改性纳米TiO_2光催化剂的制备及其去除水中染料污染物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种先进的高级氧化技术,纳米二氧化钛因具有高的光催化活性、良好的化学稳定性、廉价无毒等优点,被广泛应用于污水处理、空气净化等领域,成为环境、化学、材料科学等领域的研究热点。但二氧化钛禁带宽度大(3.2 eV),只能利用太阳光中的紫外线部分(仅占太阳能3-4%),而且存在分离回收难的问题,因而实际应用受到限制。通过多种改性方法提高催化剂的活性,丰富分离手段,提高催化剂的太阳光利用率是这一技术大规模应用的重要环节。本文通过对纳米二氧化钛掺杂改性、负载技术及光催化降解水中染料污染物的研究,探索最佳制备工艺和光催化降解条件,以期进一步充实光催化技术的研究。
     采用浸渍法和溶胶-凝胶法,首先制备了负载有MnxZn1-xFe2O4软磁粒子的活性炭,然后以钛酸四丁酯为钛源,将TiO2负载到具有磁性的多孔活性炭表面,在氮气气氛下程序升温处理得到可磁分离的TiO2/MnxZn1-xFe2O4/AC磁性光催化剂(TFAC)。研究结果表明:在对甲基橙(MO)的光催化降解中,TiO2/MnxZn1-xFe2O4/AC磁性光催化剂的最佳质量比为8∶1∶4,最适宜煅烧温度为450℃、煅烧时间为2 h。TFAC磁性光催化剂具有比P25和纯TiO2高的光催化活性,且具有良好的软磁性能,在外加磁场的作用下很容易从体系中分离出来,撤掉外加磁场后又很容易再次分散,催化剂经五次循环使用MO去除率仍接近90%。经过XRD、FT-IR、SEM、BET等表征手段分析,活性炭负载TiO2后,TiO2晶相结构为高催化活性的锐钛矿型,活性炭的负载可以有效抑制TiO2晶粒的尺寸,减少颗粒团聚;同时活性炭和TiO2相互作用,接触面形成了新的Ti-O-C键,具有很强的协同效应,均有利于提高磁性光催化剂的光催化活性。
     研究了TiO2/MnxZn1-xFe2O4/AC的吸附和光催化性能,考察了染料初始浓度、溶液pH值、H2O2浓度等因素对光催化降解MO的影响。结果表明,染料初始浓度与其脱色速率成反比;pH值在等电点附近,脱色效果最差,酸性或碱性条件有利于甲基橙的脱色;适量的H2O2能够提高MO的脱色效率,其最佳浓度为2 mmol/L;不同共存离子对脱色效率影响不同。根据降解过程中TOC、SO42–和NH4+等无机离子生成量、UV-Vis光谱及HPLC的变化分析了MO的脱色降解过程。随着反应的进行,脱色率不断提高,但是TOC的去除相对缓慢一些,HPLC研究表明中间产物较少。根据溶液中总S和总N的理论值与实际检测值推断MO的降解过程中磺酸基和N的转化过程。脱磺酸基和脱色反应均为初始反应,大部分N是以N2形式释放出去。运用Langmuir和Freundlich等温吸附模型对甲基橙和苯酚在TiO2/MnxZn1-xFe2O4/AC表面的吸附规律进行模拟,然后分别计算并对比各参数值,结果表明TiO2/MnxZn1-xFe2O4/AC对MO具有更高的吸附能力。甲基橙的光催化降解反应符合L-H准一级动力学模型
     以钛酸四丁酯为原料,次磷酸为磷源,碳纳米管为载体,采用水热法制备了复合光催化剂P/TiO2/MWCNTs。研究表明:水热法制备的复合光催化剂比纯TiO2的晶粒小,比表面积有所增加,P-TiO2颗粒均匀地包覆在MWCNTs表面上。微量的P掺杂后,P以+5价氧化态(P5+)存在,它可以取代部分锐钛相二氧化钛晶格中的Ti4+。而P5+能够接受电子从而成为光生电子捕获中心,这样磷掺杂就降低了光生载流子的复合几率,从而增加了量子效率。同时,MWCNTs负载后,MWCNTs和P-TiO2之间产生协同作用,MWCNTs可作为电子接受体,易接受TiO2导带上的光生电子,有效地抑制TiO2光生电子和空穴的复合。复合光催化剂的荧光强度明显降低,也表明MWCNTs负载后光生电子和空穴复合几率下降。复合光催化剂吸收边发生红移,在可见光和紫外光下都表现出较高的光催化活性。其中,光催化活性最好的是MWCNTs和P-TiO2质量比为5%的样品CPT005。因此,掺杂适量的P和MWCNTs,可以显著地提高TiO2的光催化活性,拓宽光响应范围。采用溶胶-凝胶法制备P/TiO2/MWCNTs进行了对比研究。
     采用水热法,以十六烷基三甲基溴化铵(CTAB)为模板,尿素为沉淀剂,制备了结构新颖的半导体光催化剂Bi2O3中空微球。利用XRD、FT-IR、SEM等方法进行表征,研究了对水中亚甲基蓝的可见光催化降解。研究表明:Bi2O3中空微球是通过碱式碳酸铋的热分解得到的,水热反应的温度为260℃、反应时间为24 h、Bi3+/CO(NH2)2的最佳摩尔比为1∶4.5。Bi2O3对低浓度的亚甲基蓝溶液具有良好的可见光催化活性,酸性环境下有利于亚甲基蓝的光催化降解;适量添加氧化剂H2O2能有效提高Bi2O3的可见光催化活性。
Nano-TiO2 as an advanced oxidation technology has become a research hotspot in environmental, chemistry and material field, because of its high photocatalytic activity, chemical stability, low cost, and nontoxicity in wastewater treatment, air purification, etc. However, the practical application of TiO2 is hampered by the fact that it absorbs only the very small ultraviolet part (3-4%) of solar light due to its wide band-gap of 3.2 eV, and moreover there exists problems of separation and recycles. Through a variety of modification methods to improve the photocatalytic activity, enrich the separation means and increase the utilization of sunlight is the important step to make this technology large-scale application. Our long term in this dissertation is to initiate the research of doping modification, support technology and the photodegradation of dye pollutants in water, and explore the optimal preparation techniques and degradation conditions, by which we look forward to building up the research of photocatalytic technology.
