生物黄酮抑制食品中丙烯酰胺形成的机理及其构效关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,食品中丙烯酰胺的发现、分析检测、形成机理和抑制途径引起了世界相关领域科学家的广泛关注。研究热加工过程中丙烯酰胺的形成机理和影响因素,寻找有效的抑制途径,对于食品中丙烯酰胺危害的防护和食品安全性研究具有重要意义。通过添加植物化学素的方法抑制食品中丙烯酰胺的形成,探讨其对美拉德反应相关前体物质、中间产物和终产物的影响,是目前研究的热点和难点。本论文系统地研究了生物黄酮抑制食品中丙烯酰胺形成的机理及其构效关系。
     论文首先建立了丙烯酰胺的气相色谱(GC)和液相色谱-串联质谱(LC-MS/MS)检测方法;通过对常规热加工食品、婴幼儿食品、复杂基质样品的检测,痕量分析以及食品化学分析测试水平计划(FAPAS)认证,对LC-MS/MS方法的可行性进行评价;以中式传统食品为对象,对两种方法进行比较,确定后者作为本文用于丙烯酰胺检测的定量分析方法。
     其次,以富含生物黄酮的竹叶抗氧化物(AOB)和绿茶提取物(EGT)为研究对象,分别采用0.1%和0.01%(w/w)的AOB浸渍处理,炸薯片和炸薯条的丙烯酰胺形成抑制率可达74.1%和76.1%;当AOB添加量为0.5%(w/w)时,炸鸡翅的丙烯酰胺形成抑制率可达59.0%;当AOB和EGT的添加量分别为0.1%和0.01%(w/w)时,油条的丙烯酰胺形成抑制率可达82.9%和72.5%。结合最大允许使用剂量和感官评定的结果最终选择了两者在上述食品中的最佳添加剂量水平。
     然后,在确认生物黄酮对食品中丙烯酰胺抑制作用的基础上,以响应面分析(RSM)和正交实验分析(OAM)为试验设计方法,以超高效液相色谱-串联质谱(UPLC-MS/MS)法为检测手段,系统研究了天冬酰胺-葡萄糖/果糖/蔗糖模式体系分别在低湿和微波加热条件下产生丙烯酰胺的规律。其中,天冬酰胺-葡萄糖模式体系产生丙烯酰胺的优化条件为:两种前体物质以等摩尔比例在180℃的低湿体系中加热15 min或在微波体系中加热5 min。
     选择天冬酰胺-葡萄糖模式体系,研究AOB和EGT对丙烯酰胺形成/消除动力学过程的影响。当两者在低湿和微波体系中的添加剂量水平分别为2×10-4 mg/g和10-6mg/mL时,对丙烯酰胺的抑制率达到最大值。分别采用Logistic-指数动力学模型和形成/消除一级动力学模型描述低湿和微波体系中AOB和EGT对丙烯酰胺动力学过程的影响,结果表明,AOB和EGT对两种体系中丙烯酰胺的形成动力学过程具有显著的抑制作用,而对消除动力学过程无显著影响。
     建立土豆微波模式体系,研究24种生物黄酮试样对丙烯酰胺的抑制作用及其构效关系。量效关系研究表明,当生物黄酮的添加剂量水平为10-9mol/L时,对丙烯酰胺的抑制率达到最大。DPPH.ABTS和FRAP抗氧化评价体系的测试结果表明,生物黄酮对丙烯酰胺的抑制率与反应体系抗氧化性的变化值(△TEAC)之间存在显著的相关性。采用定量结构-活性关系(QSAR)方法评价生物黄酮抑制丙烯酰胺的构效关系。结果表明,黄酮芳环羟基的数目和位置对其抑制作用具有重要影响;在芳环羟基数目相等的情况下,黄酮对丙烯酰胺的抑制率明显优于异黄酮;对于具有相同苷元的黄酮糖苷而言,碳苷对丙烯酰胺的抑制率优于氧苷;此外,生物黄酮的拓扑结构对其抑制丙烯酰胺的活性也有重要影响。
     最后,建立了同步检测天冬酰胺、葡萄糖、果糖和丙烯酰胺的同位素稀释UPLC-MS/MS检测方法。根据高抑制率和代表性原则,选取异荭草苷(AOB的特征性碳苷黄酮)、表没食子酸儿茶素没食子酸酯(EGT的特征性黄烷醇酯)、木犀草素-7-O-葡萄糖苷、木犀草素、染料木素和槲皮素为生物黄酮的典型试样,在其抑制丙烯酰胺的最适剂量水平(10-9 mol/L)上建立土豆微波模式体系的机理动力学模型,绘制天冬酰胺、葡萄糖、果糖、丙烯酰胺和类黑素的动力学曲线,计算相应动力学参数的变化,分析其作用位点。结果表明,生物黄酮可显著地抑制天冬酰胺与果糖反应生成以Schiff碱为代表的中间产物的过程、葡萄糖通过异构化作用向果糖转化的过程以及中间产物向丙烯酰胺转化的过程,但无法抑制天冬酰胺与葡萄糖反应的过程和丙烯酰胺生成后的消除和转化过程。此外,生物黄酮对抑制美拉德反应终产物类黑素的形成有一定的影响,但这种作用并不显著。
Recently, the findings, analytical methods, formation mechanism and reduction pathways of acrylamide in foods have attracted wide attention all over the world. The formation mechanism, impact factors and effective reduction methods of acrylamide during heat processing play important roles in the defense of acrylamide hazard and food safety. Studies on the reduction effect of plant-derived components on the formation of acrylamide and its precursors and intermediates through Maillard reaction in foods become a research hotspot. This dissertation systematically studied the mechanism and structure-activity relationship of bio-flavonoids in reducing acrylamide formation in foods.
     Two analytical methods of gas chromatography (GC) and liquid chromatography tandem mass spectrometry (LC-MS/MS) for the quantification of acrylamide were investigated. The LC-MS/MS method was further validated via the analysis in routine heat-treated foods, baby foods and complex food matrixes, trace analysis, and food analysis performance assessment scheme (FAPAS) proficiency test. The above two methods were compared with each other and applied for the analysis of acrylamide in Chinese traditional foods. Finally, the LC-MS/MS method was selected as the standard method for quantitative analysis of acrylamide.
     Two bio-flavonoid rich extracts of antioxidant of bamboo leaves (AOB) and extract of green tea (EGT) were first used to examine the effect on acrylamide reduction. The result showed that 74.1% and 76.1% of acrylamide were reduced in potato crisps and French fries when they were treated by 0.1% and 0.01%(w/w) of AOB solutions before frying, respectively. Similarly,59.0% of acrylamide was reduced in fried chicken wings when 0.5%(w/w) of AOB was used. Furthermore,82.9% and 72.5% of acrylamide were reduced in Chinese fried bread sticks when 0.1%(w/w) of AOB and 0.01%(w/w) of EGT were added in the flour, respectively. The optimal addition levels of AOB and EGT were finally obtained after taking the maximum permissible addition levels and sensory quality into consideration. Based on the confirmation of the reduction effect of bio-flavonoids on acrylamide in foods, the formation of acrylamide was studied in a model system of asparagine-glucose/fructose/ sucrose. The experimental design was performed by the response surface methodology (RSM) and orthogonal array methodology (OAM) while the acrylamide content was analyzed by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Results showed that acrylamide was optimally generated in model systems when the equimolar asparagine and glucose were heated 15 min in the low-moisture system at 180℃or 5 min in the microwave system at 180℃.
