徐州沛沿河区域农业面源污染机理及控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以徐州市沛沿河区域为研究对象,采用了资料调研、现场定点监测和跟踪监测、室内实验研究和模型模拟相结合的方法,现场采集实验土样近3吨,分析土壤、水样品约520个,共得到分析数据近3300个,系统分析了沛沿河水质的时空动态变化特征,解析了农田面源污染物迁移变化规律,建立了适用于沛沿河区域农田面源污染负荷估算模型,同时研究了面源污染物拦截、治理技术,得出下列研究成果:
     (1)水质监测表明,沛沿河污染呈现有机污染和营养盐污染特征,主要污染因子为:NH3-N、COD、TP和CODMn;2004年以来沛沿河水质逐年好转,但李集桥国控断面水质仍达不到国家规定的Ⅲ类标准;沛沿河水质受降雨径流的污染影响较大,汛期6-9月水质超标严重。
     (2)土壤静态释放实验结果表明:土壤中氮磷静态释放是一种吸附-解吸的过程,符合一级动力学模型;不同类型土壤氮磷的释放与其有效态含量和比例大小密切相关,果园土对氮磷的吸附、固定能力较弱,易于释放。施肥后土壤中氮磷的释放能力明显提高,释放量加大;土壤中氮磷的释放强度随换水次数增加而降低,施肥后土壤前3天的释放强度要明显高于后期。
     (3)采用室内模拟降雨实验,分析在不同条件下农田径流氮、磷、氨氮和CODMn的迁移变化规律,结果表明:a.降雨径流量及泥沙流失量与土壤理化性质和降雨量大小密切相关,在40mm/h和80mm/h的降雨强度下,农田地表径流量大小为:稻田地.>林地>果园地;泥沙流失量大小为:果园地>稻田地>林地;降雨强度越大,水土流失越重;b.地表径流中TP、TN、CODMn和氨氮的浓度随降雨时间的持续呈下降趋势,然后趋于平稳,随着降雨强度的增大径流浓度也相应增加。径流中PN、PP占TN和TP的比例大于DN、DP,尤以PP更为显著,氮、磷的流失主要以颗粒态形式为主;氮磷累积流失量(Y)和径流累积量(Q)之间存在幂指数函数的关系Y=aQb,式中a、b为常数,其大小同降雨强度和土壤地表特征条件有关;c.土壤施肥后径流中TN、TP和氨氮的浓度和流失量成倍增加,尤其是氨氮变化更为突出;施肥前土壤径流中氨氮对水体的污染贡献不大,但施肥后氨氮流失量增加了14.6倍。施肥对径流中的不同形态氮磷的浓度产生显著影响,径流中的DN、DP的浓度快速升高,成为氮磷流失的主要形态,对水体生态环境影响较大,因此农田施肥要避开强度大的降雨,确定合理施肥时间;d.地表覆盖能很大程度上减缓土壤的侵蚀,减少氮磷的流失。在40mm/h降雨强度下,有作物覆盖的土壤径流中TN、TP流失量比裸地分别下降了27.1%和33.3%;在80mm/h降雨强度下,TN、TP流失量比裸地分别下降了51.4%和43.8%。但作物覆盖也会因作物的浸泡使径流中CODMn浓度升高。
     (4)根据实验结果和沛沿河区域的特点,对SCS径流曲线模型和USLE模型参数以及氮磷流失量计算方法进行合理修正。通过四次单场次暴雨事件的实测验证,总体上模型精度较好。应用该模型计算了沛沿河区域2009年农田面源污染负荷,得到了总氮、总磷和泥沙负荷总量及时间分布规律。结果表明污染负荷与降水量成正相关,泥沙、总氮和总磷污染负荷主要集中在5—7月(污染负荷占全年的80%以上)。这三个月不但是农业耕作和施肥的主要时期,也是降雨主要集中的月份,由降雨所产生的地表径流成为污染物迁移的主要驱动力。
     (5)通过透水坝、人工湿地和浮水植物净化实验研究,结合沛沿河区域特点,提出了由生态透水坝系统、潜流人工湿地处理系统、生物浮床净化系统和导流系统集成的人工静脉河道生态处理工程措施,以及农业面源污染控制综合管理措施。
Taking PeiYan river of Xuzhou as the research object, using the method of literature, field monitoring and track monitoring, laboratory research and model simulation, and getting a total of nearly 3,300 data from nearly 3 tons of soil samples and about 520 water samples, this paper analyzed the spatial-temporal dynamic changes of water quality of PeiYan river and the migration of non-point source pollution from the agricultural field, created the estimation model of non-point source pollution load of PeiYan river, and studied interception and treatment technology of agricultural non-point source pollution. The major conclusions were listed as follows:
     (1)Water quality monitoring showed that PeiYan river pollution mainly contained organic pollution and nutrient pollution, the main pollution factors were NH3-N, COD, TP and CODMn, and water quality of Pei Yan river has been improved since 2004, but water quality of Li ji bridge state-controlled section still can not reachⅢstandard set by the state. Water quality of Pei Yan river was poorer during the rainy season than during other periods. During the rainy season, especially heavy rain or rainstorms (6-9 month)made non-point source pollutants to PeiYan river, which made water quality far beyond the standard.
