新型金属钴催化剂催化亚胺与一氧化碳的交替共聚及相关反应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多肽作为一种重要的生物高分子材料,在生命系统起着重要的作用,在材料、催化、制药等应用领域有着广泛的应用。多年以来,多肽的合成一直是人们研究的热点,关于多肽的合成也有很多方法,但几乎所有的方法都是以氨基酸为原料,来构建肽的结构。这些传统的合成方法不仅在原子经济性上有很大的不足,产生大量的副产物,而且步骤繁琐,价格昂贵。近些年来,受到烯烃和一氧化碳在金属催化剂的催化下生成聚酮类的高分子聚合物的启发,科学家们便开始尝试用相似结构的亚胺与一氧化碳交替共聚合成多肽高分子材料,而这些研究的关键就是找到一种合适的催化剂。
     本课题组在2007年曾首次报道了金属钴催化剂成功地催化了亚胺与CO的交替共聚。在此基础上,本文对该催化反应所用的钴催化剂的种类进行拓展,开发出新的具有更好的物理及化学性能的催化剂。同时,还通过原位红外技术对聚合反应所涉及的机理及动力学进行了广泛的研究。此外,实现了活性聚合并得到了含有不同肽链结构的嵌段共聚物。具体研究内容如下:
     1.开发出了五种稳定的可以催化亚胺与CO交替共聚的催化剂,其中三种为首次分离得到的酰基四羰基钻化合物,我们对其分别进行了X-ray单晶衍射分析,确定了它们的酰基四羰基钴结构,同时还分离鉴定了它们对应的三苯基膦配位的酰基钻结构并对它们的结构进行了对比。对几种催化剂的催化性能进行了评价,其中三种催化剂表现出活性聚合的特征,催化脂肪系亚胺与CO共聚得到的聚合物的分子量分布都比较窄。特别是第Ⅱ代催化剂44是专门为了解决24在聚合刚开始时的引发问题而设计并合成的,使得该聚合反应真正成为活性聚合。
     2.利用原位红外技术研究了从烷基钴23到酰基钴24的转化动力学,测定了该反应的热力学参数及动力学参数,利用所得热力学参数解释了实验过程中观察到的平衡移动现象。测得的动力学活化参数呈现出较低的能垒(17.8Kcal mol-1),表明羰基化反应很容易发生,这对于以后的聚合机理的研究有重要的指导意义。
     3.利用原位红外技术监测了聚合反应的过程并测定了聚合反应的反应动力学。分别测定了反应对亚胺、CO、催化剂的反应级数及不同反应溶剂中聚合反应的速度及聚合效果,测定了30-80℃范围内各温度下的反应速率常数,并运用Eyring方程测定了反应的活化吉布斯自由能为20.4Kcal mol-1。
     4.通过实验发现24催化的聚合物的分子量随转化率的增加而线性增加,而且可以得到端基功能化的聚合物,判定了该聚合反应已经具备活性聚合的必要条件。接下来进行了嵌段聚合的实验,运用原位红外监测技术通过分批加入单体的方法得到了一条聚合物链中含有不同肽链结构的嵌段共聚物。聚合物的分子量随嵌段数的增加而线性增加,但是分子量分布略宽,主要是由于在聚合的第一阶段存在的引发过程导致的。为了消除引发过程对聚合活性的影响,设计并合成了具有一个聚合物结构单元的第Ⅱ代催化剂44。用原位红外监测44催化亚胺与CO的交替共聚反应发现已经完全没有了引发过程。得到的聚合物的分子量分布都是比较窄的,特别是得到的嵌段聚合物的分子量分布也是很窄的,而且聚合物的分子量更接近于理论分子量。所以可以认为最终我们实现了该新型聚合反应的活性聚合并得到了嵌段聚合物。
     利用化合物44进行了聚合物端基的研究。结果表明44可以很容易的与苄胺、甲醇、水等亲核试剂反应,生成相应的酰胺、酯和羧酸化合物,在此指导下又得到了端基分别为酯基及羧基的端基功能化的多肽聚合物。我们还分离得到了44缓慢分解生成的产物49,化合物49的五元环的恶唑烷酮结构对我们进一步完善聚合反应的机理起到了关键的作用。
     最终在结合之前所有的实验现象并参考本课题组理论计算的结果的基础上,确定了整个聚合反应过程的反应机理。
Polypeptides are important biopolymers that play an important role in biological systems as well as in fields of applications such as materials, catalysis and pharmaceuticals. Over the past years, very useful methods have been developed for polypeptide synthesis.But most of the methods are based on the use of amino acids as starting materials, which require expensive cost and tedious procedures alongwith large amount of by-products. Inspired by the well-studied copolymerization of alkenes and CO to produce polyketones, chemists had attempted to find a suitable catalyst to catalize the copolymerization of imines and CO to produce polypeptides. Our group have reported the first copolymerization of imines with CO using a cobalt catalyst. Based on this successful study, we have expanded the type of new cobalt catalyst with highly stability and efficiency in this thesis. Additionally, a study of the mechanism and kinetics of the carbonylation as well as polymerization were carried out extensively by utilizing in situ IR technique. Moreover, living polymerization research was carried out and block polymers containing different peptide chains were obtained. Details are listed as follows:
     1. A total of5new cobalt catalysts with highly stability were developed,3of which were first isolated as acyl cobalt tetracarbonyls and their structure were determined by X-ray diffraction as well as their PPh3derivatives. Catalytic performances of the five catalysts were evaluated and three of them displayed characteristics of living polymerization behavior. Especially for complex44, which was designed for eliminating the initiation of the polymerization, was found as a real living catalyst.