     The acrylamide content could be decreased either by inhibiting its formation or promoting its elimination. The effect of AOB and EGT on the formation and elimination kinetics of acrylamide was then investigated in the asparagine-glucose model system. The maximum reduction effect of acrylamide was observed in low-moisture and microwave systems when the addition levels of both extracts were 2×10-4 mg/g and 10-6 mg/mL, respectively. Meanwhile, the effect of both extracts on the kinetics of acrylamide in low-moisture and microwave systems was described via the Logistic-exponential and first-order formation/elimination kinetic models, respectively. Results indicated that addition of AOB and EGT could significantly reduce the formation kinetics of acrylamide while no effect on its elimination kinetics.
     The reduction effect and structure-activity relationship of totally 24 bio-flavonoid samples on the formation of acrylamide were then studied in a potato model system using the microwave heating method. Results of dose-response study showed a maximum reduction effect when the addition levels of bio-flavonoids were 10-9 mol/L. Results of antioxidant evaluation systems using DPPH, ABTS and FRAP methods revealed a significant positive correlation between the acrylamide reduction effect of bio-flavonoids and the antioxidant levels (ATEAC) in reaction systems. Meanwhile, the structure-activity relationship study on the reduction effect of bio-flavonoids was performed via the quantitative structure-activity relationship (QSAR) method, and it was demonstrated that the number and position of aromatic hydroxyl functional groups play an important role in the reduction effect of flavonoids. Furthermore, the reduction effect of flavones is more effective than isoflavones with the same number of aromatic hydroxyls. The reduction effect of flavone C-glycosides is better than flavone O-glycosides for the flavone glycosides with the same structure of aglycone. The topological structures of bio-flavonoids are also related to their reduction effects.
     To simultaneously quantify the contents of asparagine, glucose, fructose and acrylamide in final reaction products, an improved UPLC-MS/MS method was evaluated. Six bio-flavonoids including homoorientin (the characteristic flavone C-glycoside of AOB), (-)-epigallocatechin gallate (the characteristic flavanol ester of EGT), luteolin-7-O-glucoside, luteolin, genistein and quercetin were selected for the reduction mechanistic study according to their reduction abilities and universality. The mechanistic kinetic models were established in the potato microwave model system based on the optimal addition levels (10-9 mol/L) of 6 selected bio-flavonoids. Then, the kinetic profiles of asparagine, glucose, fructose, acrylamide and melanoidins were obtained. The reduction positions of bio-flavonoids were finally analyzed after estimating the change of kinetic parameters. Results indicated that bio-flavonoids can significantly reduce the formation of intermediates such as Schiff base in the reaction between asparagine and fructose, the transform action from glucose to fructose via isomerization, and the formation of acrylamide from intermediates. However, they cannot reduce the reaction between asparagine and glucose and no effect on the elimination of acrylamide. Furthermore, bio-flavonoids have reduction effect on the formation of melanoidins, which is one of the final products of the Maillard reaction. However, such effect seems not significant.
引文
Aguas, P. C., Fitzhenry, M. J., Giannikopoulos, G., et al. Analysis of acrylamide in coffee and cocoa by isotope dilution liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem.,2006,385:1526-1531.
    Ahn, J. S., Castle, L., Clarke, D. B., et al. Verification of the findings of acrylamide in heated foods. Food Addit. Contam.,2002,19:1116-1124.
    Ahrne, L., Andersson, C.-G., Floberg, P., et al. Effect of crust temperature and water content on acrylamide formation during baking of white bread:Steam and falling temperature baking. LWT-Food Sci. Technol.,2007,40:1708-1715.
    Amic, D., Davidovic-Amic, D., Beslo, D., et al. SAR and QSAR of the antioxidant activity of flavonoids. Curr. Med. Chem.,2007,14:827-845.
    Amrein, T. M., Andres, L., Schonbachler, B., et al. Acrylamide in almond products. Eur. Food Res. Technol.,2005,221:14-18.
    Amrein, T. M., Bachmann, S., Noti, A., et al. Potential of acrylamide formation, sugars, and free asparagine in potatoes:A comparison of cultivars and farming systems. J. Agric. Food Chem.,2003,51:5556-5560.
    Amrein, T. M., Limacher, A., Conde-Petit, B., et al. Influence of thermal processing conditions on acrylamide generation and browning in a potato model system. J. Agric. Food Chem.,2006,54:5910-5916.
    Amrein, T. M., Schonbachler, B., Escher, F., et al. Acrylamide in gingerbread:critical factors for formation and possible ways for reduction. J. Agric. Food Chem.,2004,52: 4282-4288.
    Andrawes, F., Greenhouse, S., Draney, D. Chemistry of acrylamide bromination for trace analysis by gas chromatography and gas chromatography-mass spectrometry. J. Chromatogr.,1987,399:269-275.
    Andrzejewski, D., Roach, J. A. G., Gay, M. L., et al. Analysis of coffee for the presence of acrylamide by LC-MS/MS. J. Agric. Food Chem.,2004,52:1996-2002.
    Arisseto, A. P., Toledo, M. C., Govaert, Y., et al. Determination of acrylamide levels in selected foods in Brazil. Food Addit. Contam.,2007,24:236-241.
    Aron, P. M., Kennedy, J. A. Flavan-3-ols:Nature, occurrence and biological activity. Mol. Nutr. Food Res.,2008,52:79-104.
    Azam, S., Hadi, N., Khan, N. U., et al. Prooxidant property of green tea polyphenols epicatechin and epigallocatechin-3-gallate:implications for anticancer properties. Toxicol. in Vitro,2004,18:555-561.
    Baardseth, P., Blom, H., Skrede, G., et al. Lactic acid fermentation reduces acrylamide formation and other Maillard reactions in French fries. J. Food Sci.,2006,71: C28-C33.
    Bagdonaite, K., Viklund, G., Skog, K., et al. Analysis of 3-aminopropionamide:A potential precursor of acrylamide. J. Biochem. Biophys. Methods,2006,69:215-221.
    Balaban, A. T. Highly discriminating distance-based topological index. Chem. Phys. Lett., 1982,89:399-404.
    Balaban, A. T. Topological indices based on topological distances in molecular graphs. Pure Appl. Chem.,1983,55:199-206.
    Becalski, A., Lau, B. P.-Y., Lewis, D., et al. Acrylamide in foods:Occurrence, sources, and modeling. J. Agric. Food Chem.,2003,51:802-808.
    Becalski, A., Lau, B. P.-Y., Lewis, D., et al. Acrylamide in French fries:Influence of free amino acids and sugars. J. Agric. Food Chem.,2004,52:3801-3806.
    Benzie, I. F. F., Strain, J. J. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power":The FRAP assay. Anal. Biochem.,1996,239:70-76.
    Bermudo, E., Moyano, E., Puignou, L., et al. Determination of acrylamide in foodstuffs by liquid chromatography ion-trap tandem mass-spectrometry using an improved clean-up procedure. Anal. Chim. Acta,2006,559:207-214.
    Bermudo, E., Nunez, O., Moyano, E., et al. Field amplified sample injection-capillary electrophoresis-tandem mass spectrometry for the analysis of acrylamide in foodstuffs. J. Chromatogr. A,2007,1159:225-232.
    Bermudo, E., Nunez, O., Puignou, L., et al. Analysis of acrylamide in food products by in-line preconcentration capillary zone electrophoresis. J. Chromatogr. A,2006b, 1129:129-134.
    Bermudo, E., Nunez, O., Puignou, L., et al. Analysis of acrylamide in food samples by capillary zone electrophoresis. J. Chromatogr. A,2006c,1120:199-204.