     TFAC as a magnetically separable photocatalyst has been successfully prepared by dip-coating technique and sol-gel method. Firstly, soft magnetic ferrite of MnxZn1-xFe2O4 was adsorbed onto AC (FAC). Afterward, anatase titania was deposited onto the FAC using n-Ti(OBu)4 as titania precursor followed by calcining in N2 atmosphere. The results showed that TFAC catalysts calcined at 450°C for 2 h exhibited the highest activity for degradation of methyl orange (MO) and the best mass proportions of TiO2/MnxZn1-xFe2O4/AC was 8∶1∶4. These photocatalysts exhibited enhanced photocatalytic activity compared to Degussa P25 and pure TiO2. The composite photocatalysts could be easily separated from the bulk solution by a magnetic field and also could be easily redispersed into aqueous solution after removing the external magnetic field. Furthermore, the photocatalysts could maintain high photocatalytic activity after five cycles, and the degradation rate of MO was still close to 90%. The prepared composites were characterized by XRD、FT-IR、SEM、BET etc. The crystal phase of TiO2 was anatase after deposited onto AC, the AC could inhibit the grain size and decrease aggregation of TiO2. Meanwhile, there was a synergetic effect between AC and TiO2 and formed a new Ti-O-C bond. The interaction of AC and TiO2 could enhance the photoactivity of TFAC.
     The adsorption and photocatalytic properties of TiO2/MnxZn1-xFe2O4/AC were studied. The influence of operational variables, such as initial MO concentration, pH values, hydrogen peroxide concentration on UV photodegradation of MO was investigated. The results showed that the decolorization of MO was inversely proportional to the initial MO concentration. The worst decolorization of MO was obtianed at the pH value near the isoelectric point, acidic or alkaline conditions were beneficial to the decolorization of MO. In order to promote the efficiency of MO decolorization, there was an optimal concentration of H2O2, which was 2mmol/L. The effect of different co-existing ions on the adsorption and decolorization of MO was distinct. The decolorization and degradation of MO was analyzed according to the the TOC decrease, inorganic ion production from the dye degradation, such as SO42– and NH4+, change of UV-Vis spectra and HPLC. With the reaction proceeded, decolorization rate was increased ,but TOC removal was slower. The characteristic absorption peak of MO disappeared completely and there was not any new peak appeared. The HPLC study indicated that there were small amounts of intermediates. The transformation of -SO3– and -N=N- in the degradation of MO was inferred from differences between the theoretical value and the detected values of SO42– and the total N. The release and decolorization was the initial step, with the nitrogen of azo group transformed predominantly to N2. The Langmuir and Freundlich isotherm adsorption model was used to simulate the adsorption kinetics of MO and phenol on TiO2/MnxZn1-xFe2O4/AC. Then their model parameters were calculated and compared to study the differences of their adsoption properties. The results show that TiO2/MnxZn1-xFe2O4/AC has excellent adsorption property, and has a higher adsorption capacity to MO than phenol. The photocatalytic degradation of MO follows L-H kinetic model.
     The composite photocatalyst of P/TiO2/MWCNTs was prepared by hydrothermal method using n-Ti(OBu)4 as starting material, hypophosphorous acid (H3PO2) as phosphorous precursor and MWCNTs as supporter. The results showed that P-TiO2 particle size was smaller than pure TiO2 and the specific surface area was also increased. The P-TiO2 particles were uniformly coated onto the surface of MWCNTs. After trace amount of P doping into TiO2, doped phosphorus was present as the pentavalent-oxidation state, which could replace a part of Ti4+ in the crystal lattice of anatase. Because P5+ can accept photoelectron as the electron trap center, its doping reduces the recombination rate of photogenerated charge carriers and increases the photon efficiency. At the same time, there was a synergetic effect between MWCNTs and P-TiO2. MWCNTs were eminent electronic acceptors that could orderly export excited electron (e–) from conduction band of TiO2 and fleetly reduce electronic accumulation on TiO2 nanoparticles. So the recombination of electron/hole (e–/h+) pairs could be effectively decreased. The fluorescence intensity of composite catalysts reduced obviously, indicating the reduction of the recombination of electron/hole (e–/h+) pairs. The composite catalysts not only extended the adsorption edge to visible light region, but also exhibited high photoactivity under visible light and UV irradiation. Among them, the CPT005 with a mass ratio of CNTs to P-TiO2 of 5% had the best photoactivity. Therefore, adding a suitable amount of phosphorus and MWCNTs could greatly improve the photocatalytic activity of TiO2 and expand the light response scope. The composite photocatalysts were also prepared by sol-gel method for contrast study. a mass ratio of CNTs to P-TiO2 in the nanocomposite catalyst was considered at 5:100
     A novel structure of semiconductor Bi2O3 hollow microsphere was prepared by hydrothermal method with cetyltrimenthylammonium bromide (CTAB) as a template and urea as precipitant, and characterized by XRD、FT-IR and SEM technologies. Photocatalytic degradation of methylene blue under visible light was carried out using Bi2O3 as the photocatalyst. It was found that Bi2O3 hollow microsphere was obtained through theral decomposition of bismuth subcarbonate at 260°C for 24 h and the best mol proportions of Bi3+/CO(NH2)2 was 1∶4.5. Bi2O3 exhibited good photoactivity under visible light for degradation of low concentration methylene blue solution. The photoactivity of Bi2O3 could be enhanced under acidic environment or by adding centain amounts of oxidant H2O2.
引文
[1] Fujishima A., Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238, 37-38
    [2] Carey J.H., Lawrence J., Tosine H.M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions[J]. Bull. Environ. Contam. Toxical., 1976, 16:697-706
    [3] Pruden A.L., Ollis D.F. Photoassisted heterogeneous catalysis: The degradation of trichloroethylene in water[J]. J.Catal., 1983, 82:404-417
    [4]沈伟韧,赵文宽,贺飞. TiO2光催化反应及其在废水处理中的应用[J].化学进展, 1998, 10(4):349-360
    [5] Linsebigler A.L., Lu G., Yates J.T. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results[J]. Chemical Reviews, 1995, 95:735-758
    [6] Chandrasekharan N., Kamat P.V., Hu J., et al. Dye-capped gold nanoclusters: Photoinduced morphological changes in gold/rhodamine 6G nanoassemblies[J]. J. Phys. Chem. B, 2000, 104:11103-11109
    [7]王怡中,符雁.不同类型染料化合物太阳光催化降解研究[J].太阳能学报, 1998, 19(2):117-126
    [8] Ollis D. F., Al-Ekabi H. Photocatalystic purification and treatment of water and air[M]. Amsterdam:Elsevier, 1993:405-420
    [9]丁新更.银离子掺杂纳米二氧化钛粉体的制备、性能研究与应用[D].杭州:浙江大学, 2001.
    [10] Ni M., Leung M., Sumathy K. Tchenology development of titanium dioxide photocatalytic water-splitting for hydrogen production[J]. Modern Chemical Industry, 2005, 4:9-12
    [11]支正良,汪信.环境中有机污染物的半导体光催化降解研究进展.环境污染与防治[J]. 1998, 20(1):42-44
    [12] Litter M.L. Heterogeneous photocatalysis: Transition metal ions in photocatalytic systems[J]. Appl. Catal. B, 1999, 23:89-114
    [13] Minero C., Pelizzetri E., Malato S., et al. Large solar plant photocatalytic water decontamination: effect of operational parameters[J]. Solar Energy, 1996, 56(5):421-428
    [14]黄仲涛,曾昭怀,钟邦克,等.无机膜技术及其应用[M].北京:中国石化出版社, 1999, 55-65
    [15]豆俊峰,邹振扬,郑泽根.纳米TiO2的光化学特性及在环境科学中的应用[J].材料导报, 2000, 14(6):36-38
    [16]王红娟,李忠.半导体多相光催化氧化技术[J].现代化工, 2002, 22(2):56-60
    [17] Kormann C., Bahnemann D.W., Hoffmann M.R. Preparation and characterization of quantum-size titanium dioxide[J]. J. Phys. Chem., 1988, 92:5196-5201
    [18] Xu N.P., Shi Z.F., Fan Y.Q., et al. Effect of TiO2 particle size on photocatalytic degradation of methylene blue in aqueous suspensions[J]. Ind. Eng. Chem. Res., 1999,38(2):373-379
    [19]高镰,郑珊,张青红.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社, 2002.