     2. In situ IR technique was employed to study the kinetics of transformation from alkyl cobalt23to acyl cobalt24. Thermodynamic and kinetic parameters of the reaction were determined. Activation of kinetic parameters presented a low energy barrier (17.8Kcal mol-1), which was in accordance with the experimental observations that the carbonylation reactions occurs easily. This research exhibited important guiding significance for the further study of the polymerization mechanism.
     3. The mechanism and kinetics study of polymerization reaction was carried out by ultlizing in situ IR technique. The reaction orders on imine, CO, catalyst as well as the solvent dependence were determined respectively. An Eyring plot was carried out by determining the rate constants at varying temperature from30to80℃and provided an energy barrier20.4Kcal mol-1.
     4. Complex24exhibited a living behavior which typically showed a linear increase of molecular weight with conversion and end-functionalized polypeptides was generated. Block copolymerization was carried out via sequential monomer addition, which was monitored by in situ IR, generating block copolymers containing different peptides in a polymer chain. The polymer showed a linear increase of molecular weight with block number but exhibited somewhat broadened molecular weight distributions, which was mainly due to the initiation in the first stage of the polymerization process. In order to eliminate the influence of initiation on polymerization activity, the second generation catalyst44was designed and synthesized. As expected, no initiation was observed during the copolymerization processure. The polymer, especially for the block copolymers, showed narrow polydispersities and molecular weight was more agreement with the theoretical value. Thus,44exhibited true living behavior. Research of polymer end group was also carried out using complex44. The results indicated that44could easily react with nucleophilic reagent such as benzylamine, methanol and water, providing the corresponding amide, ester and carboxylic acid compounds. We also isolated compound49from the slow decomposition of44. The five membered ring oxazolidinone structure of compound49played a key role in completing the mechanism of polymerization. Finally, on the basis of combining the experiment observations and kinetic parameters as well as the results of theoretical calculation, the reaction mechanism of the polymerization process is completed.