    Biedermann, M., Biedermann-Brem, S., Noti, A., et al. Two GC-MS methods for the analysis of acrylamide in foods. Mitt. Lebensm. Hyg.,2002a,93:638-652.
    Biedermann, M., Noti, A., Biedermann-Brem, S., et al. Experiments on acrylamide formation and possibilities to decrease the potential of acrylamide formation in potatoes. Mitt. Lebensm. Hyg.,2002b,93:668-687.
    Biedermann-Brem, S., Noti, A., Grob, K., et al. How much reducing sugar may potatoes contain to avoid excessive acrylamide formation during roasting and baking? Eur. Food Res. Technol.,2003,217:369-373.
    Blank, I. Current status of acrylamide research in food:measurement, safety assessment, and formation. Ann. New York Acad. Sci.,2005,1043:30-40.
    Bologna, L. S., Andrawes, F. F., Barvenik, F. W., et al. Analysis of residual acrylamide in field crops. J. Chromatogr. Sci.,1999,37:240-244.
    Bonchev, D. Information Theoretic Indices for Characterization of Chemical Structures. Research Studies Press-Wiley, Chichester,1983.
    Bors, W., Heller, W., Michel, C., et al. Flavonoids as antioxidants:Determination of radical scavenging efficiencies. In Packer, L.,. Glazer, A.N. Eds. Methods in Enzymology, Academic Press, San Diego,1990,186:p.343-355.
    Brands, C.M. J., Wedzicha, B. L., van Boekel,M. A. J. S. Quantification of melanoidin concentration in sugar-casein systems. J. Agric. Food Chem.,2002,50:1178-1183.
    Brathen, E., Knutsen, S. H. Effect of temperature and time on the formation of acrylamide in starch-based and cereal model systems, flat breads and bread. Food Chem.,2005, 92:693-700.
    Casado, F. J., Montano, A. Influence of processing conditions on acrylamide content in black ripe olives. J. Agric. Food Chem.,2008,56:2021-2027.
    Casella, I. G., Pierri, M., Contursi, M. Determination of acrylamide and acrylic acid by isocratic liquid chromatography with pulsed electrochemical detection. J. Chromatogr. A,2006,1107:198-203.
    Castle, L. Determination of acrylamide monomer in mushrooms grown on polyacrylamide gel. J. Agric. Food Chem.,1993,41:1261-1263.
    Cavalli, S., Maurer, R., Hofler, F. Fast determination of acrylamide in food samples using accelerated solvent extraction followed by ion chromatography with UV or MS detection. LC-GC Eur., in:The Applications Book, Thermo Electron Corp. Press, San Jose, CA, April 2003, p.1-3.
    Chen, Z. Y., Chan, P. T., Ho, K. Y., et al. Antioxidant activity of natural flavonoids is governed by number and location of their aromatic hydroxyl groups. Chem. Phys. Lipids.,1996,79:157-163.
    Chow, H. H. S., Cai, Y., Hakim, I. A., et al. Pharmacokinetics and safety of green tea polyphenols after multiple-dose administration of epigallocatechin gallate and polyphenon E in healthy individuals. Clin. Cancer Res.,2003,9:3312-3319.
    Chu, S. G., Metcalfe, C. D. Analysis of acrylamide in water using a coevaporation preparative step and isotope dilution liquid chromatography tandem mass spectrometry. Anal. Chem.,2007,79:5093-5096.
    Chuda, Y., Ono, H., Yada, H., et al. Effects of physiological changes in potato tubers (Solanum tuberosum L.) after low temperature storage on the level of acrylamide formed in potato chips. Biosci. Biotechnol. Biochem.,2003,67:1188-1190.
    Churchwell, M. I., Twaddle, N. C., Meeker, L. R., et al. Improving LC-MS sensitivity through increases in chromatographic performance:comparisons of UPLC-ES/MS/MS to HPLC-ES/MS/MS. J. Chromatogr. B,2005,825:134-143.
    CIAA Technical Report "The CIAA Acrylamide Toolbox". A summary of the efforts and progress achieved to date by the European Food and Drink Industry (CIAA) in lowering levels of acrylamide in food. Brussels, September 2005. http://www.ciaa.be.
    Claeys, W. L., de Vleeschouwer, K., Hendrickx, M. E. Effect of amino acids on acrylamide formation and elimination kinetics. Biotechnol. Prog.,2005b,21:1525-1530.
    Claeys, W. L., de Vleeschouwer, K., Hendrickx, M. E. Kinetics of acrylamide formation and elimination during heating of an asparagine-sugar model system. J. Agric. Food Chem.,2005c,53:9999-10005.
    Claeys, W. L., de Vleeschouwer, K., Hendrickx, M. E. Quantifying the formation of carcinogens during food processing:acrylamide. Trends Food Sci. Technol.,2005a, 16:181-193.
    Claus, A., Carle, R., Schieber, A. Acrylamide in cereal products:A review. J. Cereal Sci., 2008,47:118-133.
    Claus, A., Schreiter, P., Weber, A., et al. Influence of agronomic factors and extraction rate on the acrylamide contents in yeast-leavened breads. J. Agric. Food Chem.,2006,54: 8968-8976.
    Claus, A., Weisz, G. M., Kammerer, D. R., et al. A method for the determination of acrylamide in bakery products using ion trap LC-ESI-MS/MS. Mol. Nutr. Food Res., 2005,49:918-925.
    Cook, D. J., Taylor, A. J. On-line MS/MS monitoring of acrylamide generation in potato-and cereal-based systems. J. Agric. Food Chem.,2005,53:8926-8933.
    Corradini, M. G., Peleg, M. Linear and non-linear kinetics in the synthesis and degradation of acrylamide in foods and model systems. Crit. Rev. Food Sci. Nutr.,2006,46: 489-517.
    Costa, L. G., Deng, H., Gregotti, C., et al. Comparative studies on the neuro-and reproductive toxicity of acrylamide and its epoxide metabolite glycidamide in the rat. Neurotoxicology,1992,13:219-224.
    Cui., S. Y., Kim, S.-J., Jo, S.-C., et al. A study of in vitro scavenging reactions of acrylamide with glutathione using electrospray ionization tandem mass spectrometry. Bull. Korean Chem. Soc.,2005,26:1235-1240.
    Davies, K., Labuza, T. The Maillard reaction:Application to confectionery products. In Zeigler, G. Ed. Confectionery Science, Pennsylvanian State University Press,1997, p. 35-66.
    De Vleeschouwer, K., van der Plancken,I., van Loey, A., et al. Impact of pH on the kinetics of acrylamide formation/elimination reactions in model systems. J. Agric. Food Chem.,2006,54:7847-7855.
    De Vleeschouwer, K., van der Plancken, I., van Loey, A., et al. Kinetics of acrylamide formation/elimination reactions as affected by water activity. Biotechnol. Prog.,2007, 23:722-728.
    De Wilde, T., de Meulenaer, B., Mestdagh, F., et al. Selection criteria for potato tubers to minimize acrylamide formation during frying. J. Agric. Food Chem.,2006,54: 2199-2205.
    De Wilde, T., de Meulenagr, B., Mestdagh, F., et al. Influence of storage practices on acrylamide formation during potato frying. J. Agric. Food Chem.,2005,53: 6550-6557.
    De Wilde, T., de Meulenagr, B., Mestdagh, F., et al. Influence of fertilization on acrylamide formation during frying of potatoes harvested in 2003. J. Agric. Food Chem.,2006a,54:404-408.
    Dearfield, K. L., Abernathy, C. O., Ottley, M. S., et al. Acrylamide:its metabolism, developmental and reproductive effects, genotoxicity, and carcinogenicity. Mutat. Res.,1988,195:45-77.