     (2) Nitrogen and phosphorus release of different types of soil before and after fertilization showed that: The release of nitrogen and phosphorus from soil to upper water is an adsorption - desorption process, which can be expressed in first-order kinetics model. The release of nitrogen and phosphorus was affected by different types of land, among them phosphorus release of paddy land was slower than other soils, but that of orchard land was reversed. Fertilization improved markedly the release of soil nitrogen and phosphorus. Increasing the number of changing water times nitrogen and phosphorus release intensity decreased, and the release intensity after fertilization on the first 3 days was significantly higher than the latter.
     (3) Under different rainfall intensity, different types of soil, different land cover and fertilization, migration of nitrogen, phosphorus, ammonia nitrogen and CODMn in the farmland runoff was studied by taking the indoor simulated rainfall experiment. The results showed that: a. The runoff and sediment concentration in runoff changed as different physical and chemical properties of different types of soil .Under 40mm / h and 80mm / h , the order of the size of farmland surface runoff was paddy land.> forest land > orchard land and that of erosion sediment transport was orchard land> paddy land> forest land. There was a positive correlation between rainfall intensity and soil erosion. b.TP, TN, CODMn and ammonia concentration in surface runoff decreased with duration of rainfall, and then tended to be stable. And TP, TN, CODMn and ammonia concentration in surface runoff increased with the increasing of rainfall intensity. The proportion of PN and PP of total nitrogen and total phosphorus was greater than that of DN and DP, and the proportion of PN and PP significantly increased with the increasing of rainfall intensity, especially PP, which showed that granule state was the main form of nitrogen and phosphorus loss in rainfall runoff. The relationship between the cumulative amount of nitrogen and phosphorus loss (Y) and the cumulative amount of runoff (Q) was Y = aQb, in which a and b were constants and they were affected by rainfall intensity and characteristics of soil surface. c. Nitrogen and phosphorus concentration in runoff significantly increased after fertilizer, especially ammonia nitrogen concentration increased more than 10 times. Fertilization had a significant influence on the concentration of different forms of nitrogen and phosphorus in runoff, among them, DN and DP concentration were significantly increased, which showed that fertilizer applied to soil was not easy to be absorbed and fixed in a short time, so farm fertilization should avoid rainfall time to reduce nitrogen and phosphorus loss. d. Crop cover made nitrogen, phosphorus and ammonia nitrogen concentration in soil runoff decrease significantly, and farmland surface cover could significantly reduce soil erosion and nitrogen and phosphorus loss. Under 40mm/h rainfall intensity, TN and TP loss dropped 27.1% and 33.3% respectively in covered soil than bare area in runoff; Under 80mm/h rainfall intensity, TN and TP loss dropped 51.4% and 43.8% respectively .However, cover crop immersion also increased CODMn concentration.
     (4)The runoff curve of SCS model and USLE models were modified according to the characteristics of the PeiYan river region. The coefficient of nitrogen and phosphorus in water distribution was calculated based on the experiment results, correcting the traditional calculation ways reasonably. Screening comparing with the measured and simulated values by a single storm event four times, the accuracy of model was fine overall. Appling to the model to accout the non-point source pollution load of farmland along the PeiYan river region in 2009, we got the total nitrogen, total phosphorus, total sediment load and time distribution law. The results show that the pollution load was positively a direct proportion correlated with precipitation, while sediment, the pollution load of total nitrogen and total phosphorus were concentrated in May, June and July (accounting for more than 80% of the annual total pollution load). The three months were not only the main period of farming fertilization, but the main focus rainfall months, and the runoff generated from rainfall became a key driver of transport of pollutants.
