Si_4O_4、n-pentane及Sr_2YRuO_6的第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一性原理(从头算方法)是量子力学的基本计算方法,大量用于物质或团簇(cluster)的结构、稳定性、导电性及光谱的理论研究,同时这些性质在量子化学中是研究内涵十分丰富的学科分支,对材料使用和新材料的研究应用方面占据着核心的位置。目前大型、高速电子计算机的应用,使得此理论研究的优越性越来越突出。理论研究也能很好地对实验进行验证、解释、补充甚至预言的作用。因此本文首先采用密度泛函方法研究了一氧化硅四聚体(Si_4O_4)和高压下正戊烷的结构、振动频率和光谱,得到Si_4O_4的两种稳定结构;也对实验中,正戊烷高压下相变点的大小进行了验证。与此同时,本文还用第一性原理方法对Sr_2YRuO_6有序双钙钛矿的结构和能带进行计算。在此基础上分析了该材料有序性存在的原因及Mott绝缘体特性。本论文主要包括以下四个部分:
     1、运用Gaussian03软件,通过量子化学HF,B3LYP和MP2方法,选用6-311G*基组对立方状、平面环状和折叠环状一氧化硅四聚体(Si_4O_4)的几何构型、稳定性、电子结构和振动频率等性质进行研究,部分结果与实验吻合,振动也与群论方法分析结果一致。研究表明:平面环状结构不是稳定结构,Si_4O_4存在T_d群对称性的立方状和D_(2d)群对称性的折叠环状两种结构,折叠环状结构能量更低,更稳定;两种结构均有微弱共价键,是绝缘体。
     2、本文在压强为0到17GPa范围内对正戊烷分子的结构、频率和光谱进行理论研究,得到在各个压强下正戊烷分子结构,频率以及红外和拉曼光谱。结构变化与实验吻合,但发现12.3GPa左右变化出现奇异。红外和拉曼光谱图中与实验结果较吻合,预言的相变压强点与实验也基本一致,说明这方面理论研究有一定的意义。理论上对几个特殊频率拉曼位移和频率比值加以分析,与实验吻合较好,对验证和预测相变也能提供一些依据。最后还得到正戊烷加压时,单偏转振动模式会先向全贯穿模式转换,12.3GPa后又会占据主导地位。这和实验上保持一致,是解释谱分裂及固固相变原因的重要依据。
     3、运用第一性原理方法对双钙钛矿Sr_2YRuO_6各种可能的无序结构和有序结构的能量进行计算,计算结果显示有序结构双钙钛矿具有最低能量,说明该结构最稳定,这一结果也与实验中样品的多晶样品X射线衍射图(XRD)中出现超晶格有序峰相符合。通过计算给出该材料的能带,计算结果显示该材料是Mott绝缘体,得到与实验结果相一致的结论。
First Principle which is a method of calculation based on the principles of quantum mechanics is used widely in science, such as the structure, stability, electrical conductivity and spectral of material or clusters. And study of those properties of material and clusters is the most alive subject branch, with very abundant research connotation in the scientific and technological fields, and it is occupying central position in research application of the whole new material. Now the using of large and high-speed electronic computer make the advantage of the theory research more and more outstanding. The material experiments can be verified, interpreted, replenished and even predicted well by the theory. In this paper, the structure, the vibration frequency and spectrum of the silicon oxide tetramer (Si4O4) and the n-pentane under high pressure have been studied by use of the density function theory (DFT)B3LYP method, the conclusion is that there are two structures of Si4O4, and the phase change of n-pentane is verified with experiments. At the same time. First Principle is applied to study the structure and band of Sr_2YRuO_6. The material with order and characteristic of Mott insulators are analyzed basis on the calculation. The main contents are the following:
     1、The structure, vibrational frequencies, corresponding normal mode assignments, the infrared intensities and Raman activity of the silicon monoxide tetramer(Si_4O_4) in T_d symmetry and the isolated Si_4O_4 in D_(2d) symmetry are examined theoretically using the Gaussian03 set of quantum chemistry codes. All normal modes of buckled Si_4O_4 were 'Successfully obtained by a group theoretical analysis with the D_(2d) symmetry of the molecule. The conclusion is that Si_4O_4 possesses the cubane-like structure as C_4O_4 and Ge_4O_4. The planar Si_4O_4 may not be a stable structure. Comparing silicon monoxide tetramer with isolated buckled Si_4O_4, it shows that buckled Si_4O_4 can be observed easily because of it's lower energy. the two molecules are insulator and held together in part by electrostatic forces.
     2、The structure, vibrational frequencies, the infrared intensities and Raman activity of n - pentane are studied theoretically under high pressure whose range is from 0 to 17 GPa. The structural changes are consistent with the experimental data, but the changes at 12.3 GPa is strange. The Infrared and Raman spectra of n - pentane is also in agreement with the experimental results. The pressures for phase transition occurring in experiment and theory are nearly the same. Several analysis in intensity ratios according to the experimental conclusion is useful for predicting phase transition. We also conclude that: n-pentane prefers to be an in-all-trans conformation in the pressure range of 3-12.3 GPa, and has end gauche conformers above 12.3 GPa, which is important to understand the solid to solid phase transition.
     3、The energies of all the possible structures of the double perovskite Sr_2YRuO_6 were calculated using First - principles method. The conclusion is that the energy of the double perovskite structure is lowest. It is consistent with the experimental result given by the X-ray diffraction data. There is an orderly XRD peaks in the experiment. We also computed the band of the double perovskite. It shows that Sr_2YRuO_6 is a Mott insulator material, this is also consistent with the experimental result.
引文
[1]顾秉林,原子团簇及其组装材料的设计,《材料设计》,能家炯主编,天津大学出版2000
    