    [20]裴润.硫酸法钛白生产[M].北京:化学工业出版社, 1991.
    [21]赵峰,魏宏斌,徐迪民,等.光学纤维载TiO2膜光催化氧化降解苯酚[J].中国给水排水, 2002, 18(12):51-54
    [22]陈士夫,梁新,陶跃武,等.空心玻璃微球附载TiO2光催化降解有机磷农药[J].感光科学与光化学, 1999, 17(1):85-91
    [23]符小荣,张校刚,宋世庚,等. TiO2/Pt/glass纳米薄膜的制备及对可溶性染料的光电催化降解[J].应用化学, 1997, 14(4):77-79
    [24]陈崧哲,张彭义,祝万鹏,等.不同基材上膜的表征和光催化活性评价[J].催化学报, 2004, 25(8):641-647
    [25] Nishikawa H., Takahara Y. Adsorption and photocatalytic decomposition of odor compounds containing sulfur using TiO2/SiO2 bead[J]. Journal of Molecular Catalysis, A: Chemical, 2001, 172(1/2):247-251
    [26]杨瑞,张寅平,赵荣义. TiO2/丝光沸石光催化降解甲苯特性研究[J].自然科学进展, 2005, 15(8):981-986
    [27] Reddy E.P., Sun B., Smirniotis P.G. Transition metal modified TiO2-loaded MCM-41 catalysts for visible- and UV-light driven photodegradation of aqueous organicpollutants[J]. J. Phys. Chem. B, 2004, 108:17198-17205
    [28]王侃,陈英旭,叶芬霞. SiO2负载的TiO2光催化剂可见光催化降解染料污染物[J].催化学报, 2004, 12:931-936
    [29] Wang X.J., Hu Z.H., Chen Y.J., et al. A novel approach towards high-performance composite photocatalyst of TiO2 deposited on activated carbon[J]. Appl. Surf. Sci., 2009, 255:3953-3958
    [30] Liu S.X., Chen X.Y., Chen X. A TiO2/AC composite photocatalyst with high activity and easy separation prepared by a hydrothermal method[J]. J. Hazard. Mater., 2007, 143:257-263
    [31] Lei Z.B., Xiao Y., Dang L.Q., et al. Nickel-catalyzed fabrication of SiO2, TiO2/graphitized carbon, and the resultant graphitized carbon with periodically macroporous structure[J]. Chem. Mater., 2007, 19:477-484
    [32] Yu Y., Yu J. C., Chan C. Y., et al. Enhancement of adsorption and photocatalytic activity of TiO2 by using carbon nanotubes for the treatment of azo dye[J]. Appl. Catal. B, 2005, 61:1-11
    [33]张金龙,陈锋,何斌.光催化[M].上海:华东理工大学出版社, 2004.
    [34]胡春,王怡中,汤鸿宵.多相光催化氧化的理论与实践发展.环境科学进展[J]. 1995, 3(1):55-64
    [35]孙尚梅,康振晋,魏志仿. TiO2膜太阳光催化氧化法处理毛纺染整废水.化工环保[J]. 2002, 20(1):11-14
    [36] Heather M.C., Brian R.E., Byrne J.A., et al. Photocatalytic degradation of 17-β-oestradiol on immobilized TiO2[J]. Applied Catalysis, B:Environmental, 2000, 24(1):1-5
    [37] Yang C.L., Ge W.K. Photocatalytic activity of wax TiO2 under visible light irradiation[J]. Photochem. Photobiol. A:Chem., 2001, 141:209-217
    [38] Papp J., Shen H.S., Kershaw R., et al. Titanium(iv) oxide photocatalysts with palladium[J]. Chem. Mater., 1993, 5(3):284-288
    [39] Sung-Suh H.M., Choi J.R., Hah H.J., et al. Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visible and UV light irradiation[J]. Photochem. Photobio. A:Chem., 2004, 163(1-2):37-44
    [40] Sakthivel S., Shankar M.V., Palanichamy M., et al. Enhancement of photocatalyticactivity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst[J]. Water Res., 2004, 38(13):3001-3008
    [41] Wu N.L., Lee M.S. Enhanced TiO2 photocatalysis by Cu in hydrogen production from aqueous methanol solution[J]. Int. J. Hydrogen Energy, 2004, 29:1601-1605
    [42]刘守新,曲振平,韩秀文,等. Ag担载对TiO2光催化活性的影响[J].催化学报, 2004, 25(2):133-137
    [43] Anpo M., Takeuchi M. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation[J]. J. Catal., 2003, 216:505-516
    [44] Kozlova E.A., Vorontsov A.V. Influence of mesoporous and platinum-modified titanium dioxide preparation methods on photocatalytic activity in liquid and gas phase[J]. Appl. Catal. B: Environ., 2007, 77:35-45
    [45] Kim S., Choi W. Dual photocatalytic pathways of trichloroacetate degradation on TiO2: effects of nanosized platinum deposits on kinetics and mechanism[J]. J. Phys. Chem. B., 2002, 106(51):13311-13317
    [46] Lee J., Choi W. Effect of Pt deposits on TiO2 on the anoxic photocatalytic degradation pathways of alkylamines in water: Dealkylation and N-Alkylation[J]. Environ. Sci. Technol., 2004, 38(14):4026-4033
    [47] Choi W., Termin A., Hoffmann M.R. The role of metal ion dopants in quantum-sized TiO2 correlation between photoreactivity and charge carrier recombination dynamics[J]. Phys. Chem., 1994, 98(51):13669-13679
    [48] Sundaram K., Julia P.B., Michael D.A. Catalytic oxidation of 1,2-dichlorobenzene over V2O5/TiO2-based catalysts[J]. J. Catal. Today., 1998, 40:39-46
    [49] Kiriakidou F., Kondarides D.I., Verykios X.E. The effect of operational parameters and TiO2-doping on the photocatalytic degradation of azodyes[J]. Catal. Today, 1999, 54(1):119-130
    [50] Anpo M., Takeuchi M., Ikeue K., et al. Current opinion in solid state and materials[J]. Science, 2002, 6(5):381-388
    [51] Xu A.W., Gao Y., Liu H.Q. The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles[J]. J. Catal., 2002, 207:151-157
    [52] Asahi R., Morikawa T., Ohwaki T., et al. Visible-light photocatalysis in nitrogen-dopedtitanium oxides[J]. Science, 2001, 293(5528):269-271