     (5)Through the purificatory experimental study on the ecosystem dam, artificial wetland and submersed plants, combining the characteristics of PeiYan river regional, the engineering measures such as the artificial vein ecological river settlement which was composed of ecosystem dam system, undercurrents of artificial wetland system , biological floating bed purification system and the diversion of integrated system and the coastwise buffer zone settlement , the integrated management measures of agricultural non-point source pollution control have been put forward.
引文
[1]宋长青,冷疏影,吕克解等.国家自然科学基金会地理学“十五”优先资助领域框架[J].地理学报,1999,54 (6):559~562
    [2]王柯,朱荫媚.土壤耕作与农业非点源污染[J].耕作与栽培,1996,(2):15-17
    [3]方淑荣,刘正库.论农业面源污染及其防治对策[J].农业科技管理,2006,25(3):22-23
    [4]晏维金,尹澄清,孙淮等.磷氮在水田湿地中的迁移转化及径流流失过程[J].应用生态学报,1999,10(3):312-316
    [5]崔键,马友华,赵艳萍等.农业面源污染的特性及防治对策[J].中国农学通报,2006,22(1):335-340
    [6]闰伍玖,鲍祥.巢湖流域农业活动与面源污染的初步研究[J].水土保持学报,2001,15(3):129-132
    [7]刘润堂,许建中,冯绍元等.农业面源污染对湖泊水质影响的初步分析[J].中国水利,2002,(6):542-546
    [8]张维理,武淑霞,冀宏杰等.中国农业面源污染形势估计及控制对策I.21世纪初期中国农业面源污染的形势估计[J].中国农业科学,2004,37(7):1008—1017.
    [9]刘星,赵洪光.农业生产面源污染控制探讨[J].污染防治技术,2006,19(l):38-40
    [10]王晓燕.农业面源污染及其控制管理[J].农业面源污染与综合防治,2004,(11):10-13
    [11] HAITHDA. Land use and water quality in New York River [J]. Environmental Engineering Division,ASCE,1976,102(l): 1-15
    [12] Arheimer B,Lid6n R.Nitrogen and phosphorus concentrations from agricultural catchments—influence of spatial an d temporal variables[J].Journal of Hydrology,2000, 227(1):l40-l59
    [13]王有乐,高康宁,蒲生彦.黄河兰州段面源污染分析与防治对策[J].人民黄河,2008, 30(10):57-60
    [14]洪克险.论面源污染控制在城市水污染治理中的重要——上海面源污染现状及思考[J].污水处理,2008,(10):55-58
    [15]席运官,王涛.太湖流域发展有机农业控制面源污染的可行性分析[J].农业环境与发展, 2008,(5):5-8
    [16]倪喜云,杨苏树,杨怀钦等.洱海流域坡耕地面源污染治理技术与模式研究[J].农业环境与发展,2008,(5):90-92
    [17] J R,Chert L D,Fu B J,et a1.Spatial and temporal change characteristics of non-point N in surface water in Yuqiao Reservoir watershed[J]Geographical Science,2002,22(2): 238-242(in Chinese)
    [18] Dorioz J M,Cassell E A,Orand A,et a1.Phosphorus storage,transport and expert dynamics in the Foron River watershed[J].Hydrological Processes,1998,12(2): 285-309.
