proliferation of human ovarian theca-interstitial cells[J]. Fertil Steril, 1998; 69(2): 335~340.
    12 Hughes SC, Mason HD, Frands S, et al. The insulin-like growth factors (IGFs) in follicular fluid are predominantly bound in the ternary complex[J]. J Endocrinol, 1997; 155(3): R1~4.
    13 Amato G, Izzo A, Tucker A, et al. Insulin-like growth factor binding protein-3 reduction in follicular fluid in spontaneous and stimulated cycles[J]. Fertil Steril, 1998; 70(1): 141~144.
    14 Nicolas V, Prewett A, Bettica P, et al. Age-related decreases in insulin-like growth factor-I and transforming growth factor-beta in femoral cortical bone from both men and women: implications for bone loss with aging[J]. J Clin Endocrinol Metab, 1994; 78(5): 1011~1016.
    15 Venable ME, Lee JY, Smyth MJ, et al. Role of ceramide in cellular senescence[J]. J Biol Chem, 1995; 270(51): 30701~30708.
    16 Hannun YA, Luberto C. Ceramide in the eukaryotic stress response[J]. Trends Cell Biol, 2000; 10(2): 73~80.
    17 Pitzel L, Jarry H, Wuttke W. Effects and interactions of prostaglandin F2 alpha, oxytocin, and cytokines on steroidogenesis of porcine luteal cells[J]. Endocrinology, 1993; 132(2): 751~756.
    18 Gaillard RC, Turnill D, Sappino P, et al. Tumor necrosis factor alpha inhibits the hormonal response of the pituitary gland to hypothalamicreleasing factors[J]. Endocrinology, 1990; 127(1): 101~106.
    19 Brannstrom M, Friden BE, Jasper M, et al. Variations in peripheral blood levels of immunoreactive tumor necrosis factor alpha (TNFalpha) throughout the menstrual cycle and secretion of TNFalpha from the human corpus luteum[J]. Eur J Obstet Gynecol Reprod Biol, 1999; 83(2): 213~217.
    20 林燕萍, 周瑞祥, 王和鸣, 等. 卵巢切除与血清肿瘤坏死因子-α、转化生长因子-β1浓度的关系[J]. 中华老年医学杂志, 2002; 21(4): 275~277.
    1 Stuenkel CA. Neural regulation of pituitary function[J]. Epilepsia, 1991; 32(Suppl 6): S2~10.
    2 贾悦, 王兴海. 下丘脑弓状核在生殖轴系的地位和作用[J]. 国外医学计划生育分册, 2002; 21(3): 147~149.
    3 Meites J. Neuroendocrine biomarkers of aging in the rat[J]. Exp Gerontol, 1988; 23(4-5): 349~358.
    4 刘建康, 李庆明. 大鼠下丘脑弓状核年龄性变化的电镜观察[J]. 神经解剖学杂志, 1992; 8(2): 217~220.
    5 罗红梅, 崔燎, 吴铁, 等. D-半乳糖对大鼠下丘脑弓状核神经元超微结构的影响[J]. 中国临床药理学与治疗学, 2006; 11(6): 709~711.
    6 陈志宏, 杜金凯, 高福禄, 等. D-半乳糖衰老大鼠性腺轴系超微结构的变化[J]. 解剖学杂志, 2006; 29(2): 162~166.
    7 勾敏慧, 罗晶, 李丽. 卵巢的衰老变化[J]. 长春中医学院学报, 1996; 12(58): 32.
    8 包新民, 舒斯方. 大鼠脑立体定位图谱[M]. 北京, 人民卫生出版社. 1991; 37.
    9 Miller MM, Bennett HP, Billiar RB, et al. Estrogen, the ovary, and neutotransmitters: factors associated with aging[J]. Exp Gerontol, 1998; 33(7-8): 729~757.
    10 Swaab DF. Ageing of the human hypothalamus[J]. Horm Res, 1995; 43(1-3): 8~11.
    11 Pollack M, Leeuwenburgh C. Apoptosis and aging: role of the mitochondria[J]. J Gerontol A Biol Sci Med Sci, 2001; 56(11): B475~482.
    12 Burger HG, Dudley E, Mamers P, et al. The ageing female reproductive axis I[J]. Novartis Found Symp, 2002; 242: 161~167.