    [2] Helms.C. R and Deal.B. E(eds) 1988 The Physics and Chemistry of SiO_2 and the Si-SiO_2interface Plenum Press New York
    
    [3] E. Desurvire 1994 Phys Today 47 20 [24] Howard A.Blackstead, John D.Dow,DaleR.Harshman,Magnetically orderd Cu and Ru in Ba_2GdRu_(1-u)Cu_uO_6 and in Sr_2YRu_(1-u)Cu_UO_6[J].Physica Review B, 2000,63:214412(1-11)
    
    [4]张材荣,金属及半导体团簇结构与性质的理论研究,西北师范大学硕士论文,2004
    
    [5]王广厚,科技导报,10,9(1994)
    
    [6] Bjf rnholm S. Contemp, Phys. 31, 309(1990)
    
    [7]冯瑞,金国钧,物理学进展,11,373(1991)
    
    [8]王金兰,半导体团体结构和性质及金纳米线热力学稳定性的理论研究,南京大学博士论文,2001
    
    [9] Jinlan Wang, Jijun Zhao,Feng Ding,et al .Solid Station Communication. 117,593 (2001)
    
    [10] Jinlan Wang, Feng Ding, Weifeng Shen,et al .Solid Station Communication. 119,13 (2001)
    
    [11] C.Binns, Surf. Sci.Report. 44,1 (2001)
    
    [12] K. Rademann, B. Kaiser, U. Even, and F. Hensel, Phys. Rev. Lett. 59,2319 (1987)
    
    [13] O. Cheshnovsky, K. J. Taylor, and R. E. Smalley, Phys. Rev. Lett. 64, 1785 (1990)
    
    [14] J. Ho, K. M. Ervin, and W. C. Lineberger, J. Chem. Phys. 93, 6987(1990)
    
    [15] B. Kaiser, and K. Rademann, Phys. Rev. Lett. 54.1201 (1998)
    
    [16] Jinlan Wang, Guanghou Wang, and Jijun Zhao, Phys.Rev.A. 68, 013201(2003)
    
    [17] Jinlan Wang, Guanghou Wang, and Jijun Zhao,J.Phys.Condens.Matter. 13, L753(2001)
    
    [18] J. G. Louderback, A. J. Cox, L. J. Lising, and L. A. Bloomfield, Z. Phys. D. 26,301 (1993)
    
    [19] J. P Buchez, D. C. Douglass, and L. A. Bloomfield, Phys. Rev. Lett. 66, 3052 (1991)
    
    [20] D. C. Douglass, A. J. Cox, J. P. Bucher, and L. A. Bloomfield, Phys. Rev. B. 47,4067(1993)
    
    [21] J. Zhao, M. Han, and G. Wang, Phys. Rev. B. 48, 15297( 1993), and the references therein
    