引文
[1]Bodanszky M, Bodanszky A. Principles of Peptide Synthesis 2nd ed, New York:Springer, 1994
    [2]Sewald N, Jakubke H D, Peptides:Chemistry and Biology, Weinheim:Wiley-VCH,2002
    [3](a) Zhang D, Lahasky S H, Guo L, et al. Polypeptoid Materials:Current Status and Future Perspectives. Macromolecules,2012,45:5833-5841 (b) Deming T J. Synthetic polypeptides for biomedical applications. Prog Polym Sci,2007,32(8):858-875 (c) MacEwan S R, Chilkoti A. Elastin-like polypeptides:Biomedical applications of tunable biopolymers. Peptide Science,2010,94(1):60-77
    [4]Pattabiraman V R, Bode J W. Rethinking amide bond synthesis. Nature,2011,480:471-479
    [5](a) Hadjichristidis N, Iatrou H, Pitsikalis M, et al. Synthesis of Well-Defined Polypeptide-Based Materials via the Ring-Opening Polymerization of a-Amino Acid N-Carboxyanhydrides. Chem Rev,2009,109:5528-5578 (b) Kricheldorf H R, Polypeptides and 100 Years of Chemistry of a-Amino Acid N-Carboxyanhydrides. Angew Chem Int Ed,2006, 45 (35):5752-5784
    [6]Deming T J. Polypeptide Materials:New Synthetic Methods and Applications. Adv Mater, 1997,9:299-311
    [7]Sen A, Mechanistic Aspects of Metal-Catalyzed Alternating Copolymerization of Olefins with Carbon Monoxide. Acc Chem Res,1993,26:303-310
    [8]Drent E, Budzelaar P H M. Palladium-Catalyzed Alternating Copolymerization of Alkenes and Carbon Monoxide. Chem Rev,1996,96:663-681
    [9]Kacker S, Kim J S, Sen A. Insertion of Imines into Palladium-AcylBonds:Towards Metal-Catalyzed Alternating Copolymerization of Imines with Carbon Monoxide To Form Polypeptides. Angew Chem Int Ed,1998,37:1251-1253
    [10]Dghaym R D, Yaccato K J, Arndtsen B A. The Novel Insertion of Imines into a Late-Metal-Carbon σ-Bond:Developing a Palladium-Mediated Route to Polypeptides. Organometallics,1998,17 (1):4-6
    [11]Cavallo, L, Insertion of Imine into Palladium-Methyl and Palladium-Acyl Bonds. A Density Functional Study. J Am Chem Soc,1999,121 (17):4238-4241
    [12]Davis J L, Arndtsen B A. Sequential Insertion of Carbon Monoxide and Imines into Nickel-Methyl Bonds:A New Route to Imine Hydroacylation. Organometallics,2000,19 (23): 4657-4659
    [13]Lafrance D, Davis J L, Dhawan R, et al. Insertion of Imines and Carbon Monoxide into Manganese-Alkyl Bonds:Synthesis and Structure of a Manganese-a-Amino Acid Derivative. Organometallics,2001,20 (6):1128-1136
    [14]Jia L, Ding E, Anderson W R. Copolymerization of carbon monoxide and aziridine. Chem Commum,2001,1436-1437
    [15]Jia L, Sun H, Travis Shay J, et al. Living alternating copolymerization of N-alkylaziridines and carbon monoxide as a route for synthesis of poly-β-peptoids. J Am Chem Soc,2002,124: 7282-7283
    [16]Darensbourg D J, Phelps A L, Gall N L, et al. Mechanistic studies of the copolymerization reaction of aziridines and carbon monoxide to produce poly-β-peptoids. J Am Chem Soc, 2004,126:13808-13815
    [17]Xu H, LeGall N, Jia L, et al. The role of phosphine in cobalt-catalyzed carbonylative polymerization of N-alkylaziridine. J Organomet Chem,2005,690 (23):5150-5158
    [18]Funk J K, Yennawar H, Sen A. Cobalt-Catalyzed Carbonylation of N-Alkylbenzaldimines to 'N-Alkylphthalimidines'(= 2,3-Dihydro-1H-isoindol-1-ones) via Tandem C-H Activation and Cyclocarbonylation. Helv Chim Acta,2006,89:1687-1695
    [19]Sun H, Zhang J, Liu Q, et al. Metal-Catalyzed Copolymerization of Imines and CO:A Non-Amino Acid Route to Polypeptides. Angew Chem Int Ed,2007,46:6068-6072
    [20]Galamb V, Palyi G. Alkylcobalt Tetracarbonyls and Their Derivatives. Coord Chem Rev, 1984,59:203-238