    13 李美芝. 妇科内分泌学[M]. 北京:人民军医出版社, 2001: 69.
    14 梅家俊,陈振发. 超微病理学基础与临床病理学进展[M]. 湖北中医学院出版社, 2001: 15~38.
    15 Strauss JF 3rd, Steinkampf MP. Pituitary-ovarian interactions during follicular maturation and ovulation[J]. AM J Obstet Gynecol, 1995; 172(2 Pt 2): 726~735.
    1 Huschtscha LI, Reddel RR. p16INK4a and the control of cellular proliferative life span[J]. Carcinogenesis, 1999 ; 20(6): 921~926.
    2 Kamijo T, Zindy F, Roussel MF, et al. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF[J]. Cell, 1997; 91(5): 649~659.
    3 Sugrue MM, Shin DY, Lee SW, et al. Wide-type p53 triggers a rapid senescence programin human rumor cells lacking functional p53[J]. Proc Natl Acad Sci U S A, 1997; 94(18): 9648~9653.
    4 Collado M, Medema RH, Garcia-Cao I, et al. Inhibition of the phosphoinositide 32Kinase pathway induces a senescence-like arrest mediated by p27Kip1[J]. J Biol Chem, 2000; 275(29): 21960~21968.
    5 Li DM, Sun H. PTEN/MMAC1/TEP1 suppresses the tumorigenicity and induces G1 cell cycle arrest in human glioblastoma cells[J]. Proc NatlAcad Sci USA, 1998; 95(26):15406~15411.
    6 Sun H, Lesche R, Li DM. PTEN modulates cell cycle progression and cell survival by regulating phosphatidylinositol 3,4,5,-trisphosphate and Akt/protein kinase B signaling pathway[J]. Proc Natl Acad Sci USA, 1999; 96(11):6199~6204.
    7 Massari ME, Murre C. Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms[J]. Mol Cell Biol, 2000; 20(2): 429~440.
    8 Lundberg AS, Hahn WC, Gupta P, et al. Genes involved in senescence and immortalization[J]. Curr Opin Cell Biol, 2000; 12(6): 705~709.
    9 Itahana K, Dimri G, Campisi J. Regulation of cellular senescence by p53[J]. Eur J Biochem, 2001; 268(10): 2784~2791.
    10 Itahana K, Campisi J, Dimri GP. Mechanisms of cellular senescence in human and mouse cells[J]. Biogerontology, 2004; 5(1): 1~10.
    11 Papazoglu C, Mills AA. p53: at the crossroad between cancer and ageing[J]. J Pathol. 2007; 211(2): 124~133.
    12 Momand J, Wu HH, Dasgupta G. MDM2-master regulator of the p53 tumor suppressor protein[J]. Gene, 2000; 242(1-2): 15~29.
    13 Ohtani N, Imamura Y, Yamakoshi K, et al. Visualizing the dynamics of p21(Waf1/Cip1) cyclin-dependent kinase inhibitor expression in living animals. Proc Natl Acad Sci U S A. 2007; 104(38): 15034~15039.
    14 孙茂民, 刘珺, 陈尔齐, 等. 急性脑老化模型大鼠脑神经元中衰老基因 p21WAF-1的表达[J]. 实验动物与比较医学, 2006; 26(4): 223~226.
    15 Jackson MW, Lindstrom MS, Berberich SJ. MdmX binding to ARF affects Mdm2 protein stability and p53 transactivation[J]. J Biol Chem. 2001; 276(27): 25336~25341.
    16 Rowland BD, Denissov SG, Douma S, et al. E2F transcriptional repressor complexes are critical downstream targets of p19(ARF)/p53-induced proliferative arrest[J]. Cancer Cell, 2002; 2(1): 55~65.
    17 Weber JD, Jeffers JR, Rehg JE, p53-independent functions of the p19(ARF) tumor suppressor[J]. Genes Dev, 2000; 14(18): 2358~2365.
    18 Tamrakar S, Rubin E, Ludlow JW. Role of pRB dephosphorylation in cell cycle regulation[J]. Front Biosci, 2000; 5(1): 121~137.