    [22] S. N. Khanna and S. Linderoth, Phys. Rev. Lett. 67, 742 (1991)
    [23] D. M. Cox, D. J. Trevor, R. L. Whetten, and A. Kaldor, Phys. Rev. B. 32, 7290 (1985)
    [24] R.N. Barnett, and U. Landman, Nature .387, 788(1997)
    [25] C.Zybill, Angew, Chem. Int. Ed. Engl. 31, 173 (1992)
    [26] Helmut B, David J.B, Hans B et al 1996 Journal of Organometallic Chemistry 511 293
    [27] Michael V, Andreas R, Judith H et al 2003 Comptes Rendus Chimie 6 117
    [28] Zhang.R. Q, Fan.W. J, 2006 Journal of Cluster Science 17 541
    [29] James R. C 1998 Physical Review B 57 3333
    [30] Edwin F, Stefan T. B 2005 Physical Review Letters 95 185505
    [31] Markus F, Markus J 1999 Journal of chemical physics 111 7881
    [32] Stefano E 1996 Chemical Physics Letters 259 261
    [33] James O. J 2005 Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 61 3108
    [34] Hunt J M. Petroleum Geochemistry and Geology[M]. SanFrancisco: W H Freeman. 1979.31.
    [35] White C M, Jensen K L, Rohar P C, et al. Separationof Fischer-Tropsch Catalyst/ Wax Mixtures Using Dense-Gas and Liquid Extraction[J]. Energy & Fuels, 1996, 10(5): 1067
    [36] Rhlid R B, Matthey D W, Blank I, et al. Lipase-Assisted Generation of 2-Methyl-3-Furanthiol and 2-Furfurylthiol from Thioacetates[J]. Journal of Agricultural and Food Chemistry, 2002, 50(14): 4087.
    [37]Ganiev I M,Timerghazin Q K, Khalizov A F, et al. Complexes of Chlorine Dioxide with Nitroxyl Radicals[J]. Tetrahedron Letters, 1999,40(25): 4737.
    [38] Jones D C. Characterisation of Liquid Brillouin Media at 532nm[J]. Journal of Nonlinear Optical Physics & Materials, 1997, 6(1): 69.
    [39] Tkachev S N, Timerghazin Q K, Khalizov A F. Brillouin Scattering Study of Pentaneat High Pressure[J]. Journal of Chemical Physics, 1996, 104(24): 10059.
    [40] Gelles S H. Solidification of n-Pentane at High Hydrostatic Pressure[J]. J Chem Phys, 1968, 48: 526.
    [41]Zeto R J, Vanfleet H B. Pressure Calibration to 60 kbar Based on the Resistance Change of a Manganin Coilunder Hydrostatic Pressure[J]. J Appl Phys, 1969,40:2227
    [42] Heinz G, Fanconi B. J. Chem. Phys. 1973, 59, 534.
    [43]Qiao E, Zheng H. Appl. Spectrosc. 2005,59,650.
    [44]Kato M, Taniguchi Y. J. Chem. Phys. 1991,94,4440
    [45]Kavitha G, Narayana Chandrabhas. J. Phys. Chem. B 2007
    
    [1] W. K. Heisenberg, Z. Phys. 33, 879 (1925)
    
    [2] E. SchrAodinger, Ann. der. Phys. 79, 36 (1926)
    
    [3] W. Heitler and F. London, Z. Phys. 44,455 (1927)
    
    [4] D. R. Hartree, Proc. Camb. Phil. Soc. 24,111 (1928)
    
    [5] V. Fork, Z. Phys. 61, 126 (1930)
    
    [6] C. C. J. Roothaan, Rev. Mod. Phys. 23,69 (1951)
    
    [7] J. A. Pople, Approximate Molecular Orbital Theory, McGraw Hill (1970)
    
    [8] J. G. Hou, J. Yang et al., Nature 409, 304 (2001)
    
    [9] H. W. Kroto, J. R. Heath et al, Nature 318, 162 (1985)
    
    [10] L.H.Thomas, Proc.Camb.PhiLSoc, 23,542-548(1927)
    
    [11] E.Fermi.,Rend.Accad.,Lincei.,6,602-607(1927)
    
    [12]E.Fermi,Z.Phys.48,73-79(1928a)
    
    [13]E.Fermi,Rend.Accad.Lincei.,7,342-346(1928b)
    
    [14] P Hohenberg,W.Kohn,Phys.Rev.,136,B864-B871(1964)
    
    [15] W.Kohn,L.Sham,Phys.Rev.,140,A1133-A1138(1965)
    
    [16] P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964)
    
    [17] R.G. Parr Density Functional Therory of Atoms and Mocecules Oxford, New York, (1989)
    
    [18]D.E.Ellis.Density Functional Theory of Mocecules,Clusters and Solids, Kluwer Acadernic(1994)
    