    [53] Yu J.C., Yu J.G., Ho W.K., et al. Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 Powders[J]. Chem. Mater., 2002, 14(9):3808-3816
    [54]赵秀峰,张志红,孟宪锋,等. B掺杂TiO2/AC光催化剂的制备及活性[J].分子催化, 2003, 17(4):292-296
    [55] Vogel R., Hoyer P., Weller H. Quantum-sized PbS, CdS, Ag2S, Sb2S3 and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors[J]. J. Phys. Chem., 1994, 98(12):3183-3188
    [56] Vinodgopal K., Kamt P.V. Enhanced rates of photocatalytic degradation of an azo dye using SnO2/TiO2 coupled semiconductor thin films[J]. Environ. Sci. Techn., 1995, 29:841-845
    [57]李芳柏,古国榜,李新军,等. WO3/TiO2纳米材料的制备及光催化性能[J].物理化学学报, 2000, 16(11):997-1002
    [58]颜秀茹,李晓红,霍明亮,等.纳米SnO2/TiO2的制备及其光催化性能[J].物理化学学报, 2001, 17(1):23-28
    [59] Doong R.A., Chen C.H., Maithreepala R.A., et al. The influence of pH and cadmium sulfide on the photocatalytic degradation of 2-chlorophenol in titanium dioxide suspensions[J]. Water Res., 2001, 35:2873-2880
    [60]冯孝庭,陶鹏万,古共伟,等.吸附分离技术[M].北京:化学工业出版社. 2000:34-35
    [61] Rodriguez-Reinoso F., Molina-Sabio M. Activated carbons from lignocellulosic materials by chemical and/or physical activation: an overview[J]. Carbon, 1992, 30(7):1111-1118
    [62] Grzegorz S.S., Stanisaw B., Gerhard R. Carbon surface polarity from immersion calorimetry[J]. Fuel Processing Technology, 2002, 79(3):217-223
    [63]朱宏伟,吴德海,徐才录.碳纳米管[M].北京:机械工业出版社, 2003.
    [64] Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354:56-58
    [65] Ebbesen T.W., Ajayan P.M. Large scale synthesis of carbon nanotubes[J]. Nature, 1992, 358:220-222
    [66] Wildoer J.W.G., Venema L.C., Rinnzle A.G., et al. Electronic structure of automically resolved carbon nanotubes[J]. Nature, 1998, 391:59-62
    [67] Ishigami M., Zettl A., Chen S., et al. A simple method for the continuous production of carbon nanotubes[J]. Chem. Phys. Lett., 2000, 319:457-459
    [68] Liu C., Cong H.T., Li F., et al. Semi-continuous synthesis of single-walled carbon nanotubes by a hydrogen arc discharge method[J]. Carbon, 1999, 37:1865-1868
    [69] Guo T., Nikolaev P., Thess A., et al. Catalytic growth of single-walled nanotubes by laser vaporization[J]. Phys. Chem. Letts., 1995, 243:49-54
    [70]张海燕,陈可心,朱燕娟,等. CO2连续激光蒸发制备单壁碳纳米管及其Raman光谱研究[J].物理学报, 2002, 51(2):444-447
    [71] Jourdain V., Kanzow H., Castignolles M., et al. Sequential catalytic growth of carbon nanotubes[J]. Chem. Phys. Letts., 2002, 364:27-33.
    [72] Yang Y., Hu Z., Lu Y.N., et a1. Growth of carbon nanotubes with metal-loading mesoporous molecular catalysts[J]. Materials Chemistry and Physics, 2003, 82:440-443
    [73] Cho W.S., Hamada E., Kondo Y., et a1. Synthesis of carbon nanotubes from bulk polymer[J]. Applied Physics Letters, 1996, 69(2):278-279
    [74] Lago R.M., Tsang S.C., Lu K.L., et al. Filling carbon nanotubes with small palladium metal crystallites: the effect of surface acid groups[J]. Chem. Commu., 1995, 13:1355-1356
    [75] Liu J., Rinzler A.G., Dai H.J., et al. Fullerene pipes[J]. Science, 1998, 280:1253-1256
    [76] Chen J., Hamon M.A., Haddon R.C., et a1. Solution properties of single-walled carbon nanotubes[J]. Science, 1998, 282:95-98
    [77] Riggs J.E., Guo Z.X., Carroll D. L., et al. Strong luminescence from solublized carbon nanotubes[J]. J. Am. Chem. Soc., 2000, 122:5879-5880
    [78] Sun Y., Wilson S.R., Schuster D.I. High dissolution and strong light emission of carbon nanotubes in aromatic amine solvents[J]. J. Am. Chem. Soc., 2001, 123(22):5348-5349
    [79] Tang B.Z., Xu H.Y. Preparation, alignment, and optical properties of soluble polyphenylacetylene-wrapped carbon nanotubes[J]. Macromolecules, 1999, 32:2569-2576
    [80] Fan J.H., Wan M.X., Zhu D.B., et al. Synthesis and properties of carbon nanotube-polypyrrole composites[J]. Synthetic Metals, 1999, 102:1266-1267
    [81] Huang S.M., Mau A.W.H., Dai L.M., et a1. Patterned growth of well-aligned carbonnanotubes: a soft-lithographic approach[J]. J. Phys. Chem. B, 2000, 104:2193-2196
    [82] Gao M., Huang S.M., Dai L.M., et a1. Aligned coaxial nanowires of carbon nanotube sheathed with conducting polymers[J]. Angew. Chem. Int. Ed., 2000, 39(20):3664-3667
    [83]陈萍,张鸿斌,林国栋,等.催化裂解CH4或CO制碳纳米管结构性能的光谱学特征[J].高等学校化学学报, 1998, 19(5):765-769
    [84]林敬东,陈鸿博,蔡云,等.新世纪的催化科学与技术(第十届全国催化学术会议)太原:山西科学技术出版社, 2000:45
    [85] Chen H.B., Lin J.D., Cai Y., et a1. Novel multi-walled nanotubes-supported and alkali-promoted Ru catalysts for ammonia synthesis under atmospheric pressure[J]. Appl. Surf. Sci., 2001, 180:328-335
    [86] Wang X.K., Chang R.P.H., Patashinski A., et al. Magnetic susceptibility of buckytubes[J]. J. Mater. Res., 1994, 9(6):1578-1582