    19 Chan HM, Krstic-Demonacos M, Smith L, et al. Acetylation control of the retinoblastoma tumour-suppressor protein[J]. Nat Cell Biol, 2001; 3(7): 667~674.
    20 Campisi J. Senescent cells, tumor suppression, and organismal aging: Good citizens, bad neighbors[J]. Cell, 2005; 120(4): 513~522.
    21 Zebedee Z, Hara E. Id proteins in cell cycle control and cellular senescence[J]. Oncogene, 2001; 20(58): 8317~8325.
    22 Fang X, Jin X, Xu HJ, et al. Expression of p16 induces transcriptional downregulation of the RB gene[J]. Oncogene, 1998; 16(1): 1~8.
    23 Duan J, Zhang Z, Tong T. Senescence delay of human diploid fibroblast induced by anti-sense p16INK4a expression[J]. J Biol Chem, 2001; 276(51): 48325~48331.
    24 Li J, Yen C, Liaw D, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast and prostate cancer[J]. Science, 1997; 275(5308): 1943~1947.
    25 Steck PA, Pershouse MA, Jasser SA, et al. Identification of a candidate tumor suppressor gene, MMAC1, at chromosome 10q23.3 that is mutates in multiple advanced cancers[J]. Nat Genet, 1997; 15(4): 356~362.
    26 Li DM, Sun H. TEP1, encoded by a candidate tumor suppressor locus, is a novel protein tyrosine phosphatase regulated by transforming growth factor beta[J]. Cancer Res, 1997; 57(11): 2124~2129.
    27 Lee JO, Yang H, Georgescu MM, et al. Crystal structure of the PTEN tumor suppressor: implications for itsphosphoinositide phosphatase activity and membrane association[J]. Cell, 1999; 99(3) : 323~334.
    28 Brunet A, Bonni A, Zigmond MJ, et al. AKT promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor[J]. Cell, 1999; 96(6): 857~868.
    29 Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression[J]. Genes Dev, 1999; 13(12): 1501~1512.
    30 Polyak K, Kato JY, Solomon MJ, et al. p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-beta andcontact inhibition to cell cycle arrest[J]. Genes Dev, 1994; 8(1): 9~22.
    31 Kiyokawa H, Kineman RD, Manova-Todorova KO, et al. Enhanced growth of mice lacking the cyclindependent kinase inhibitor function of p27(Kip1)[J]. Cell, 1996; 85(5): 721~732.
    32 Nakayama K, Ishida N, Shirane M, et al. Mice lacking p27(Kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors[J]. Cell, 1996; 85(5): 707~720.
    33 Zhang P, Wong C, DePinho RA, et al. Cooperation between the Cdk inhibitors p27KIP1 and p57KIP2 in the control of tissue growth and development[J]. Genes Dev, 1998; 12(20): 3162~3167.
    34 Yang G, Ayala G, De Marzo A, et al. Elevated Skp2 protein expression in human prostate cancer: association with loss of the cyclin-dependent kinase inhibitor p27 and PTEN and with reduced recurrence-free survival[J]. Clin Cancer Res, 2002; 8(11): 3419~3426.
    35 Fero ML, Rivkin M, Tasch M, et al. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-deficient mice[J]. Cell, 1996; 85(5): 733~744.
    36 Nakayama K, Nagahama H, Minamishima YA, et al. Targeted disruption of Skp2 results in accumulation of cyclin E and p27Kip1, polyploidy and centrosome overduplication. EMBO J., 2000; 19(9): 2069~2081.
    37 Paramio JM, Navarro M, Segrelles C, et al. PTEN tumor suppressor is linked to the cell cycle control through the reinoblastoma protein[J]. Oncogene, 1999; 18(52): 7462~7468.
    38 Mamillapalli R, Gavrilova N, Mihaylova VT, et al. PTEN regulates the ubiquitin-dependent degradation of the CDK inhibitor p27KIP1 through the ubiquitin E3 ligase SCFSKP2. Curr Biol, 2001; 11(4): 263~267.
    39 Carnero A, Hudson JD, Price CM, et al. p16INK4A and p19ARF act in overlapping pathways in cellular immortalization[J]. Nat Cell Biol, 2000; 2(3): 148~155.