    [19]Kohn W, Sham J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev.,1965,140:A1133-A1138
    [20]Wiger E. On the Interaction of Electrons in Metals. Phys. Rev., 1934,46:1002-1011
    [21]Slater J C. A Simplification of the Hartree-Fock Method. Phys. Rev.,1951,81:385-390
    [22]Slater J C, Wilson T M, Wood J H. Comparison of Several Exchange Potentials for Electrons in the Cu~+ Ion. Phys. Rev., 1969,179:28-38
    [23]Hedin L, Lundqvist B I. Explicit local exchange-correlation potentials. J. Phys.C: Solid State Phys., 1971,4(14):2064-2083
    [24]Ceperley D M, Zunger A. Ground State of the Electron Gas by a Stochastic Method . Phys. Rev. Lett., 1980,45:566-569
    [25]Perdew T P, Zunger A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B, 1981,23:5048-5079
    [26] U.Von Barth and L.Hedin,J.Phys,C5,1629(1972)
    [27] J. C. Slater, Quantum Theory of Molecular and Solids, Vol. 4, McGraw-Hill (1974)
    [28] S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58,1200 (1980)
    [29] R. M. Martin, Electronic Structure: Basic Theory and Practical Methods, Canbridge University Press (2004).
    [30] C. Adamo and V. Barone, J. Chem. Phys. 108, 664 (1998).
    
    [1] Helms C R, Deal B E. The physics and chemistry of SiO_2 and the Si-SiO_2interface[M]. New York, Plenum Press, 1988: 115-162.
    
    [2] Desurvire E. The golden age of optical fiber amplifiers[J]. Phys Today, 1994, 47(1):20-27.
    
    [3] Zhang R Q, Lifshitz Y, Lee S T. Oxide-Assisted Growth of SemiconductingNanowires[J]. Adv Mater, 2003,15(7-8): 635-640.
    
    [4] Uchino T, Aboshi A, Kohara S, et al. Microscopic structure of nanometer-sizedsilica particles[J]. Phys Rev B, 2004, 69(15): 155409-155417.
    
    [5] Helmut B, David J B, Hans B, et al. Siloxanes and silylamines withfluoromethyl-methylsilicon groups: X-ray study of [CH_2F(CH_3) SiO]_4[J]. J ofOrganomet Chem, 1996, 511: 293-298.
    
    [6] Michael V, Andreas R, Judith H, et al. Selective synthesis of eight-memberedsiloxane rings with different substituents on the silicon atoms [J]. Comptes RendusChimie, 2003,6: 117-124.
    
    [7] Zhang R Q, Fan W J, Structures and properties of silicon oxide clusters by theoretical investigations [J]. J Cluster Sci, 2006, 17(4): 541-563.
    
    [8] James R C, Structural and electronic properties of neutral and charged silicalikeclusters[J]. Phys Rev B, 1998, 57(6): 3333-3339.
    
    [9] Edwin F, Stefan T B, Columnar-to-Disk Structural Transition in Nanoscale (SiO_2)_NCIusters[J]. Phys Rev Lett, 2005, 95(18): 185505(1)-185505(4).
    
    [10] Markus F, Markus J, Gas Phase Dynamics and Structure: Spectroscopy, MolecularInteractions, Scattering, and Photochemistry - Raman-spectroscopy of oligomericSiO species isolated in solid methane[J]. J Chem Phys, 1999, 111: 7881-7887.
    
    [11] Stefano E, Ab initio study of C_4O_4 in T_d symmetry[J]. Chem Phys Lett, 1996,259(3-4): 261-264.
    
    [12] James O J, Vibrational frequencies and structural determination of Ge_4O_4[J].Spectrochim Acta Part A: Mol & Biomol Spectrosc, 2005,61:3108-3 111.
    
    [13] Binnewies M, Jerzembeck M , Kornick A, Chemische Reaktionen bei derHerstellung von Lichtwellenleitern fur die optische Datenfernubertragung[J]. AngewChem, 1991,103(7): 762-770.
    
    [14] Zumbusch.A, Schno H, Raman and IR spectroscopy of (GeO)_n, with n= 1,2,3,4,isolated in solid argon[J]. J Chem Phys, 1998,108: 8092-8100.
    
    [15] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 03 Revision B.04, PittsburghPA Gaussian Inc, 2003.
    
    [16](美)赫尔 群论[M]裘光明译北京:科学出版社,1981.
    
    [1] Hunt J M. Petroleum Geochemistry and Geology[M]. SanFrancisco: W H Freeman.1979.31.
    
    [2] White C M, Jensen K L, Rohar P C, et al. Separationof Fischer-Tropsch Catalyst/Wax Mixtures Using Dense-Gas and Liquid Extraction [J]. Energy & Fuels, 1996, 10(5):1067
    
    [3] Rhlid R B, Matthey D W, Blank I, et al. Lipase-Assisted Generation of2-Methyl-3-Furanthiol and 2-Furfurylthiol from Thioacetates[J]. Journal ofAgricultural and Food Chemistry, 2002, 50(14): 4087.
    