    Dearfield, K. L., Douglas, G. R., Ehling, U. H., et al. Acrylamide:a review of its genotoxicity and an assessment of heritable genetic risk. Mutat. Res.,1995,330: 71-99.
    Delatour, T., Perisset, A., Goldmann, T., et al. Improved sample preparation to determine acrylamide in difficult matrixes such as chocolate powder, cocoa and coffee by liquid chromatography tandem mass spectrometry. J. Agric. Food Chem.,2004,52: 4625-4631.
    Delgado-Andrade, C., Rufian-Henares, J. A., Morales, F. J. Assessing the antioxidant activity of melanoidins from coffee brews by different antioxidant methods. J. Agric. Food Chem.,2005,53:7832-7836.
    Devillers, J., Balaban, A. T. Topological Indices and Related Descriptors in QSAR and Drug Design. Gordon& Breach, Amsterdam,2000.
    Dewar, M. J. S., Zoebisch, E. G., Healy, E. F., et al. Development and use of quantum mechanical molecular models.76. AM1:a new general purpose quantum mechanical molecular model. J. Am. Chem. Soc.,1985,107:3902-3909.
    Diaz, A., Vazquez, L., Ventura, F., et al. Estimation of measurement uncertainty for the determination of nonylphenol in water using solid-phase extraction and solid-phase microextraction procedures. Anal. Chim. Acta,2004,506:71-80.
    Dunovska, L., Cajka, T., Hajslova, J., et al. Direct determination of acrylamide in food by gas chromatography-high-resolution time-of-flight mass spectrometry. Anal. Chim. Acta,2006,578:234-240.
    Eerola, S., Hollebekkers, K., Hallikainen, A., et al. Acrylamide levels in Finnish foodstuffs analysed with liquid chromatography tandem mass spectrometry. Mol. Nutr. Food Res.,2007,51:239-247.
    Ehling, S., Shibamoto, T. Correlation of acrylamide generation in thermally processed model systems of asparagine and glucose with color formation, amounts of pyrazines formed, and antioxidative properties of extracts. J. Agric. Food Chem.,2005,53: 4813-4819.
    Elmore, J. S., Koutsidis, G., Dodson, A. T., et al. Measurement of acrylamide and its precursors in potato, wheat, and rye model systems. J. Agric. Food Chem.,2005,53: 1286-1293.
    Elmore, J. S., Mottram, D. S., Muttucumaru, N., et al. Changes in free amino acids and sugars in potatoes due to sulfate fertilization and the effect on acrylamide formation. J. Agric. Food Chem.,2007,55:5363-5366.
    Erdogdu, S. B., Palazoglu, T. K., Gokmen, V., et al. Reduction of acrylamide formation in French fries by microwave pre-cooking of potato strips. J. Sci. Food Agric.,2007,87: 133-137.
    Estrada, E., Ramirez, A. Edge adjacency relationships and molecular topological descriptors. Definition and QSAR applications. J. Chem. Inf. Comput. Sci.,1996,36: 837-843.
    Ezeji, T. C., Groberg, M., Qureshi, N., et al. Continuous production of butanol from starch-based packing peanuts. Appl. Biochem. Biotechnol.,2003,106:375-382.
    Fan, X. T., Mastovska, K. Effectiveness of ionizing radiation in reducing furan and acrylamide levels in foods. J. Agric. Food Chem.,2006,54:8266-8270.
    Fauhl, C., Klaffke, H., Mathar, W., et al. Acrylamide interlaboratory study 2002.2002, http://www.bfr.bund.de/cms/detail.php?template=internet_de_indexjs.
    Fernandez, S., Kurppa, L., Hyvonen, L. Content of acrylamide decreased in potato chips with addition of a proprietary flavonoid spice mix (Flavomare(?)) in frying. Inn. Food Technol.,2003:24-26.
    Fiselier, K., Grob, K. Legal limit for reducing sugars in prefabricates targeting 50 μg/kg acrylamide in French fries. Eur. Food Res. Technol.,2005,220:451-458.
    Fiselier, K., Grob, K., Pfefferle, A. Brown potato croquettes low in acrylamide by coating with egg/breadcrumbs. Eur. Food Res. Technol.,2004,219:111-115.
    Food Analysis Performance Assessment Scheme (FAPAS). Protocol of FAPAS proficiency testing.2002. http://www.fapas.com/pdfpub/FAPASProtocol.pdf.
    Foti, M., Piattelli, M., Baratta, M. T., et al. Flavonoids, coumarins, and cinnamic acids as antioxidants in a micellar system. Structure-activity relationship. J. Agric. Food Chem.,1996,44:497-501.
    Fredriksson, H., Tallving, J., Rosen, J., et al. Fermentation reduces free asparagine in dough and acrylamide content in bread. Cereal Chem.,2004,81:650-653.
    Friedman, M. Chemistry, biochemistry, and safety of acrylamide. A review. J. Agric. Food Chem.,2003,51:4504-4526.
    Galvez, J., Garcia, R., Salabert, M. T., et al. Charge indexes. New topological descriptors. J. Chem. Inf. Comput. Sci.,1994,34:520-525.
    Gerendas, J., Heuser, F., Sattelmacher, B. Influence of nitrogen and potassium supply on contents of acrylamide precursors in potato tubers and on acrylamide accumulation in French fries. J. Plant Nutr.,2007,30:1499-1516.
    Gertz, C., Klostermann, S. Analysis of acrylamide and mechanisms of its formation in deep-fried products. Eur. J. Lipid Sci. Technol.,2002,104:762-771.
    Gokmen, V., Akbudak, B., Serpen, A., et al. Effects of controlled atmosphere storage and low-dose irradiation on potato tuber components affecting acrylamide and color formation upon frying. Eur. Food Res. Technol.,2007,224:681-687.
    Gokmen, V., Palazoglu, T. K., nyuva, H. Z. Relation between the acrylamide formation and time-temperature history of surface and core regions of French fries. J. Food Eng.,2006,77:972-976.
    Gokmen, V., nyuva, H. Z. A simplified approach for the kinetic characterization of acrylamide formation in fructose-asparagine model system. Food Addit. Contam., 2006,23:348-354.
    Gokmen, V.,Senyuva, H. Z. Acrylamide formation is prevented by divalent cations during the Maillard reaction. Food Chem.,2007,103:196:203.
    Gokmen, V.,Senyuva, H. Z. Study of colour and acrylamide formation in coffee, wheat flour and potato chips during heating. Food Chem.,2006a,99:238-243.
    Gokmen, V.,Senyuva, H. Z., Acar, J., et al. Determination of acrylamide in potato chips and crisps by high-performance liquid chromatography. J. Chromatogr. A,2005,1088: 193-199.
    Govaert, Y., Arisseto, A., van Loco, J., et al. Optimisation of a liquid chromatography-tandem mass spectrometric method for the determination of acrylamide in foods. Anal. Chim. Acta,2006,556:275-280.
    Gramatica, P., Corradi, M., Consonni, V. Modelling and prediction of soil sorption coefficients of non-ionic organic pesticides by molecular descriptors. Chemosphere, 2000,41:763-777.
    Gramza, A., Khokhar, S., Yoko, S., et al. Antioxidant activity of tea extracts in lipids and correlation with polyphenol content. Eur. J. Lipid Sci. Technol.,2006,108:351-362.
    Granby, K., Fagt, S. Analysis of acrylamide in coffee and dietary exposure to acrylamide from coffee. Anal. Chim. Acta,2004,520:177-182.