    [19] Xue Y,David M B,Gentry L E,et a1.Kinetics and modeling of dissolved phosphorus expe rt from a tile—drained agricultural watershed[J].Journal of Environmental Quality, 1998, 27(6):9l7-922
    [20]杨斌,程巨元.农业非点源氮磷污染对水环境的影响研究[J].江苏环境科技,1999, 12(3): 19-21
    [21]于峰,史正涛,彭海英.农业非点源污染研究综述[J].环境科学与管理,2008,33(8): 54-65
    [22]潘根兴,焦少俊,李恋卿,等.低施磷水平下不同施肥对太湖地区黄泥土磷迁移性的影响[J],环境科学,2003,3(3):91-95
    [23]杨志敏,陈玉成,魏世强等.重庆市农业面源污染影响因子的系统分析.农业环境科学学报,2009,28(5):999-1004
    [24]汪祥,李晓玲,张敏等.三峡库区秭归县农业面源污染原因[J].农业科技通讯, 2008(12): 98-100,147
    [25]张国梁,章申.农田氮素淋失研究进展[J].土壤,1998,6:291-297
    [26]肖羽堂,张晶晶,吴鸣等.我国水资源污染与饮用水安全性研究[J].长江流域资源与环境,2001,10(1):51-59
    [27]张维理.我国北方农用氮肥造成地下水硝酸盐污染的调查[J].植物营养与肥料学报,1995,1(2):80-87
    [28] Smith K A,Jackson D R,Pepper T. Nutrient losses by surface runoff following the application of organic manures to arable land: Nitrogen[J].Environmental Pollution,2001,112:41-51
    [29]袁冬海,王兆霉,陈欣等.不同农作方式红壤坡耕地土壤氮素流失特征[J].应用生态学报,2002,13(7):863-866
    [30]朱红霞,陈效民,方堃.太湖地区旱季、雨季水体污染影响因素分析[J].农业环境科学学报2008,27(6):2396-2400
    [31]谢霞.从水体富营养化谈仙女湖水环境保护问题[J].江西化工,2008(4):46-50
    [32]汪祥,李晓玲,张敏等.三峡库区秭归县农业面源污染原因[J].农业科技通讯, 2008(12): 98-100,147
    [33]杨志敏,陈玉成,魏世强等.重庆市农业面源污染影响因子的系统分析.农业环境科学学报,2009,28(5):999-1004
    [34] Eghball B,Binofrd G D,Baltens D. Phosphorus movement and adsorption in a soil receiving long-term manure fertilizer application. Journal of Environmental Quality,1996,25(6):1339-1343
    [35] Sharpley A N,Withers P J A. The environmentally-sound management of agricultural phosphorus. Fert. Res.,1994,39:133-146
    [36] Heekrath G,Brookes P C,Poulton P R et al. Phosphorus leaching from soils containing different phosphorus concentrations in the Broadbalk experiment,J. Environ. Qual.,1995,24(5):904-910
    [37]单保庆,白颖.小流域磷污染物非点源输出的人工降雨模拟研究[J].环境科学学报, 2000,20(1):33-37
    [38]冀伟珍,农业面源污染的原理及其防治的新进展[J].中国西部科技,2008,7(36):7-9
    [39] Li W C,Armstrong D E,Williams J D,et al. Rate and extent of inorganic phosphate exchange in lake sediments. Soil Sci. Soc. Am. Proc.,1972,36:279-284
    [40] Kuo S,Lotse E G. Kinetics of phosphate adsorption by calcium carbonate and Ca-kaolinite. Soil Sci. Soc. Am. Proc.,1972,36:725-729
    [41] Kuo S,Lotse E G. Kinetics of phosphate adsorption and desorption by hematite and gibbsite, Soil Sci.,1974,116:400-406
    [42] Chien S H,Clyaton W R. Application of Elovich equation to the kinetics of phosphate release and sorption in soils. Soil Sci. Soc. Am.J,1980,44:265-268
    [43] Sanyal S K De Datta S K. Chemistry of phosphorous transformations in soil. Advances in Soil Science. New York:SpringerVerlag,1991:l-120
    [44]程文娟,史静,夏运生.滇池流域农田土壤氮磷流失分析研究[J].水土保持学报, 2008, 22(5): 52-55.