    [21]Kovacs I, Ungvary F. Synthesis, characterization and reactions of acylcobalt carbonyl complexes, RC(0)Co(CO)4-nLn (n=0,1,2,3). Coord Chem Rev,1997,161:1-32
    [22]Hieber W, Vohler O, Braun G. Methylcobalttetracarbonyl. Z Naturforsch,1958,13b: 192-194
    [23]Breslow D S, Heck R F. Mechanism of the hydroformylation of olefins. Chem& Ind (London),1960,467
    [24]Nagy-Magos Z, Bor G, Marko L. Study of carbon monoxide into the carbon-cobalt bond. J Organomet Chem,1968,14:205-210
    [25]Galamb V, Palyi G.η1 -and η3-Benzylcobalt carbonyls. J Chem Soc Chem Commun,1982,9: 487-488
    [26]Galamb V, Palyi G, Ungvary F, et al. Alkylcobalt Carbonyls.7. (η1-Benzyl)-, (η3-Benzyl)-, and (η1-Phenylacetyl) cobalt Carbonyls. J Am Chem Soc,1986,108:3344-3351
    [27]Heck R F, Breslow D S. Acylcobalt Carbonyls and their Triphenylphosphine Complexes. J Am Chem Soc,1962,84:2499-2452
    [28]Galamb V, Palyi G. Cser F, et al. Stable alkylcobalt carbonyls:[(alkoxycarbonyl) methyl] cobalt tetracarbonyl compounds. J Organomet Chem,1981,209 (2):183-195
    [29]Beck W, Petri W. Metallcarbonylkomplexe mit N-phthaloylaminomethyl,-aminoacetyl und α-aminosaureanionen als liganden. J Organomet Chem,1977,127 (2):C40-C44
    [30]Nagy-Gergely I, SzalontaiG, Ungvary F, et al. (Phthalimidomethyl)-and (Phenoxymethyl) cobalt Carbonyls. Equilibria of CO Insertion. Organometallics,1997,16 (12):2740-2742
    [31]Resconi L, Cavallo L, Fait A, et al. Selectivity in Propene Polymerization with Metallocene Catalysts. Chem Rev,2000,100:1253-1346
    [32]Szwarc M, Living polymers. Their discovery, characterization, and properties. J Polym Sci Part A:Polym Chem,1998,36 (1):Ⅸ-ⅩⅤ
    [33]Quirk R P, Lee B. Experimental criteria for living polymerizations. Polym Int,1992,27 (4): 359-367
    [34](a) Bates F S, Polymer-polymer phase behavior. Science,1991,251:898-905 (b) Domski G J, Rose J M, Coates G W, et al. Living alkene polymerization:New methods for the precision synthesis of polyolefins. Prog Polym Sci,2007,32(1):30-92
    [35](a) Ruzette A-V, Leibler L, Block copolymers in tomorrow's plastics. Nat Mater,2005,4: 19-31 (b) Schacher F H, Rupar P A, Manners I, Functional Block Copolymers: Nanostructured Materials with Emerging Applications. Angew Chem Int Ed,2012,51: 7898-7921
    [36]Jeon Y-M, Park S J, Heo J, et al. Zirconium Complexes with the New Ancillary Diamido Ligand 2,2'-Ethylenebis (N, N'-(triisopropylsilyl) anilinido)2-:Syntheses, Structures, and Living a-Olefin Polymerization Activities. Organometallics,1998,17(15):3161-3163
    [37]Domski G J, Edson J B, Keresztes I, et al. Synthesis of a new olefin polymerization catalyst supported by an sp3-C donor via insertion of a ligand-appended alkene into the Hf-C bond of a neutral pyridylamidohafnium trimethyl complex. Chem Commun,2008,46:6137-6139
    [38]Hotta A, Cochran E, Ruokolainen J, et al. Semicrystalline thermoplastic elastomeric poly-olefins:Advances through catalyst development and macromolecular design. Proc Natl Acad Sci,2006,103 (42):15327-15332
    [39]Rose J M, Mourey T H, Slater L, et al. Poly(ethylene-co-propylene macromonomer)s: Synthesis and Evidence for Starlike Conformations in Dilute Solution. Macromolecules, 2008,41 (3):559-567
    [40]Yoshida Y, Mohri J, Ishii S, et al. Living Copolymerization of Ethylene with Norbornene Catalyzed by Bis(Pyrrolide-Imine) Titanium Complexes with MAO. J Am Chem Soc,2004, 126(38):12023-12032
    [41]Li X-F, Dai K, Ye W-P, et al. New Titanium Complexes with Two β-Enaminoketonato Chelate Ligands:Syntheses, Structures, and Olefin Polymerization Activities. Organometallics,2004,23 (6):1223-1230