    Granda, C., Moreira, R. G., Tichy, S. E. Reduction of acrylamide formation in potato chips by low-temperature vacuum frying. J. Food Sci.,2004,69:E405-E411.
    Granvogl, M., Jezussek, M., Koehler, P., et al. Quantitation of 3-aminopropionamide in potatoes-A minor but potent precursor in acrylamide formation. J. Agric. Food Chem.,2004,52:4751-4757.
    Granvogl, M., Schieberle, P. Thermally generated 3-aminopropionamide as a transient intermediate in the formation of acrylamide. J. Agric. Food Chem.,2006,54: 5933-5938.
    Grob, K., Biedermann, M., Biedermann-Brem, S., et al. French fries with less than 100 μg/kg acrylamide. A collaboration between cooks and analysts. Eur. Food Res. Technol.,2003,217:185-194.
    Haase, N. U., Matthaus, B., Vosmann, K. Acrylamide formation in foodstuffs-Minimising strategies for potato crisps. Deut. Lebensm.-Rundsch.,2003,99:87-90.
    Haase, N. U., Matthaus, B., Vosmann, K. Aspects of acrylamide formation in potato crisps. J. Appl. Bot. Food Qual.,2004,78:144-147.
    Harford, N. G., Muttucumaru, N., Curtis, T. Y., et al. Genetic and agronomic approaches to decreasing acrylamide precursors in crop plants. Food Addit. Contam.,2007,24: S26-S36.
    Hashimoto, A. Improved method for the determination of acrylamide monomer in water by means of gas-liquid chromatography with an electron-capture detector. Analyst, 1976,101:932-938.
    Havsteen, B. Flavonoids, a class of natural products of high pharmacological potency. Biochem. Pharm.,1983,32:1141-1148.
    Hawrylak, B., Szymanska, M. Selenium as a sulphydrylic group inductor in plants. Cell. Mol. Biol. Lett.,2004,9:329-336.
    Hedegaard, R. V., Frandsen, H., Granby, K., et al. Model studies on acrylamide generation from glucose/asparagine in aqueous glycerol. J. Agric. Food Chem.,2007,55: 486-492.
    Hendriksen, H. V., Kornbrust, B., Ernst, S., et al. Asparaginase-mediated reduction of acrylamide formation in baked, fried, and roasted products. J. Biotechnol.,2005, 118S1:S135.
    Heyns, K., Stute, R., Paulsen, H. Braunungsreaktionen und fragmentierungen von kohlenhydraten. Teil I. Die fluchtigen abbauprodukte der pyrolyse von d-glucose. Carbohydr. Res.,1966,2:132-149.
    Higdon, J. V., Frei, B. Tea catechins and polyphenols:health effects, metabolism, and antioxidant functions. Crit. Rev. Food Sci. Nutr.,2003,43:89-143.
    Hoenicke, K., Gatermann, R., Harder, W., et al. Analysis of acrylamide in different foodstuffs using liquid chromatography-tandem mass spectrometry and gas chromatography-tandem mass spectrometry. Anal. Chim. Acta,2004,520:207-215.
    Hu, C., Zhang, Y., Kitts, D. D. Evaluation of antioxidant and prooxidant activities of bamboo Phyllostachys nigra var. henonis leaf extract in vitro. J. Agric. Food Chem., 2000,48:3170-3176.
    Hurst, P. L., Boulton, G., Lill, R. E. Towards a freshness test for asparagus:spear tip asparagine content is strongly related to post-harvest accumulated heat-units. Food Chem.,1998,61:381-384.
    International Food Safety Authorities Network (INFOSAN). Information Note No.2/2005. Acrylamide in food is a potential health hazard. Geneva, Switzerland,1st March 2005. http://www.fsai.ie/industry/hottopics/EN_note2_2005_acrylamide.pdf.
    Inoue, K., Yoshimura, Y., Nakazawa, H. Development of high-performance liquid chromatography-electrospray mass spectrometry with size-exclusion chromatography for determination of acrylamide in fried foods. J. Liq. Chromatogr. Related Technol., 2003,26:1877-1884.
    Jezussek, M., Schieberle, P. A new LC/MS-method for the quantitation of acrylamide based on a stable isotope dilution assay and derivatization with 2-mercaptobenzoic acid. Comparison with two GC/MS methods. J. Agric. Food Chem.,2003,51: 7866-7871.
    Jung, M. Y., Choi, D. S., Ju, J. W. A novel technique for limitation of acrylamide formation in fried and baked corn chips and in French fries. J. Food Sci.,2003,68: 1287-1290.
    Kim, C. T., Hwang, E.-S., Lee, H. J. An improved LC-MS/MS method for the quantitation of acrylamide in processed foods. Food Chem.,2007,101:401-409.
    Kita, A., Brathen, E., Knutsen, S. H., et al. Effecitive ways of decreasing acrylamide content in potato crisps during processing. J. Agric. Food Chem.,2004,52: 7011-7016.
    Knol, J. J., van Loon, W. A. M., Linssen, J. P. H., et al. Toward a kinetic model for acrylamide formation in a glucose-asparagine reaction system. J. Agric. Food Chem., 2005,53:6133-6139.
    Knol, J. J., Viklund,.G. A. I., Linssen, J. P. H., et al. A study on the use of empirical models to predict the formation of acrylamide in potato crisps. Mol. Nutr. Food Res., 2008,52:313-321.
    Kolek, E., Simko, P., Simon, P. Inhibition of acrylamide formation in asparagine/D-glucose model system by NaCl addition. Eur. Food Res. Technol.,2006, 224:283-284.
    Kolek, E., Simon, P., Simko, P. Nonisothermal kinetics of acrylamide elimination and its acceleration by table salt-A model study. J. Food Sci.,2007,72:E341-E344.
    Konings, E. J. M., Baars, A. J., van Klaveren, J. D., et al. Acrylamide exposure from foods of the Dutch population and an assessment of the consequent risks. Food Chem. Toxicol.,2003,41:1569-1579.
    Konings, E. J. M., Baars, A. J., van Klaveren, J. D., et al. Acrylamide exposure from foods of the Dutch population and an assessment of the consequent risks. Food Chem. Toxicol.,2003,41:1569-1579.
    Kostantinova, E. V. The discrimination ability of some topological and information distance indices for graphs of unbranched hexagonal systems. J. Chem. Inf. Comput. Sci.,1996,36:54-57.
    Kurppa L. A process and composition for preventing and reducing the formation of acrylamide in foods. PCT patent, WO 032647 Al,2004.
    Lagalante, A. F., Felter, M. A. Silylation of acrylamide for analysis by solid-phase microextraction/gas chromatography/ion-trap mass spectrometry. J. Agric.Food Chem.,2004,52:3744-3748.
    Lee, M.-R., Chang, L.-Y., Dou, J. P. Determination of acrylamide in food by solid-phase microextraction coupled to gas chromatography-positive chemical ionization tandem mass spectrometry. Anal. Chim. Acta,2007,582:19-23.
    Leong, L. P. Modelling of the Maillard reaction involving more than one amino acid. Ph.D. Dissertation, Department of Food Science, The University of Leeds,1999.
    Leong, L. P., Wedzicha, B. L. A critical appraisal of the kinetic model for the Maillard browning of glucose with glycine. Food Chem.,2000,68:21-28.
    Leung, K. S, Lin, A., Tsang, C. K., et al. Acrylamide in Asian foods in Hong Kong. Food Addit. Contam.,2003,20:1105-1113.