    [87] Heremans J., Olk C.H., Morelli D.T. Magnetic susceptibility of carbon structures[J]. Physical Review B, 1994, 49(21):15122-15125
    [88]陈鸿博,王进,林敬东,等.新世纪的催化科学与技术(第十届全国催化学术会议),太原:山西科学技术出版社, 2000:421
    [89] Planeix J.M., Coustel N., Coq B., et al. Application of carbon nano-tubes as support in heterogeneous catalysis[J]. J. Am. Chem. Soc., 1994, 116(17):7935-7936
    [90] Takeda N., Torimoto T., Sampath S., et al. Effect of inert supports for titanium dioxide loading on enhancement of photodecomposition rate of gaseous propionaldehyde[J]. J. Phys. Chem., 1995, 99(24):9986-9991
    [91]贺飞,唐怀军,赵文宽,等.纳米TiO2光催化剂负载技术研究[J].环境污染治理技术与设备, 2001, 2(2):47-58
    [92] Matos J., Laine J., Herrman J.M. Effect of the type of activated carbons on the photocatalytic degradation of aqueous organic pollutants by UV-irradiated titania[J]. J .Catal., 2001, 200:10-18
    [93] Herrmann J.M., Matos J., Disdier J., et al. Solar photocatalytic degradation of 4-chlorophenol using the synergistic effect between titania and activated carbon in aqueous suspension[J]. Catal. Today, 1999, 54:255-265
    [94] Matos J., Laine J., Herrmann J.M. Association of activated carbons of different originswith titania in the photocatalytic purification of water[J]. Carbon, 1999, 37:1870-1872
    [95] Matos J., Laine J., Herrmann J.M. Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon[J]. Applied Catalysis B: Environmental, 1998, 18:281-291
    [96]薛向东,金奇庭. TiO2-活性炭组合光催化降解苯酚废水[J].中国给水排水, 2002, 18(6):42-45
    [97] Ibusuki T., Takeuchi K. Removal of low concentration nitrogen oxides through photoassisted heterogeneous catalysis[J]. Journal of Molecular Catalysis, 1994, 88(1):93-102
    [98] Ao C.H., Lee S.C. Enhancement effect of TiO2 immobilized on activated carbon filter for the photodegradation of pollutants at typical indoor air level[J]. Applied Catalysis B : Environmental, 2003, 44(B):191-205
    [99] Ara?a J., Do?a-Rodrguez J.M., Tello R.E., et al. TiO2 activation by using activated carbon as a support Part I. Surface characterization and decantability study[J]. Applied Catalysis B: Environmental, 2003, 44:161-172
    [100] Ao C.H., Lee S.C. Combination effect of activated carbon with TiO2 for the photodegradation of binary pollutants at typical indoor air level[J]. Journal of Photochemistry and Photobiology A : Chemistry, 2004, 161:131-140
    [101] Ara?a J., Do?a-Rodrguez J.M., Tello R.E., et al. TiO2 activation by using activated carbon as a support Part II. Photoreactivity and FTIR study[J]. Applied Catalysis B: Environmental, 2003,44:153-160
    [102]古政荣,陈爱平,戴智铭,等.活性炭-纳米二氧化钛复合光催化空气净化网的研制[J].华东理工大学学报, 2000, 26(4):367-371
    [103] Wang W.D., Philippe S., Philippe K., et al. The photocatalytic degradation of phenol on MWNT and titania composite catalysts prepared by a modified sol-gel method[J]. Appl. Catal. B: Environ, 2005, 56:305-312
    [104] Torimoto T., Okawa Y., Takeda N., et al. Effect of activated carbon content in TiO2-loaded activated carbon on photodegradation behaviors of dichloromethane[J]. J. Photochem. and Photobiol. A: Chem., 1997, 103:153-157
    [105] Motojima S., Suzuki T., Hishikawa Y., et al. TiO2/C composite microcoils and TiO2hollow microcoils with high photocatalytic activities and electromagnetic (EM) wave absorption abilities[J]. Jpn. J. Appl. Phys., 2003, 42:938-940
    [106] Tryba B., Morawski A.W., Inagaki M. A new route for preparation of TiO2-mounted activated carbon[J]. Applied Catalysis B : Environmental, 2003, 46:203-208
    [107] Lee S.W., Sigmund W.M. Formation of anatase TiO2 nanoparticles on carbon nanotubes[J]. Chem. Commun., 2003, 6:780-781
    [108] Sun J., Iwasa M., Gao L., et al. Single-walled carbon nanotubes coated with titania nanoparticles[J]. Carbon, 2004, 42:885-901
    [109] Yamashita H., Harada M., Tanii A., et al. Preparation of efficient titanium oxide photocatalysts by an ionized cluster beam method and their application for the degradation of propanol diluted in water[J]. Stud. Surf. Sci. Catal., 2000, 130:1931-1936
    [110] Yamashita H., Harada M., Tanii A., et al. Preparation of efficient titanium oxide photocatalysts by an ionized cluster beam (ICB) method and their photocatalytic reactivities for the purification of water[J]. Catalysis Today, 2000, 63:63-69
    [111] Przepiorski J., Yoshizawa N., Yamada Y. Activated carbons containing TiO2: Characterization and influence of a preparation method on the state of TiO2 supported[J]. Journal of Materials Science, 2001, 36(17):4249-4257
    [112] Tamai H., Katsu N., Ono K., et al. Simple preparation of TiO2 particles dispersed activated carbons and their photo-sterilization activity[J]. Journal of Materials Science, 2002, 37(15):3175-3180.