    [42](a) Tang L M, Duan Y Q, Pan L, et al. Copolymerization of ethylene and cyclopentene with bis (β-enaminoketonato) titanium complexes. J Polym.Sci Part A:Polym Chem,2005,43 (8): 1681-1689 (b) Pan L, Hong M, Liu J Y, et al. Living Copolymerization of Ethylene with Dicyclopentadiene Using Titanium Catalyst:Formation of Well-Defined Polyethylene-block-poly (ethylene-co-dicyclopentadiene)s and Their Transformation into Novel Polyolefin-block-(functional polyolefin)s. Macromolecules,2009,42(13):4391-4393
    [43]Hong S C, Jia S, Teodorescu M, et al. Polyolefin graft copolymers via living polymerization techniques:Preparation of poly (n-butyl acrylate)-graft-polyethylene through the combination of Pd-mediated living olefin polymerization and atom transfer radical polymerization. J Polym Sci Part A:Polym Chem,2002,40 (16):2736-2749
    [44](a) Zhang K, Ye Z, Subramanian R. Synthesis of block copolymers of ethylene with styrene and n-butyl acrylate via a tandem strategy combining ethylene "living" polymerization catalyzed by a functionalized Pd-diimine catalyst with atom transfer radical polymerization. Macromolecules,2008,41 (3):640-649 (b) Xu Y, Xiang P, Ye Z, et al. Hyperbranched-Linear Polyethylene Block Polymers Constructed with Chain Blocks of Hybrid Chain Topologies via One-Pot Stagewise Chain Walking Ethylene "Living" Polymerization. Macromolecules,2010,43(19):8026-8038
    [45]Diamanti S J, Khanna V, Hotta A, et al. Synthesis of block copolymer segments containing different ratios of ethylene and 5-norbornen-2-yl acetate. J Am Chem Soc,2004,126 (34): 10528-10529
    [46]Diamanti S J, Khanna V, Hotta A, et al. Tapered block copolymers containing ethylene and a functionalized comonomer. Macromolecules,2006,39 (9):3270-3274
    [47]Coffin R C, Diamanti S J, Hotta A, et al. Pseudo-tetrablock copolymers with ethylene and a functionalized comonomer. Chem Commun,2007,34:3550-3552
    [48]Schneider Y, Azoulay J D, Coffin R C, et al. New polyethylene macroinitiators and their subsequent grafting by atom transfer radical polymerization. J Am Chem Soc,2008,130 (32): 10464-10465
    [49]Church T L, Getzler Y D Y L, Coates G W. The Mechanism of Epoxide Carbonylation by [Lewis Acid]+[Co(CO)4]- Catalysts. J Am Chem Soc,2006,128:10125-10133
    [50]Roe D C. High-pressure NMR Studies of CO Exchange with Cobalt Carbonyl Species. Organometallics,1987,6:942-946
    [51]Sweany R L. Photolysis of Acetyltetracarbonylcobalt (I) in Low-Temperature Matrices: Unusual Behavior for a Coordinatively Unsaturated Intermediate. Organometallics,1989,8: 175-179
    [52]Ungvary F, Marko L. The equilibrium between acetyl- and methylcobalt tetracarbonyl. Inorg Chim Acta,1994,227:211-213
    [53]Inoue S, Shiota H, Fukumoto Y, et al. Ruthenium-Catalyzed Carbonylation at Ortho C-H Bonds in Aromatic Amides Leading to Phthalimides:C-H Bond Activation Utilizing a Bidentate System. J Am Chem Soc,2009,131:6898-6899
    [54](a) Ing H R, Manske R H. A Modification of the Gabriel Synthesis of Amines. J Chem Soc, 1926,2348-2351 (b) Kemper J, Studer A. Stable Reagents for the Generation of N-Centered Radicals:Hydroamination of Norbornene. Angew Chem Int Ed,2005,44:4914-4917 (c) Al-Mousawi S M, El-Apasery M A. Azolyacetones as Precursors to Indoles and Naphthofurans Facilitated by Microwave Irradiation with Simultaneous Cooling. Molecules, 2009,14:2976-2984 (d) Khan M N. Kinetic Evidence for the Occurrence of a Stepwise Mechanism in Hydrazinolysis of Phthalimide. J Org Chem,1995,60:4536-4541