    Levine, R. A., Smith R. E. Sources of variability of acrylamide levels in cracker model. J. Agric. Food Chem.,2005,53:4410-4416.
    Lien, E. J., Ren, S., Bui, H.-H., et al. Quantitative structure-activity relationship analysis of phenolic antioxidants-A structure-system-activity relationship (SSAR) analysis. Free Radic. Biol. Med.,1999,26:285-294.
    Lindinger, W., Hirber, J., Paretzke, H. An ion/molecule-reaction mass spectrometer used for on-line trace gas analysis. Int. J. Mass Spectrom. Ion Proces.,1993,129:79-88.
    LoPachin, R. M., Lehning, E. J. Acrylamide-induced distal axon degeneration:a proposed mechanism of action. Neurotoxicology,1994,15:247-259.
    Low, M. Y., Koutsidis, G., Parker, J. K., et al. Effect of citric acid and glycine addition on acrylamide and flavor in a potato model system. J. Agric. Food Chem.,2006,54: 5976-5983.
    Lu, B. Y., Wu, X. Q., Shi, J. Y., et al. Toxicology and safety of antioxidant of bamboo leaves. Part 2:Development toxicity test in rats with antioxidant of bamboo leaves. Food Chem. Toxicol.,2006,44:1739-1743.
    Lu, B. Y., Wu, X. Q., Tie, X. W., et al. Toxicology and safety of anti-oxidant of bamboo leaves. Part 1:acute and subchronic toxicity studies on anti-oxidant of bamboo leaves. Food Chem. Toxicol.,2005,43:783-792.
    Lukac, H., Amrein, T. M., Perren, R., et al. Influence of roasting conditions on the acrylamide content and the color of roasted almonds. J. Food Sci.,2007,72: C33-C38.
    Magnuson, V. R., Harriss, D. K., Basak, S. C. Studies in Physical and Theoretical Chemistry. King, R. B. Ed. Elsevier, Amsterdam,1983.
    Manini, P., d'Ischia, M., Prota, G. An unusual decarboxylative Maillard reaction between L-DOPA and D-glucose under biomimetic conditions:Factors governing competition with Pictet-Spengler condensation. J. Org. Chem.,2001,66:5048-5053.
    Martin, F. L., Ames, J. M. Formation of Strecker aldehydes and pyrazines in a fried potato model system. J. Agric. Food Chem.,2001,49:3885-3892.
    Martins, S. I. F. S., Jongen, W. M. F., van Boekel, M. A. J. S. A review of Maillard reaction in food and implications to kinetic modeling. Trends Food Sci. Technol.,2001,11: 364-373.
    Martins, S. I. F. S., van Boekel, M. A. J. S. A kinetic model for the glucose/glycine Maillard reaction pathways. Food Chem.,2005,90:257-269.
    Mastovska, K., Lehotay, S. J. Rapid sample preparation method for LC-MS/MS or GC-MS analysis of acrylamide in various food matrices. J. Agric. Food Chem.,2006,54: 7001-7008.
    Matthaus, B., Haase, N. U., Vosmann, K. Factors affecting the concentration of acrylamide during deep-fat frying of potatoes. Eur. J. Lipid Sci. Technol.,2004,106:793-801.
    Mestdagh, F. J., de Meulenaer, B., van Poucke, C., et al. Influence of oil type on the amounts of acrylamide generated in a model system and in French fries. J. Agric. Food Chem.,2005,53:6170-6174.
    Mestdagh, F., de Meulenaer, B., Cucu, T., et al. Role of water upon the formation of acrylamide in a potato model system. J. Agric. Food Chem.,2006,54:9092-9098.
    Mizukami, Y., Kohata, K., Yamaguchi, Y., et al. Analysis of acrylamide in green tea by gas chromatography-mass spectrometry. J. Agric. Food Chem.,2006,54: 7370-7377.
    Mohar, B. MATH/CHEM/COMP 1988. Graovac, A. Ed. Elsevier, Amsterdam,1989.
    Moran, P. A. P. Notes on continuous stochastic phenomena. Biometrika,1950,37:17-23.
    Moriguchi,I., Hirono, S., Liu, Q., et al. Simple method of calculating octanol/water partition coefficient. Chem. Pharm. Bull.,1992,40:127-130.
    Mottram, D. S., Wedzicha, B. L., Dodson, A. T. Acrylamide is formed in the Maillard reaction. Nature,2002,419:448-449.
    Mustafa, A., Andersson, R., Rosen, J., et al. Factors influencing acrylamide content and color in rye crisp bread. J. Agric. Food Chem.,2005,53:5985-5989.
    Muttucumaru, N., Halford, N. G., Elmore, J. S., et al. Formation of high levels of acrylamide during the processing of flour derived from sulfate-deprived wheat. J. Agric. Food Chem.,2006,54:8951-8955.
    Needham, D. E., Wei, I. C., Seybold, P. G. Molecular modeling of the physical properties of alkanes.J.Am. Chem.Soc.,1988,110:4186-4194.
    Nemoto, S., Takatsuki, S., Sasaki, K., et al. Determination of acrylamide in foods by GC/MS using 13C-labeled acrylamide as an internal standard. J. Food Hyg. Soc. Jpn., 2002,43:371-376.
    Niaz, A., Sirajuddin, Shah, A., et al. A new simple sensitive differential pulse polarographic method for the determination of acrylamide in aqueous solution. Talanta,2008,74:1608-1614.
    Nielsen, N. J., Granby, K., Hedegaard, R. V., et al. A liquid chromatography-tandem mass spectrometry in method for simultaneous analysis of acrylamide and the precursors, asparagine and reducing sugars in bread. Anal. Chim. Acta,2006,557:211-220.
    Oku, K., Kurose, M., Ogawa, T., et al. Suppressive effect of trehalose on acrylamide formation from asparagine and reducing saccharides. Biosci. Biotechnol. Biochem., 2005,69:1520-1526.
    Olesen, P. T., Olsen, A., Frandsen, H., et al. Acrylamide exposure and incidence of breast cancer among postmenopausal women in the Danish diet, cancer and health study. Int. J. Cancer,2008,122:2094-2100.
    Ono, Y., Chuda, Y., Ohnishi-Kameyama, M., et al. Analysis of acrylamide by LC-MS/MS and GC-MS in processed Japanese foods. Food Addit. Contam.,2003,20:215-220.
    Ozgen, M., Reese, R. N., Tulio, A. Z., et al. Modified 2,2-azino-bis-3-ethylbenzo-thiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,2'-diphenyl-l-picrylhydrazyl (DPPH) methods. J. Agric. Food Chem.,2006,54: 1151-1157.
    Paleologos, E. K., Kontominas, M. G. Determination of acrylamide and methacrylamide by normal phase high performance liquid chromatography and UV detection. J. Chromatogr. A,2005,1077:128-135.
    Pardo, O., Yusa, V., Coscolla, C., et al. Determination of acrylamide in coffee and chocolate by pressurised fluid extraction and liquid chromatography-tandem mass spectrometry. Food Addit. Contam.,2007,24:663-672.
    Pedersen, J. R., Olsson, J. O. Soxhlet extraction of acrylamide from potato chips. Analyst, 2003,128:332-334.
    Pedreschi, F., Kaack, K., Granby, K. Acrylamide content and color development in fried potato strips. Food Res. Int.,2006,39:40-46.
    Pedreschi, F., Kaack, K., Granby, K. Reduction of acrylamide formation in potato slices during frying. LWT-Food Sci. Technol.,2004,37:679-685.
    Pedreschi, F., Kaack, K., Granby, K., et al. Acrylamide reduction under different pre-treatments in French fries. J. Food Eng,2007b,79:1287-1294.