    40 Yap DB, Hsieh JK, Chan FS, et al. mdm2: a bridge over the two tumour suppressors, p53 and Rb[J]. Oncogene, 1999; 18(53): 7681~7689.
    41 Wu RC, Li X, Sch?nthal AH, et al. Transcriptional activation of p21WAF1 by PTEN/MMAC1 tumor suppressor[J]. Mol Cell Biochem, 2000; 203(1-2): 59~71.
    42 Su JD, Mayo LD, Donner DB, et al. PTEN and phosphatidylinositol 3'-kinase inhibitors up-regulate p53 and block tumor-induced angiogenesis: evidence for an effect on the tumor and endothelial compartment[J]. Cancer Res, 2003; 63(13): 3585~3592.
    43 Yan X, Fraser M, Qiu Q, et al. Over-expression of PTEN sensitizes human ovarian cancer cells to cisplatin-induced apoptosis in a p53-dependent manner[J]. Gynecol Oncol, 2006; 102(2): 348~355.
    44 Chang CJ, Freeman DJ, Wu H. PTEN regulates Mdm2 expression through the P1 promoter[J]. J Biol Chem, 2004; 279(28): 29841~29848.
    45 Freeman DJ, Li AG, Wei G, et al. PTEN tumor suppressor regulates p53 protein levels and activity through phosphatase-dependent and -independent mechanisms[J]. Cancer Cell, 2003; 3(2): 117~130.
    46 Tang Y, Eng C. PTEN autoregulates its expression by stabilization of p53 in a phosphatase-independent manner[J]. Cancer Res, 2006; 66(2): 736~742.
    47 Stambolic V, MacPherson D, Sas D, et al. Regulation of PTEN transcription by p53[J]. Mol Cell, 2001; 8(2): 317~235.
    48 Mayo LD, Dixon JE, Durden DL, et al. PTEN protects p53 from Mdm2 and sensitizes cancer cells to chemotherapy[J]. J Biol Chem, 2002; 277(7): 5484~5489.
    1 Dinarello CA. Interleukin-1 and interleukin-1 antagonism[J]. Blood. 1991; 77(8): 1627~1652.
    2 Morinaga Y, Hayashi H, Takeuchi A, et al. Antiproliferative effect of interleukin 1 (IL-1) on tumor cells: G0-G1 arrest of a human melanoma cell line by IL-1[J]. Biochem Biophys Res Commun, 1990; 73(1): 186~192.
    3 Belizario JE, Dinarello CA. Interleukin 1, interleukin 6, tumor necrosis factor, and transforming growth factor beta increase cell resistance to tumor necrosis factor cytotoxicity by growth arrest in the G1 phase of the cell cycle[J]. Cancer Res, 1991; 51(9): 2379~2385.
    4 姚爱玉, 周建军, 刘亚兵, 等. IL-1α 体外诱导血管内皮细胞衰老及其机理初步探讨. 自然科学进展, 2003; 13(11): 1165~1169.
    5 Dinarello CA. Interleukin l and interleukin 18 as mediators of inflammation and the aging process[J]. Am J Clin Nutr, 2006; 83(2):447S~455S.
    6 Okamura H, Tsutsui H, Komatsu T, et al. Cloning of a new cytokine that induces IFN-γ production by T cells[J]. Nature, 1995; 378(6552): 88~91.
    7 O'Mahony L, Holland J, Jackson J, et al. Quantitative intracellular cytokine measurement: age-related changes in proinflammatory cytokine production[J]. Clin Exp Immunol, 1998; 113(2): 213~219.
    8 Ershler WB, Keller ET. Age-associated increased interleukin-6 gene expression, late-life diseases, and frailty[J]. Annu Rev Med, 2000; 51(1): 245~270.
    9 史进方, 顾国浩, 张学光. 白细胞介素 2、4、6 水平在衰老过程中的表达及其意义[J]. 中华老年医学杂志, 2006; 25(1): 46~47.
    10 杨昌林, 赵健雄, 朱玉真, 等. 健身宝对衰老模型小鼠血清 IL-2 和IL-6 的影响[J].现代中西医结合杂志, 2002; 11(15): 1428~1429.
    11 Hobbs MV, Weigle WO, Ernst DN. Interleukin-10 production by splenic CD4+ cells and cell subsets from young and old mice[J]. Cell Immunol, 1994; 154(1): 264~272.