    [113] Tsumura T., Kojitani N., Umemura H., et al. Composites between photoactive anatase-type TiO2 and adsorptive carbon[J]. Applied Surface Science, 2002, 196:429-436
    [114] Yuan R.S., Guan R.B., Shen W.Z., et al. Photocatalytic degradation of methylene blue by a combination of TiO2 and activated carbon fibers[J]. Journal of Colloid Interface Science, 2005, 282(1):87-91
    [115] Kammler H.K., Pratsinis S.E. Carbon-coated titania nanostructured particles: Continuous, one-step flame-synthesis[J]. J. Mater. Res., 2003, 18(11):2670-2676
    [116] Tryba B., Morawski A. W., Tsumura T., et al. Hybridization of adsorptivity withphotocatalytic activity carbon-coated anatase[J]. J. Photochem. and Photobio. A: Chem., 2004, 167:127-135
    [117] Tsumura T., Kojitani N., Umemura H., et al. Composites between photoactive anatase-type TiO2 and adsorptive carbon[J]. Appl. Surf. Sci., 2002, 196:429-436
    [118]林莉,周毅,朱月香,等.碳含量对C/TiO2复合材料光催化活性的影响[J].催化学报, 2006, 27(1):45-49
    [119] Takeda N., Iwata N., Torimoto T., et al. Influence of carbon black as an adsorbent used in TiO2 photocatalyst films on photodegradation behaviors of propyzamide[J]. J. Catal., 1998, 177:240-246
    [120] Colón G., Hidalgo M.C., Navío J.A. A novel preparation of high surface area TiO2 nanoparticles from alkoxide precursor and using active carbon as additive[J]. Catalysis Today, 2002, 76:91-101
    [121] Sakthivel S., Kisch H. Daylight photocatalysis by carbon-modified titanium dioxide[J]. Angew. Chem. Int. Edit., 2003, 42(40):4908-4911
    [122] Shen M., Wu Z.Y., Huang H., et al. Carbon-doped anatase TiO2 obtained from TiC for photocatalysis under visible light irradiation[J]. Mater. Lett., 2006, 60:693-697
    [123] Li Y.Z. Hwang D.S., Lee N.H., et al. Synthesis and characterization of carbon-doped titania as an artificial solar light sensitive photocatalyst[J]. Chem. Phys. Lett., 2005, 404:25-29
    [124] Kuo C.Y. Prevenient dye-degradation mechanisms using UV/TiO2/carbon nanotubes process[J]. J. Hazard. Mater., 2009, 163:239-244
    [125] Wang W. D., Serp P., Kalck P., et al. Photocatalytic degradation of phenol on MWNT and titania composite catalysts prepared by a modified sol-gel method[J]. Appl. Catal. B, 2005, 56:305-312
    [126] Lu M.C, Chen J.N., Chang K.T. Effect of adsorbents coated with titanium dioxide on the photocatalytic degradation of propoxur[J]. Chemosphere, 1999, 38(3):617-627
    [127] Inagaki M., Hirose Y., Matsunaga T., et al. Carbon coating of anatase-type TiO2 through their precipitation in PVA aqueous solution[J]. Carbon, 2003, 41:2619-2624
    [128] Irie H., Watanabe Y., Hashimoto K. Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst[J]. Chem. Lett., 2003, 32(8):772-773
    [129] Ollis D.F., Contaminant degradation in water[J]. Environ. Sci. Technol., 1985, 19:480-484
    [130] Hoffmann M.R., Martin S.T., Choi W.Y., et al. Environmental applications of semiconductor photocatalysis[J]. Chem. Rev., 1995, 95:69-96
    [131] Mills A., Hunte S.L., An overview of semiconductor photocatalysis[J]. J. Photochem. Photobiol. A, 1997, 108:1-35
    [132] Herrmann J.M., Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants[J]. Catal. Today, 1999, 53:115-129
    [133] Pera-Titus M., García-Molina V., Ba?os M.A., et al. Degradation of chlorophenols by means of advanced oxidation processes: a general review[J]. Appl. Catal. B: Environ., 2004, 47:219-256
    [134] Vohra A., Goswami D.Y., Deshpande D.A., et al. Enhanced photocatalytic disinfection of indoor air[J]. Appl. Catal. B: Environ., 2006, 64:57-65
    [135] Mahmoodi N.M., Arami M., Limaee N.Y., et al. Kinetics of heterogeneous photocatalytic degradation of reactive dyes in an immobilized TiO2 photocatalytic reactor[J]. J. Colloid Interface Sci., 2006, 295:159-164
    [136] Fujishima A., Rao T.N., Tryk D.A. Titanium dioxide photocatalysis[J]. J. Photochem. Photobiol. C: Photochem. Rev., 2000, 1:1-21
    [137] Robert D., Piscopo A., Heintz O., et al. Photocatalytic detoxification with TiO2 supported on glass-fiber by using artificial and natural light[J]. Catal. Today, 1999, 54:291-296
    [138] Fernández A., Lassaletta G., Jiménez V.M., et al. Preparation and characterization of TiO2 photocatalysts supported on various rigid supports (glass, quartz and stainless steel). Comparative studies of photocatalytic activity in water purification[J]. Appl. Catal. B: Environ., 1995, 7:49-63
    [139] Yu H.G., Lee S.C., Yu J.G., et al. Photocatalytic activity of dispersed TiO2 particles deposited on glass fibers[J]. J. Mol. Catal. A, 2006, 246:206-211
    [140] Beydoun D., Amal R. Implications of heat treatment on the properties of a magnetic iron oxide-titanium dioxide photocatalyst[J]. Mater. Sci. Eng. B, 2002, 94:71-81
    [141] Chung Y.S., Park S.B., Kang D.W. Magnetically separable titania-coated nickel ferritephotocatalyst[J]. Mater. Chem. Phys., 2004, 86:375-381
    [142] Chen F., Xie Y.D., Zhao J.C., et al. Photocatalytic degradation of dyes on a magnetically separated photocatalyst under visible and UV irradiation[J]. Chemosphere, 2001, 44:1159-1168
    [143] Beydoun D., Amal R., Low G., et al. Occurrence and prevention of photodissolution at the phase junction of magnetite and titanium dioxide[J]. J. Mol. Catal. A, 2002, 180:193-200
    [144] Rana S., Srivastava R.S., Sorensson M.M., et al. Synthesis and characterization of nanoparticles with magnetic core and photocatalytic shell: Anatase TiO2-NiFe2O4 system[J]. Mater. Sci. Eng. B, 2005, 119:144-151
    [145] Subramani A.K., Byrappa K., Kumaraswamy G.N., et al. Hydrothermal preparation and characterization of TiO2:AC composites[J]. Mater. Lett., 2007, 61:4828-4831
    [146] Li Y.J., Ma M.Y., Sun S.G., et al. Preparation of TiO2-carbon surface composites with high photoactivity by supercritical pretreatment and sol-gel processing[J]. Appl. Surf. Sci., 2008, 254:4154-4158
    [147] Wang X.J., Liu Y.F., Hu Z.H., et al. Degradation of methyl orange by composite photocatalysts nano-TiO2 immobilized on activated carbons of different porosities[J]. J. Hazard. Mater., 2009, 169:1061-1067
    [148] Ao Y.H., Xu J.J., Shen X.W., et al. A novel magnetically separable composite photocatalyst: Titania-coated magnetic activated carbon[J]. Sep. Purif. Technol., 2008, 61:436-441
    [149] Ao Y.H., Xu J.J., Shen X.W., et al. Magnetically separable composite photocatalyst with enhanced photocatalytic activity[J]. J. Hazard. Mater., 2008, 160:295-300
    [150] Ao Y.H., Xu J.J., Fu D.G., et al. Photocatalytic degradation of X-3B by titania-coated magnetic activated carbon under UV and visible irradiation[J]. J. Alloys Compd., 2009, 471:33-38
    [151] Zhang C.F., Zhong X.C., Yu H.Y., et al. Effects of cobalt doping on the microstructure and magnetic properties of Mn-Zn ferrites prepared by the co-precipitation method[J]. Physica B: Condensed Matter., 2009, 2404:327-2331
    [152] Gregg S.J., Sing K.S.W. Adsorption, Surface Area and Porosity[M]. Academic Press,London, 1982