    Pedreschi, F., Leon, J., Mery, D., et al. Color development and acrylamide content of pre-dried potato chips. J. Food Eng.,2007a,79:786-793.
    Pedreschi, F., Moyano, P., Kaack, K., et al. Color changes and acrylamide formation in fried potato slices. Food Res. Int.,2005,38:1-9.
    Perez, H. L., Osterman-Golkar, S. A sensitive gas chromatographic-tandem mass spectrometric method for detection of alkylating agents in water:application to acrylamide in drinking water, coffee and snuff. Analyst,2003,128:1033-1036.
    Pittet, A., Perisset, A., Oberson, J.-M. Trace level determination of acrylamide in cereal-based foods by gas chromatography-mass spectrometry. J. Chromatogr. A, 2004,1035:123-130.
    Platt, J. R. Influence of neighbor bonds on additive bond properties in paraffins. J. Chem. Phys.,1947,15:419-420.
    Pollien, P., Lindinger, C., Yeretzian, C., et al. Proton transfer reaction mass spectrometry, a tool for on-line monitoring of acrylamide formation in the headspace of Maillard reaction systems and processed food. Anal. Chem.,2003,75:5488-5494.
    Preston, A., Fodey, T., Elliott, C. Development of a high-throughput enzyme-linked immunosorbent assay for the routine detection of the carcinogen acrylamide in food, via rapid derivatisation pre-analysis. Anal. Chim. Acta,2008,608:178-185.
    Rasulev, B. F., Abdullaev, N. D., Syrov, V. N. et al. A quantitative structure-activity relationship (QASR) study of the antioxidant activity of flavonoids. QSAR Comb. Sci., 2005,24:1056-1065.
    Riediker, S., Stadler, R. H. Analysis of acrylamide in food by isotope-dilution liquid chromatography coupled with electrospray ionization tandem mass spectrometry. J. Chromatogr. A,2003,1020:121-130.
    Roach, J. A. G., Andrzejewski, D., Gay, M. L., et al. Rugged LC-MS/MS survey analysis for acrylamide in foods. J. Agric. Food Chem.,2003,51:7547-7554.
    Robarge, T., Phillips, E., Conoley, M. Analysis of acrylamide in food by GC-MS. LC-GC Eur., in:The Applications Book, Thermo Electron Corp. Press, San Jose, CA, September 2003, p.2-3.
    Robert, F., Vuataz, G., Pollien, P., et al. Acrylamide formation from asparagine under
    low-moisture Maillard reaction conditions.1. Physical and chemical aspects in crystalline model systems. J. Agric. Food Chem.,2004,52:6837-6842.
    Robert, F., Vuataz, G., Pollien, P., et al. Acrylamide formation from asparagine under low-moisture Maillard reaction conditions.2. Crystalline vs amorphous systems. J. Agric. Food Chem.,2005,53:4628-4632.
    Rosen, J., Hellenas, K.-E. Analysis of acrylamide in cooked foods by liquid chromatography tandem mass spectrometry. Analyst,2002,127:880-882.
    Rothweiler, B., Kuhn, E., Prest, H. GC-MS approaches to the analysis of acrylamide in foods. Am. Lab.,2004,36:35.
    Rozan, P., Kuo, Y.-H., Lambein, F. Amino acids in seeds and seedlings of the genus Lens. Phytochemistry,2001,58:281-289.
    Ruggeri, S., Cappelloni, M., Gambelli, L., et al. Chemical composition and nutritive value of nuts grown in Italy. Ital. J. Food Sci.,1998,10:243-252.
    Rydberg., P., Eriksson, S., Tareke, E., et al. Investigations of factors that influence the acrylamide content of heated foodstuffs. J. Agric. Food Chem.,2003,51:7012-7018.
    Sanders, R. A., Zyzak, D. V., Stojanovic, M., et al. A LC/MS acrylamide method and its use in investigating the role of asparagine. Presented at the Annual AOAC International Meeting, Los Angeles, CA,2002.
    Schabacker, J., Schwend, T., Wink, M. Reduction of acrylamide uptake by dietary proteins in Caco-2 gut model. J. Agric. Food Chem:,2004,52:4021-4025.
    Segtnan, V. H., Kita, A., Mielnik, M., et al. Screening of acrylamide contents in potato crisps using process variable settings and near infrared spectroscopy. Mol. Nutr. Food Res.,2006,50:811-817.
    Seron, L. H., Poveda, E. G., Moya, M. S. P., et al. Characterisation of 19 almond cultivars on the basis of their free amino acids composition. Food Chem.,1998,61:455-459.
    Serpen, A., Gokmen, V. Modeling of acrylamide formation and browning ratio in potato chips by artificial neural network. Mol. Nutr. Food Res.,2007,51:383-389.
    Slimestad, R., Fossen, T., Vagen, I. M. Onions:A source of unique dietary flavonoids. J. Agric. Food Chem.,2007,55:10067-10080.
    Soares, C., Cunha, S., Fernandes, J. Determination of acrylamide in coffee and coffee products by GC-MS using an improved SPE clean-up. Food Addit. Contam.,2006, 23:1276-1282.
    Springer, M., Fischer, T., Lehrack, A., et al. Acrilamidbildung in backwaren. Development of acrylamide in baked products. Getreide. Mehl. Brot.,2003,57: 274-278.
    Stadler, R. H., Blank, I., Varga, N., et al. Acrylamide from Maillard reaction products. Nature,2002,419:449-450.
    Stadler, R. H., Scholz, G. Acrylamide:an update on current knowledge in analysis, levels in food, mechanisms of formation, and potential strategies of control. Nutr. Rev.,2004, 62:449-467.
    Stadler, R. H., Verzegnassi, L., Varga, N., et al. Formation of vinylogous compounds in model Maillard reaction systems. Chem. Res. Toxicol.,2003,16:1242-1250.
    Summa, C. A., de la Calle, B., Brohee, M., et al. Impact of the roasting degree of coffee on the in vitro radical scavenging capacity and content of acrylamide. LWT-Food Sci. Technol.,2007,40:1849-1854.
    Summa, C., Wenzl, T., Brohee, M., et al. Investigation of the correlation of the acrylamide content and the antioxidant activity of model cookies. J. Agric. Food Chem.,2006,54: 853-859.
    Surdyk, N., Rosen, J., Andersson, R., et al. Effects of asparagine, fructose, and baking conditions on acrylamide content in yeast-leavened wheat bread. J. Agric. Food Chem.,2004,52:2047-2051.
    Swedish National Food Administration (SNFA). Information about acrylamide in food.24 April 2002, http://www.slv.se.
    Swiss Federal Office of Public Health (SFOPH). Determination of acrylamide in food. 2002, http://www.bag.admin.ch/verbrau/aktuell/d/AA_methode.pdf.
    Swiss Quality Testing Service (SQTS). Untersuchungs-methode zur bestimmung von acrylamid mit GC/MS, Standard Operation Procedure (SOP) received from SQTS (Doetokon:Switzerland),2003.
    Taeymans, D., Wood, J., Ashby, P., et al. A review of acrylamide:an industry perspective on research, analysis, formation, and control. Crit. Rev. Food Sci. Nutr.,2004,44: 323-347.
    Takatsuki, S., Nemoto, S., Sasaki, K., et al. Determination of acrylamide in processed foods by LC/MS using column switching. J. Food Hyg. Soc. Jpn.,2003,44:89-95.
    Takatsuki, S., Nemoto, S., Sasaki, K., et al. Production of acrylamide in agricultural products by cooking. J. Food Hyg. Soc. Jpn.,2004,45:44-48.