    12 Bining N, Miller RA. Cytokine production by subsets of CD4 memory T cells differing in P-glycoprotein expression: effects of aging[J]. J Gerontol A Biol Sci Med Sci, 1997; 52(3): B137~145.
    13 汪圣毅, 王玉琦, 符伟国, 等. 白细胞介素-10 基因转染联合 γ-干扰素抑制血管平滑肌细胞的增殖及其机制[J]. 中华实验外科杂志, 2006; 23(8): 1012~1014.
    14 Lio D, Balistreri CR, Candore G, et a1. In vitro treatment with interleukin-2 normalizes type-1 cytokine production by lymphocytes from elderly[J] . Immunopharmacol Immunotoxicol, 2000; 22(2): 195~203.
    15 侯麦花, 许桦, 杨丽萍. IL-2对正常人外周血活化淋巴细胞经Fas系统介导凋亡的影响[J]. 东南大学学报(医学版), 2002; 21: 296~299.
    16 Sakata-Kaneko S, Wakatsuki Y, Matsunaga Y, et al. Altered Th1/Th2 commitment in human CD4+ T cells with ageing[J]. Clin Exp Immunol, 2000; 120(2): 267~273.
    17 陈贵海, 刘志新. 不同月龄大鼠血清 IL-2、IL-4、IL-6 含量比较[J]. 实用中医药杂志, 2005; 21(2): 69~70.
    18 Venable ME, Lee JY, Smyth MJ, et al. Role of ceramide in cellular senescence[J]. J Biol Chem, 1995; 270(51): 30701~30708.
    19 Hannun YA, Luberto C. Ceramide in the eukaryotic stress response[J]. Trends Cell Biol, 2000; 10(2): 73~80.
    20 周建军, 高云飞, 王宏芳, 等. TNF-α 诱导血管内皮细胞的衰老[J]. 科学通报, 2001; 46(19): 1636~1641.
    21 Bruunsgaard H, Andersen-Ranberg K, Jeune B, et al. A high plasma concentration of TNF-alpha is associated with dementia in centenarians[J]. J Gerontol A Biol Sci Med Sci, 1999; 54(7): M357~364.
    22 严祥, 贺学强, 刘永铭. 复方参七汤对 D-半乳糖致衰老小鼠免疫系统的影响[J]. 现代中西医结合杂志, 2002; 11(1): 19~20.
    23 王文余, 常金兰, 高静, 等. 北芪对老龄机体细胞因子产生影响的实验研究[J]. 中国免疫学杂志, 1995; 11(3): 167~169.
    24 陈小峰, 华碧春, 郑良朴, 等. 增龄对SD大鼠免疫细胞因子表达的影响[J]. 福建中医学院学报, 2006; 16(6): 47~49.
    25 王文君, 俞瑾, 李大金, 等. 雌性大鼠老化过程中脾细胞雌激素受体含量及白细胞介素-2、肿瘤坏死因子活性的变化[J]. 中华内分泌代谢杂志, 1999; 15(4): 225~228.
    26 Lengyel P. Tumor suppressor genes: news about the interferon connection[J]. Proc Natl Acad Sci U S A, 1993; 90(13): 5893~5895.
    27 Stark G, Kerret I, Williams B, et al. How cells respond to interferons[J]. Annu Rev Biochem, 1998; 67(1): 227~264.
    28 Pfeffer L, Dinarello C, Herberman R, et al. Biologic properties of recombinant interferons: 40th anniversary of the discovery of interferons[J]. Cancer Res, 1998; 58(12): 2489~2499.
    29 Tiefenbrun N, Melamed D, Levy N, et al. Alpha interferon suppresses the cyclin D3 and cdc25A genes, leading to a reversible G0-like arrest[J]. Mol Cell Biol, 1996; 16(7): 3934~3944.
    30 Sato M, Taniguchi T, Tanaka N, et al. The interferon system andinterferon regulatory factor transcription factors-studies from gene knockout mice[J]. Cytokine Growth Factor Rev, 2001; 12(2-3): 133~142.