    [55](a) Speckampa W N, Hiemstra H. Intramolecular reactions of N-acyliminium intermediates. Tetrahedron,1985,41:4367-4416 (b) Cohen J H, Maryanoff C A, Maryanoff B E, et al. Cyclizations of N-acyliminium ions. Chem Rev,2004,104(3):1431-1628 (c) Royer J, Bonin M, Micouin L. Chiral heterocycles by iminium ion cyclization. Chem Rev,2004,104(5): 2311-2352 (d) Speckamp W N, Moolenaar M J. New developments in the chemistry of N-acyliminium ions and related intermediates. Tetrahedron,2000,56(24):3817-3856 (e) Le Quement S T, Petersen R, Meldal M, et al. N-acyliminium intermediates in solid- phase synthesis. Peptide Science,2010,94(2):242-256
    [56]Edgell W F, Lyford J. The Preparation of Sodium Cobalt Tetracarbonyl. Inorg Chem,1970,9: 1932-1933
    [57]Karabatsos G J, Lande S S. Structural studies by nuclear magnetic resonance-ⅩⅤⅢ Conformational and configurational isomerism of N-alkyl imines. Tetrahedron,1967,24: 3907-3922
    [58]Joly G D, Jacobsen E N. Thiourea-catalyzed enantioselective hydrophosphonylation of imines:practical access to enantiomerically enriched-amino phosphonic acids. J Am Chem Soc,2004,126:4102-4103
    [59]Petri W, Beck W. Aminomethyl-und Aminoacetyl-Carbonyl-Komplexe von Mangan, Molybdan, Wolfram und Cobalt mit dem Phthaloyl-Restals Aminoschutzgruppe. Chem Ber, 1984,117:3265-3269
    [60]Shtelman A V, Becker J Y. Synthesis of a-silylcarboxylic acids. Tetrahedron,2011,67: 1135-1141
    [61]Brady W T, Cheng T C. Phenyl (trimethylsilyl) ketene. Some ketene reactions with diazomethane. J Organomet Chem,1977,137 (3):287-292
    [62]Heck R F, Steric and Electronic Effects in the Dissociation of Cobalt Carbonyl Derivatives. I. Acylcobalt Carbonyls. J Am Chem Soc,1963,85:651-655
    [63]Calderazzo F, Cotton F A. Carbon Monoxide Insertion Reactions. I. The Carbonylation of Methyl Manganese Pentacarbonyl and Decarbonylation of Aceryl Manganese Pentacarbonyl. Inorganic Chemistry,1962,1(1):30-36
    [64](a) Calderazzo F. Synthetic and mechanistic aspects of inorganic insertion reactions. Insertion of carbon monoxide. Angew Chem Int Ed,1977,16(5):299-311 (b) Noack K, Calderazzo F, Carbon monoxide insertion reactions V. The carbonylation of methylmanganese pentacarbonyl with 13CO. J Organomet Chem,1967,10 (1):101-104
    [65]Ford P C, Boese W T. Time-Resolved Infrared Studies of Migratory Insertion Mechanisms in Manganese Carbonyls. Advances in Chemistry Series,1997,253:221-238
    [66](a) Field L R, Wilhelm E, Battino R. The solubility of gases in liquids 6. Solubility of N2, O2, CO, CO2, CH4, and CF4 in methylcyclohexane and toluene at 283 to 313 K. J Chem Thermodynamics,1974,6:237-243 (b) Cargill, Robert W. Solubility data:carbon monoxide systems with ketones, acids, esters, and ethers. Solubility Data Series,1990,43:208-238 (c) Wilhelm E, Battino R. Thermodynamic Functions of the Solubilities of Gases in Liquids at 25℃. Chem Rev,1973,73:1-9 (d) Gjaldbiek J C, The solibility of hydrogen, oxygen,and carbon monoxide in some non-polar solvents. Acta Chemica Scandinavica,1952,6:623-633
    [67]Seo S, Marks T J. Lanthanid-Catalyst-Mediated Tandem Double Intramolecular Hydroalkox-ylation/Cyclization of Dialkynyl Dialcohols:Scope and Mechanism. Chem Eur J,2010,16 (17):5148-5162
    [68]Mukherjee A, Sen T K, Ghorai P K, et al. Phenalenyl-Based Organozinc Catalysts for Intramolecular Hydroamination Reactions:A Combined Catalytic, Kinetic, and Mechanistic Investigation of the Catalytic Cycle. Chem Eur J,2012,18 (34):10530-10545
    [69]Paderes M C, Keister J B, Chemler S R. Mechanistic Analysis and Optimization of the Copper-Catalyzed Enantioselective Intramolecular Alkene Aminooxygenation. J Org Chem, 2013,78:506-515
    [70]Schore N E, Ilenda C S, White M A, et al. Carbon-Carbon Bond Formation in Dinuclear Dialkyl Complexes. Reactions of [CpCo(CO)R], (R= CH3, CH2CH3, CH2CF3) and (C11H10)Co2(CO)2(CH3)2 with Carbon Monoxide and Triphenylphosphine. J Am Chem Soc, 1984,106:7451-7461