    Tareke, E. Identification and origin of potential background carcinogens:Endogenous isoprene and oxiranes, dietary acrylamide. Ph.D. Dissertation. Department of Environmental Chemistry, Stockholm University,2003.
    Tareke, E., Rydberg, P., Karlsson, P., et al. Acrylamide:A cooking carcinogen? Chem. Res. Toxicol.,2000,13:517-522.
    Tareke, E., Rydberg, P., Karlsson, P., et al. Analysis of acrylamide, a carcinogen formed in heated food stuffs. J. Agric. Food Chem.,2002,50:4998-5006.
    Tateo, F., Bononi, M. Preliminary study on acrylamide in baby foods on the Italian market. Ital. J. Food Sci.,2003,15:593-599.
    Taubert, D., Harlfinger, S., Henkes, L., et al. Influence of processing parameters on acrylamide formation during flying of potatoes. J. Agric. Food Chem.,2004,52: 2735-2739.
    Tekel, J., Farkas, P., Kovac, M. Determination of acrylamide in sugar by capillary GLC with alkali flame-ionization detection. Food Addit. Contam.,1989,6:377-381.
    Terada, H., Tamura, Y. Determination of acrylamide in processed foods by column-switching HPLC with UV detection. J. Food Hyg. Soc. Jpn.,2003,44: 303-309.
    Tilson, H. A. The neurotoxicity of acrylamide:an overview. Neurobehav. Toxicol. Teratol., 1981,3:445-461.
    Todeschini, R., Consonni, V. Handbook of Molecular Descriptors. Wiley-VCH, Weinheim, 2000.
    Umano, K., Shibamoto, T. Analysis of acrolein from heated cooking oils and beef fat. J. Agric. Food Chem.,1987,35:909-912.
    US EPA, SW 846. Method 8032A:Acrylamide by gas chromatography. US Environmental Protection Agency, Washington DC,1996.
    Viswanadhan, V. N., Ghose, A. K., Revankar, G. R.,'et al. Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships.4. Additional parameters for hydrophobic and dispersive interactions and their application for an automated superposition of certain naturally occurring nucleoside antibiotics. J. Chem. Inf. Comput. Sci.,1989,29:163-172.
    Voskresensky, O. N., Levitsky, A. P. QSAR aspects of flavonoids as a plentiful source of new drugs. Curr. Med. Chem.,2002,9:1367-1383.
    Wedzicha, B. L., Mottram, D. S., Elmore, J. S., et al. Kinetic models as a route to control acrylamide formation in food. In:Friedman, M. A., Mottram, D. S. Ed. Chemistry and safety of acrylamide in food. Advances in Experimental Medicine and Biology, New York:Springer Science+Business Media, Inc.,2005,561:235-254.
    Weisshaar, R. Acrylamide in bakery products-Results from model experiments. Deut. Lebensm.-Rundsch.,2004,100:92.
    Wenzl, T., de la Calle, M. B., Anklam, E. Analytical methods for the determination of acrylamide in food products:a review. Food Addit. Contam.,2003,20:885-902.
    Wenzl, T., Karasek, L., Rosen, J., et al. Collaborative trial validation study of two methods, one based on high performance liquid chromatography-tandem mass spectrometry and on gas chromatography-mass spectrometry for the determination of acrylamide in bakery and potato products. J. Chromatogr. A,2006,1132:211-218.
    Wicklund, T.,(?)stlie, H., Lothe, O., et al. Acrylamide in potato crisp-the effect of raw material and processing. LWT-Food Sci. Technol.,2006,39:571-575.
    Wiener, H. J. Structural determination of paraffin boiling points. J. Am. Chem. Soc.,1947, 69:17-20.
    Wiertz-Eggert-Jorissen (WEJ) GmbH. Standard operation procedure for the determination of acrylamide in baby food. Standard Operation Procedure (SOP) WEJ GmbH (Hamburg, Germany),2003.
    Wu, Z. P. Analysis of acrylamide in food by LC/time-of-flight mass spectrometry. LC-GC Eur., in:The Applications Book, JEOL USA, Inc., Peabody, MA, June 2007, p.45.
    Yasuhara, A., Tanaka, Y., Hengel, M., et al. Gas chromatographic investigation of acrylamide formation in browning model systems. J. Agric. Food Chem.,2003,51: 3999-4003.
    Yaylayan, V. A., Wnorowski, A., Locas, C. P. Why asparagine needs carbohydrates to generate acrylamide. J. Agric. Food Chem.,2003,51:1753-1757.
    Yoshida, M., Ono, H., Ohnishi-Kameyama, M., et al. Determination of acrylamide in processed foodstuffs in Japan. J. Jpn. Soc. Food Sci. Technol.,2002,49:822-825.
    Young, M. S., Jenkins, K. M., Mallet, C. R. Solid-phase extraction and cleanup procedures for determination of acrylamide in fried potato products by liquid chromatography/mass spectrometry. J. AOAC Int.,2004,87:961-964.
    Yuan, Y., Chen, F., Zhao, G.-H., et al. A comparative study of acrylamide formation induced by microwave and conventional heating methods. J. Food Sci.,2007,72:C212-C216.
    Yuan, Y., Zhao, G.-H., Hu, X.-S., et al. High correlation of methylglyoxal with acrylamide formation in glucose/asparagine Maillard reaction model. Eur. Food Res. Technol., 2008,226:1301-1307.
    Yusa, V., Quintas, G., Pardo, O., et al. Determination of acrylamide in foods by pressurized fluid extraction and liquid chromatography-tandem mass spectrometry used for a survey of Spanish cereal-based foods. Food Addit. Contam.,2006,23:237-244.
    Zyzak, D. V., Sanders, R. A., Stojanovic, M., et al. Acrylamide formation mechanism in heated foods. J. Agric. Food Chem.,2003,51:4782-4787.
    陈芳,袁媛,刘野等.食品中丙烯酰胺研究进展.中国粮油学报,2006,21:124-128.
    黄伟,邓勤,刘雪锋等.家用微波炉烹制米饭对生成致癌物质丙烯酰胺的影响.食品科技,2005,31:92-95.
    林流丹,黄才欢,欧仕益.食品中丙烯酰胺形成机理的研究进展.现代食品科技,2006,22:168-170.
    刘慧,闫树刚,高秀芝.对危害食品安全的丙烯酰胺残留含量检测方法的研究.中国农学通报,2003,19:37-39.
    刘仁平,童建.丙烯酰胺毒性的最新研究进展.职业与健康, 2006,22:12-14.
    欧仕益,张玉萍,黄才欢等.几种添加剂对油炸薯片中丙烯酰胺产生的抑制作用.食品科学,2006,27:137-140.
    王连生主编.有机污染化学.高等教育出版社,北京,2004.
    袁媛,刘野,陈芳等.葡萄糖/天冬酰胺模拟体系中丙烯酰胺的产生及其机理研究.中国食品学报,2006,6:1-5.
    张根义.热加工食品中丙烯酰胺的形成机理和风险分析.无锡轻工大学学报,2003,22:91-99.
    张英.天然功能性竹叶提取物——竹叶黄酮.中国食品添加剂,2002:54-58.
    钟崇泳,陈大志,奚星林.油条中丙烯酰胺的测定.广东化工,2004,46:15-16.
    中华人民共和国卫生部.食品中丙烯酰胺的危险性评估.2005a.http://www.moh.gov.cn/uploadfile/200504/2005413101822861.doc.
    中华人民共和国卫生部.2005年第4号公告.2005b.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700