    [153] Wang W.D., Silva C.G., Faria J.L. Photocatalytic degradation of Chromotrope 2R using nanocrystalline TiO2/activated-carbon composite catalysts[J]. Appl. Catal. B: Environ., 2007, 70:470-478
    [154]庄颖.水中有机污染物对人体的潜在危害及预防对策[J].环境与健康杂志, 2001, 18(3):187-189
    [155] Titus M.P., MolinaV G., Banos M.A., et al.Degradation of chlorophenols by means of advanced oxidation processes: a general review[J]. Appl. Catal. B,1999, 33:1379-1387
    [156] Titus M.P., MolinaV G., Banos M.A., et al.Degradation of chlorophenols by means of advanced oxidation processes[J]. Appl. Catal. B, 2004, 47:219-256
    [157] Yang Y., GuoY.H., Hu C.W., et al. Synergistic effect of Keggin-type [Xn+W11O39(12-n)- and TiO2 macroporous hybrid materials[Xn+W11O39(12-n)--TiO2, for the photocatalytic degradation of textile dyes[J]. J. Mater. Chem., 2003, 13:1686-1694
    [158] Uddin M.M., Hasnat M.A., Samed A.J.F., et al. Influence of TiO2 and ZnO photocatalysts on adsorption and degradation behaviour of Erythrosine[J]. Dye Pig., 2007, 75(1):1-6
    [159]李红,童三伏,张渊明,等.几种电子受体对TiO2光催化降解活性的影响[J].精细化工, 2005, 22(4):290-293
    [160] Zhao H., Xu S.H., Zhong J.B., et al. Kinetic study on the photo-catalytic degradation of pyridine in TiO2 suspension systems[J]. Catal. Today, 2004, 93~95:857-861
    [161] Wang K.H., Hsieh Y.H., Chou M.Y., et al. Photocatalytic degradation of 2-chloro and 2-nitrophenol by titanium dioxide suspensions in aqueous solution[J]. Appl. Catal. B: Environ., 1999, 21:1-8
    [162] Abdullah M., Low G.K.C., Matthews R.W. Effect of inorganic anions on rate of photocatalytic oxidation of organic carbon over illuminated titanium dioxide[J]. J. Phys. Chem., 1990, 94:6820-6825
    [163] Sirori C., Altvater P.K., Freitas A.M., et al. Degradation of aqueous solutions of camphor by geterogeneous photocatalysis[J]. J. Hazar. Mater., 2006, 129:110-115
    [164] Muruganandham M., Shobana N., Swaminathan M. Optimization of solar photocatalytic degradation conditions of Reactive Yellow 14 azo dye in aqueous TiO2[J].J. Mole. Catal. A: Chem., 2006, 246:154-161
    [165] Guettai N., Amar H.A. Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension[J]. Desalinaion, 2005, 185:439-448
    [166] Augugliaro V., Baiocchi C., Bianco-Prevot A., et al. Azo-dyes photocatalytic degradation in aqueous suspension of TiO2 under solar irradiation[J]. Chemosphere, 2002, 49:1223-1230
    [167] Baiocchi C., Brussino M.C., Pramauro E., et al. Characterization of methyl orange and its photocatalytic degradation products by HPLC/UV-Vis diode array and atmospheric pressure ionization quadrupole ion-trap mass spectrometry[J]. Int. J. Mass Spectrom., 2002, 214:247-256
    [168] Bianco-Prevot A., Basso A., Baiocchi C., et al. Analytical control of photocatalytic treatments: degradation of a sulfonated azo dye[J]. Anal. Bioanal. Chem., 2004, 378:214-220.
    [169] Dai K., Chen H., Peng T.Y., et al. Photocatalytic degradation of methyl orange in aqueous suspension of mesoporous titania nanoparticles[J]. Chemosphere, 2007, 69:1361-1367
    [170] Linsebigler A.L., Lu G., Yates J.T. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results[J]. Chem. Rev., 1995, 95:735-758
    [171] Tachikawa T., Takai Y., Tojo S., et al. Visible light-induced degradation of ethylene glycol on nitrogen-doped TiO2 powders[J]. J. Phys. Chem. B, 2006, 110:13158-13165
    [172] Cong Y., Zhang J., Chen F., et al. Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity[J]. J. Phys. Chem. C, 2007, 111:6976-6982
    [173] Somekawa S., Kusumoto Y., Ikeda M., et al. Fabrication of N-doped TiO2 thin films by laser ablation method: Mechanism of N-doping and evaluation of the thin films[J]. Catal. Commun., 2008, 9:437-440
    [174] Zhao W., Ma W., Chen C., et al. Efficient degradation of toxic organic pollutants with Ni2O3/TiO2-xBx under visible irradiation[J]. J. Am. Chem. Soc., 2004, 126:4782-4783
    [175] Khan S.U.M., Al-Shahry M., Ingler W.B. Efficient photochemical water splitting by a chemically modified n-TiO2[J]. Science, 2002, 297:2243-2245
    [176] Wong M.S., Hsu S.W., Rao K.K., et al. Influence of crystallinity and carbon content on visible light photocatalysis of carbon doped titania thin films[J]. J. Mol. Catal. A, 2008, 279:20-26
    [177] Xie Y., Zhao X.J. The effects of synthesis temperature on the structure and visible-light-induced catalytic activity of F-N-codoped and S-N-codoped titania[J]. J. Mol. Catal. A, 2008, 285:142-149
    [178] Umebayashi T., Yamaki T., Itoh H., et al. Band gap narrowing of titanium dioxide by sulfur doping[J]. Appl. Phys. Lett., 2002, 81:454-456
    [179] Li D., Haneda H., Hishita S., et al. Visible-light-driven N-F-codoped TiO2 photocatalysts. 1. synthesis by spray pyrolysis and surface characterization[J]. Chem. Mater., 2005, 17:2588-2595
    [180] Yu J.C., Zhang L., Zheng Z., et al. Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity[J]. Chem. Mater., 2003, 15:2280-2286
    [181] Shi Q., Yang D., Jiang Z., et al. Visible-light photocatalytic regeneration of NADH using P-doped TiO2 nanoparticles[J]. J. Mol. Catal. B, 2006, 43:44-48
    [182] Korosi L., Oszko A., Galbacs G., et al. Structural properties and photocatalytic behavior of phosphate-modified nanocrystalline titania films[J]. Appl. Catal. B, 2007, 77:175-183
    [183] Korosi L., Papp S., Bertoti I., et al. Surface and bulk composition, structure, and photocatalytic activity of phosphate-modified TiO2[J]. Chem. Mater., 2007, 19:4811-4819
    [184] Ozaki H., Fujimoto N., Iwamoto S., et al. Photocatalytic activities of NH3-treated titanias modified with other elements[J]. Appl. Catal. B, 2007, 70:431-436
    [185] Lin L., Lin W., Xie J.L., et al. Photocatalytic properties of phosphor-doped titania nanoparticles[J]. Appl. Catal. B, 2007, 75:52-58
    [186] Zheng R., Lin L., Xie J., et al. State of doped phosphorus and its influence on the physicochemical and photocatalytic properties of P-doped titania[J]. J. Phys. Chem. C, 2008, 112:15502-15509
    [187] Jin C., Zheng R.Y., Guo Y., et al. Hydrothermal synthesis and characterization ofphosphorous-doped TiO2 with high photocatalytic activity for methylene blue degradation[J]. J. Mol. Catal. A, 2009, 313:44-48
    [188] Wang X.J., Liu Y.F., Hu Z.H., et al. Degradation of methyl orange by composite photocatalysts nano-TiO2 immobilized on activated carbons of different porosities[J]. J. Hazard. Mater., 2009, 169:1061-1067
    [189] Zhang L.W., Fu H.B., Zhu Y.F. Efficient TiO2 photocatalysts from surface hybridization of TiO2 particles with graphite-like carbon[J]. Adv. Funct. Mater., 2008, 18:2180-2189
    [190] Faria J.L., Wang W.D. Carbon materials in photocatlysis, in P. Serp and J. L. Figueiredo, Eds, Carbon Materials for Catalysis[J]. John Wiley & Sons, 2008
    [191] Serp P., Corrias M., Kalck P. Carbon nanotubes and nanofibers in catalysis[J]. Appl. Catal. A, 2003, 253:337-358
    [192] Yao Y., Li G. H., Ciston S., et al. Photoreactive TiO2/carbon nanotube composites: synthesis and reactivity[J]. Environ. Sci. Technol., 2008, 42:4952-4957.