    [4]Ganiev I M,Timerghazin Q K, Khalizov A F, et al. Complexes of Chlorine Dioxidewith Nitroxyl Radicals[J]. Tetrahedron Letters, 1999,40(25): 4737.
    
    [5] Jones D C. Characterisation of Liquid Brillouin Media at 532nm[J]. Journal ofNonlinear Optical Physics & Materials, 1997,6(1): 69.
    
    [6] Tkachev S N, Timerghazin Q K, Khalizov A F. Brillouin Scattering Study ofPentaneat High Pressure[J]. Journal of Chemical Physics, 1996,104(24): 10059.
    
    [7] Gelles S H. Solidification of n-Pentane at High Hydrostatic Pressure[J]. J Chem Phys,1968,48:526.
    
    [8]Zeto R J, Vanfleet H B. Pressure Calibration to 60 kbar Based on the ResistanceChange of a Manganin Coilunder Hydrostatic Pressure[J]. J Appl Phys, 1969, 40: 2227
    [9] Heinz G, Fanconi B. J. Chem. Phys. 1973, 59, 534.
    [10]Qiao E, Zheng H. Appl. Spectrosc. 2005, 59, 650.
    [11]Kato M, Taniguchi Y. J. Chem. Phys. 1991, 94,4440
    [12]Kavitha G, Narayana Chandrabhas. J. Phys. Chem. B 2007
    [13]M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb,J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C.Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci,M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji,M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox,H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts,R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W.Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg,V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain,O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman,J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B.Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin,D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara,M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong,C. Gonzalez, J.A. Pople, Gaussian 03 Revision B.04, Gaussian Inc.,Pittsburgh PA, 2003.
    
    [1] GH.Jonker. Magnetic compounds with perovskite structure IV Conducting and non-conducting compounds[J]. Physica, 1956, 22: 707.
    
    [2] GBlasse. Proceedings of the International Conference on Magnetism[J]. PhilipsRes.Rep, 1965,20: 327.
    
    [3] GBlasse. Ferromagnetic interactions in non-metallic perovskites[J]. J. Phy. Chem.Solids, 1965,26:1969.
    
    [4] R. V. Helmolt, J. Wechker, B. Holzapfel, et al. Giant Magnetoresistance in Perovskitelike La2/3 Ba1/3 MnOx Ferromagnetic Films[J]. Physical Review Letters. 1993,71:2331.
    
    [5] F. S. Galasso, D. B. Fenner and L. Lynds, et.al. An assessment of synthesis effects on the high-Tc superconducting transition: With application to thin-film bolometer devices[J]. Applied Superconductivity 1996, Volume 4, Issue 3: 119.
    
    [6] Y. Maeno, J. G Bednorz, et.al. Superconductivity in a layered perovskite without copper[J]. Nature, 1994, 372: 532.
    
    [7] Howard A. Blackstead, John D. Dow. The Nature of a Correct Theory of High-Temperature Superconductivity[J]. Physica C, 2000, 341-348:187.
    
    [8] John D. Dow, Dale R. Harshman,. SrO and BaO high-temperature superconductivity[J]. Physic C, 2003, 388:447.
    
    [9] Howard A. Blackstead, John D. Dow, Dale R. Harshman. Sr_2YRu_(1-u)Cu_uO_6: Evidence for SrO-Layer Superconductivity [J]. Journal of superconductivity, 2000, 13:981.
    
    [10] John D. Dow, Dale R. Harshman. New picture of high-temperature superconductivity[J]. Journal of Physics and Chemistry of Solids, 2002, 63(12):2309.
    
    [11] John D. Dow, Dale R. Harshman. Non-Cuprate-Planar Superconductivity[J]. Journal of superconductivity, 2004,17:179.
    
    [12]夏炜炜,周庆路,徐洪芳,等.Sr_2YRu_(1-x)O_6结构、磁性及电输运性质[J].低温物 理学报,2007,29(2):40.
    
    [13]赵成大.固体量子化学[M].北京:高等教育出版社,2003,97.
    
    [14]Д.Д.朗道,E.M.栗弗席茨.量子力学[M].北京:人民教育出版社,1980,105.
    
    [15]艾林.量子化学[M].北京:科学出版社,1981,156.
    
    [16]戴维森.量子化学中的约化密度矩阵[M].北京:科学出版社,1980,117.
    
    [17] D. E. Ellis and G.S. Painter. Discrete Variational Method for the Energy-Band Problem with General Crystal Potentials[J]. Phycs.Rev, 1970, 8: 2887.
    
    [18]冯端,金国钧.凝聚态物理学[M]北京:高等教育出版社,2003,385.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700