    [71](a) Snyder R G, Distribution of Infrared Intensity in the Spectra of Conformationally Disordered Chain Molecule Assemblies. Macromolecules,1990,23:2081-2087 (b) Melendez Y, Schrum K F, Ben-Amotz D. Quantitation of Poly (ethylene glycol) Concentration Using Raman Spectroscopy. Appl Spectrosc,1997,51(8):1176-1178 (c) Snyder R G, Tu K, Klein M L, et al. Acyl chain conformation and packing in dipalmitoylphosphatidylcholine bilayers from MD simulation and IR spectroscopy. J Phys Chem B,2002,106(24):6273-6288 (d) Yang H, Griffiths P R, Tate J D. Comparison of partial least squares regression and multi-layer neural networks for quantification of nonlinear systems and application to gas phase Fourier transform infrared spectra. Anal Chim Acta,2003,489(2):125-136
    [72]Allmendinger M, Zintl M, Eberhardt R, et al. Online ATR-IR investigations and mechanistic understanding of the carbonylation of epoxides-the selective synthesis of lactones or polyesters from epoxides and CO. J Organomet Chem,2004,689:971-979
    [73]Allmendinger M, Molnar F, Zintl M, Mechanistic Aspects of the Metal Catalyzed Alternating Copolymerization of Epoxides and Carbon Monoxide. Chem Eur J,2005,11,5327-5332
    [74]Byrne C M, Church T L, Kramer J W, et al. Catalytic Synthesis of P-Amino Acid Derivatives from α-AminoAcids. Angew Chem Int Ed,2008,47:3979-3983
    [75]Pouy M J, Delp S A, Uddin J, et al. Intramolecular Hydroalkoxylation and Hydroamination of Alkynes Catalyzed by Cu(I) Complexes Supported by N-Heterocyclic Carbene Ligands. ACS Catal,2012,2:2182-2193
    [76]Baxter R D, Sale D, Engle K M, et al. Mechanistic Rationalization of Unusual Kinetics in Pd-Catalyzed C-H Olefination. J Am Chem Soc,2012,134:4600-4606
    [77]Shimizu H, Onitsuka S, Egami H, et al. Ruthenium (salen)-Catalyzed Aerobic Oxidative Desymmetrization of meso-Diols and Its Kinetics. J Am Chem Soc,2005,127 (15): 5396-5413
    [78]Choi T L, Grubbs R H. Controlled Living Ring-Opening-Metathesis Polymerization by a Fast-Initiating Ruthenium Catalyst. Angew Chem Int Ed,2003,42:1743-1746
    [79]Zhang J, Kissounko D A, Gellman S H, et al. Access to Poly-β-Peptides with Functionalized Side Chains and End Groups via Controlled Ring-Opening Polymerization of P-Lactams. J Am Chem Soc,2009,131(4):1589-1597
    [80]Miyake G M, Weitekamp R A, Piunova V A, et al. Synthesis of Isocyanate-Based Brush Block Copolymers and Their Rapid Self-Assembly to Infrared-Reflecting Photonic Crystals. J Am Chem Soc,2012,134(34):14249-14254
    [81]Kim J G, Coates G W. Synthesis and Polymerization of Norbornenyl-Terminated Multiblock Poly (cyclohexene carbonate)s:A Consecutive Ring-Opening Polymerization Route to Multisegmented Graft Polycarbonates. Macromolecules,2012,45(19):7878-7883
    [82]Kramer J W, Treitler D S, Dunn E W, et al. Polymerization of enantiopure monomers using syndiospecific catalysts:a new approach to sequence control in polymer synthesis. J Am Chem Soc,2009,131(44):16042-16044
    [83]Zhang J, Kissounko D A, Lee S E, et al. Access to poly-β-peptides with functionalized side chains and end groups via controlled ring-opening polymerization of β-lactams. J Am Chem Soc,2009,131(4):1589-1597
    [84](a) Lin S, Yu X, Tu Y, et al. Poly (β-alanoid-block-β-alanine) s:synthesis via cobalt-catalyzed carbonylative polymerization and self-assembly. Chem Commun,2010,46 (24):4273-4275 (b) Lin S, Zhang B, Skoumal M J, et al. Antifouling poly (β-peptoid)s. Biomacromolecules, 2011,12(7):2573-2582

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700