    [193] Liu B., Zeng H.C. Carbon nanotubes supported mesoporous mesocrystals of anatase TiO2[J]. Chem. Mater., 2008, 20:2711-2718
    [194] An G.M., Ma W.H., Sun Z.Y., et al. Preparation of titania/carbon nanotube composites using supercritical ethanol and their photocatalytic activity for phenol degradation under visible light irradiation[J]. Carbon, 2007, 45:1795-1801
    [195] Yen C.Y., Lin Y.F., Hung C.H., et al. The effects of synthesis procedures on the morphology and photocatalytic activity of multi-walled carbon nanotubes/TiO2 nanocomposites[J]. Nanotechnology, 2008, 19:1-11
    [196] Fujbara K. Time-resolved phtotlum-inescence of particulate TiO2 photocatalysts suspended in aqueous solutions[J]. Photochem and photobila A: Chem., 2009, 132:99-104
    [197] Hiramoto M. Electron transfer and photoluminescence dynamics of CdS particles deposited on porous vycor glass[J]. Chem. Phys. Lett., 1987, 133:440-444
    [198] Yu J.C., Ho W., Yu J., et al. Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania[J]. Environ. Sci. Technol., 2005, 39:1175-1179
    [199] Fox M.A., Dulay M.T. Heterogeneous photocatalysis[J]. Chem. Rev., 1993, 939:341-357
    [200] Yang K., Dai Y., Huang B. Understanding photocatalytic activity of S- and P-doped TiO2 under visible light from first-principles[J]. J. Phys. Chem. C, 2007, 111:18985-18994
    [201] Ulrike D. The surface science of titanium dioxide[J]. Surf. Sci. Rep., 2003, 48:53-64
    [202]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社, 2001:312
    [203] Dieke G.H. Spectra and energy levels of rare-earth ions in crystals[M]. New York:Interscience, 1968
    [204] Kamat P.V., Thomas K.G., George M.V., Ultrafast photochemical events associated with the photosensitization properties of a squaraine dye[J]. Chem. Phys. Lett., 1991, l78:75-79
    [205] Wu T., Liu G., Zhao J., et al. Evidence for H2O2 generation during the TiO2-assisted photodegradation of dyes in aqueous dispersions under visible light illumination[J]. J. Phys. Chem. B, 1999, 103:4862-4867
    [206] Prevot A.B., Basso A., Baiocchi C., et al. Analytical control of photocatalytic treatments:degradation of a sulfonated azo dye[J]. Anal. Bioanal. Chem., 2004, 378:214-220
    [207] Li Y.Y. Liu J.P. Huang X., et al. Hydrothermal Synthesis of Bi2WO6 Uniform Hierarchical Microspheres [J]. Cryst. Growth Des., 2007, 7:1350-1355
    [208] Ni X.M., Zhao Q.B., Zhang D.G., et al. Novel hierarchical nanostructures of nickel: self-assembly of hexagonal nanoplatelets[J]. J. Phys. Chem. C 2007, 111:601-605
    [209] Wu C.Z., Lei L.Y., Zhu X., et al. Large-Scale synthesis of titanate and anatase tubular hierarchitectures[J]. Small, 2007, 3:1518-1522
    [210] Li W.N., Yuan J., Shen X.F., et al. Hydrothermal synthesis of structure-and shape-controlled manganese oxide octahedral molecular sieve nanomaterials[J]. Adv. Funct. Mater., 2006, 16:1247-1253
    [211] Eberl J., Kisch H. Visible light photo-oxidations in the presence ofα-Bi2O3[J]. Photochem. Photobiol. Sci., 2008, 7:1400-1406
    [212] Zhang L.S., Wang W.Z., Yang J., et al. Sonochemical synthesis of nanocrystallite Bi2O3 as a visible-light-driven phtotcatalyst[J]. Applied Catalysis A: General, 2006, 308:105-110
    [213] Hameed A., Gombac V., Montini T., et al. Photocatalytic activity of zinc modified Bi2O3[J]. Chemical Physics Letters, 2009, 483:254-261
    [214] Jing L.Q., Wang J., Qu Y.C., et al. Effects of surface-modification with Bi2O3 on the thermal stability and photoinduced charge property of nanocrystalline anatase TiO2 and its enhanced photocatalytic activity[J]. Applied Surface Science, 2009, 256:657-663
    [215]崔玉民,徐立杰.用光催化剂Bi2O3处理含亚硝酸盐废水的研究[J].工业水处理, 2000, 8(8):17-19
    [216]王俊珍,付希贤,杨秋华,等. Bi2O3对染料的光催化降解性能[J].应用化学, 2002, 5(5):483-485
    [217]刘良.含铋微纳米材料的合成及其物性研究[D].无锡:江南大学, 2008
    [218] Zhou L., Wang W.Z., Xu H.L., et al. Bi2O3 hierarchical nanostructures: Controllable synthesis, growth, mechanism, and their application in photocatalysis[J]. Chem. Eru. J. 2009, 15:1776-1782
    [219]陈益宾,王绪绪,付贤智,等.偶氮染料刚果红在水中的光催化降解过程[J].催化学报, 2005, 26(1):37-42
    [220] Miyaji F., Yoko T., Sakka, S. Glass formation in Bi2O3-CaO-CuO and Bi2O3-SrO-CuO[J]. J. Non-Cryst. Solids, 1990, 126:170-172
    [221] Zhao H., Xu S.H., Zhong J.B., et al. Kinetic study on the photo-catalytic degradation of pyridine in TiO2 suspension systems[J]. Catal. Today, 2004, 94:857-961
    [222] Lu M.C., Roam G.D., Chen J.N., et al. Adsorption characteristics of dichlorvos onto hydrous titanium dioxide surface[J]. Wat. Res., 1996, 30(7):1670-1676
    [223] Bahnemann D., Bockelmann D., Goslich R. Mechanistic studies of water detoxification in illuminated titania suspensions[J]. Sol. Energy. Mater., 1991, 24:564-583

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700