    31 Coccia E, Russo N, Steelacci E, et al. Activation and repression of the 2-5A synthetase and p21 gene promoters by IRF-1 and IRF-2[J]. Oncogene, 1999; 18(12): 2129~2137.
    32 Xie R, Gupta S, Miele A, et al. The tumor suppressor interferon regulatory factor 1 interferes with SP1 activation to repress the human CDK2 promoter[J]. J Biol Chem, 2003; 278(29): 26589~26596.
    33 Kamada M, Irahara M, Maegawa M, et al. Transient increase in the levels of T-helper 1 cytokines in postmenopausal women and the effects of hormone replacement therapy[J]. Gynecol Obstet Invest, 2001; 52(2): 82~88.
    34 蒋竞, 张绍芬, 邹世恩, 等. 更年期大鼠 Th1/Th2 平衡与脾细胞凋亡[J]. 西安交通大学学报(医学版), 2006; 27(1): 76~78.
    35 谢端薇, 欧汝强, 杨宁, 等. 卵巢早衰与细胞因子 TNF-α, IFN-γ 和IL-2 的相关性研究[J]. 广东医学, 1999; 20(11): 831~832.
    36 Dünker N, Krieglstein K. Targeted mutations of transforming growth factor-beta genes reveal important roles in mouse development and adult homeostasis[J]. Eur J Biochem, 2000; 267(24): 6982~6988.
    37 Feng XH, Lin X, Derynck R. Smad2, Smad3 and Smad4 cooperate with Sp1 to induce p15Ink4B transcription in response to TGF-β[J]. EMBO J, 2000; 19(19): 5178~5193.
    38 Schluns KS, Cook JE, Le PT. TGF-beta differentially modulates epidermal growth factor-mediated increases in leukemia-inhibitory factor, IL-6, IL-1 alpha, and IL-1 beta in human thymic epithelial cells[J]. J Immunol, 1997; 158(6): 2704~2712.
    39 Katakura Y, Nakata E, Tabira Y, et al. Decreased tumorigenicity in vivo when transforming growth factor beta treatment causes cancer cell senescence[J]. Biosci Biotechnol Biochem, 2003; 67(4): 815~821.
    40 Forsey RJ, Thompson JM, Ernerudh J, et al. Plasma cytokine profiles in elderly humans[J]. Mech Ageing Dev, 2003; 124(4): 487~493.
    41 姜琨, 秦樾, 童坦君. erbB-2 表达抑制与表皮生长因子刺激对信号转导与转录激活分子及细胞周期蛋白D1的影响[J]. 北京医科大学学报, 1998; 30(3): 205~208.
    42 Entingh-Pearsall A, Kabn RC. Diferential roles of the insulin and insulin-like growth factor-I(IGF-I) receptors in response to insulin and IGF-I[J]. J Biol Chem, 2004; 279(36): 38016~38024.
    43 Zumkeller W, Westphal M. The IGF/IGFBP system in CNS malignancy[J]. Mol Pathol, 2001; 54(4): 227~229.
    44 Villareal DT, Morley JE. Trophic factors in aging. Should older people receive hormonal replacement therapy?[J]. Drugs Aging, 1994; 4(6): 492~509.
    45 刘广钊, 何飞屏, 秦映芬, 等. 甲状腺激素与胰岛素样生长因子-1 在衰老中的研究[J]. 广西医科大学学报, 2000; 17(3): 371~374.
    46 邓微, 杨彬, 杨宇, 等. 老年动脉粥样硬化患者血清胰岛素样生长因子-1的检测及其与脂代谢的相关性分析[J]. 中国现代医学杂志, 2005; 15(13): 2021~2023.
    47 崔宏力, 李非, 曾艳芳, 等. 大鼠空肠胰岛素样生长因子-1 信号转导的增龄性变化[J]. 中国老年学杂志, 2007; 27(5): 917~920.
    48 Lai M, Hibberd CJ, Gluckman PD, et al. Reduced expression of insulin-like growth factor 1 messenger RNA in the hippocampus of aged rats[J]. Neurosci Lett, 2000; 288(1): 66~70.
    49 Ginaldi L, De Martinis M, D'Ostilio A, et al. Cell proliferation and apoptosis in the immune system in the elderly[J]. Immunol Res, 2000; 21(1): 31~38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700