    [45]刘洁,马友华,石润圭等.巢湖流域农业面源污染现状分析及防治对策思考[J].农业环境与发展,2008(6):13-16
    [46]朱红霞,陈效民,方堃.太湖地区旱季、雨季水体污染影响因素分析[J].农业环境科学学报2008,27(6):2396-2400
    [47]汪祥,李晓玲,张敏等.三峡库区秭归县农业面源污染原因[J].农业科技通讯,2008(12): 98-100
    [48]窦培谦,王晓燕,王丽华.非点源污染中氮磷迁移转化机理研究进展[J].首都师范大学学报,2006,27(2):93-98
    [49]汤立群,陈国祥.小流域产流产沙动力学模型[J].水动力学研究与进展, A辑,1997, 12(2): 164~174
    [50]吴春艳,庄舜尧,杨浩等.土壤磷在农业生态系统中的迁移[J].东北农业大学学报, 2003, 34(2): 210-218
    [51]单保庆,白颖.小流域磷污染物非点源输出的人工降雨模拟研究[J].环境科学学报, 2000,20(1):33-37
    [52]冀伟珍,农业面源污染的原理及其防治的新进展[J].中国西部科技,2008,7(36):7-9
    [53]涂建峰,郑丰,穆宏强.湖泊富营养化的产生机制及主要影响[J]. 2007,28(11):1-4
    [54]黄承嘉.高尔夫球场农药化肥对水环境的影响和对策[J].农村生态环境,1998,14(1): 35-38.
    [55]王超.氮类污染物在土壤中迁移转化规律试验研究[J].水科学进展,1997, 8(2): 176~182.
    [56]李定强等.广东省东江流域典型小流域非点源污染物流失规律研究[J].土壤侵蚀与水土保持学报, 1998,(14)3 :12 ~18.
    [57]杨金玲,张甘霖,周瑞荣.皖南丘陵地区小流域氮素径流输出的动态变化.农村生态环境,2001,17(3):1~4.
    [58]陈欣,王兆骞.红壤小流域坡地不同利用方式对土壤磷素流失的影响[J].生态学报, 2000, 20 (3) :374~377.
    [59] Schlling K.E., Libra R.D. The relationship of nitrate concentrations in streams to row crop land use in Iowa[J]. J.Environ.Qual.,2000,29(6):1846~1951.
    [60]黄满湘,章申,张国梁等.北京地区农田氮素养分随地表径流流失机理.地理学报, 2003, 58(1): 147~154.
    [61]郑粉莉,李靖,刘国彬.国外农业非点源污染(面源污染)研究动态[J].水土保持研究.2004,11(4):64~66
    [62]谢红梅,朱波.农田非点源污染研究进展[J].生态环境.2003,12(3):349~352
    [63]单保庆,尹澄清,于静,白颖.降雨-径流过程中土壤表层磷迁移过程的模拟研究[J].环境科学学报.2001,21(1):7~12
    [64]陈友媛,惠二青,金春嫟.非点源污染负荷的水文估算方法[J].环境科学研究.2003,16(1):10~13
    [65] Li C,Farahbakhshazadb N, Jaynes D B. Modeling nitrate leaching with a biogeochemical model modified based on observations in a row~crop field in Iowa. Ecological Modeling,2006,196:116~130
    [66] Cox F R,Hendricks S E. Soil test phosphorus and clay content effects on runoff water quality[J]. J. Environ. Qual.,2000,29:1582-1586
    [67] Vadas P A, Kleinmen P J A, Sharpley A N. A simple method to predict dissolved phosphorus in runoff from surface-applied manures [ J].J. Environ. Qual., 2004,33(2):749-756
    [68]杨丽霞,杨桂山,苑韶峰,吴业.不同施肥水平下太湖流域典型蔬菜地土壤磷素径流特征[J].中国环境科学,2007,27(4):518-523
    [69]王勇强,王玉宽,傅斌等.不同耕作方式对紫色土侵蚀的影响[J].水土保持研究.2007,14(3):333-335
    [70]梁涛,张秀梅,章申等.不同土地利用/覆被类型下磷素随暴雨径流的迁移特征[J].环境科学,2003,24 (2):35—40
    [71] Nash D M,Halliwell D J. Fertilizer and phosphorus loss from productive grazing system[J]. Aust J Soil Res,1999,37 (3):403~429
    [72] Vadas P A, Haggard B E, Gburek W J. Predicting dissolved phosphorus in runoff from manured field plots[J]. J.Environ.Qual.,2005,34(4):1347-1353
    [73] Chanasyk D.S.,Mapfumo E. ,Willms W. Quantification and simulation of surface runoff from fescue grassland watersheds. Agricultural Water Management,2003,59:137-153
    [74]阎伍玫.巢湖流域不同土地利用类型地表径流污染特征研究[J].长江流域资源与环境,1998,7(3):274—277
    [75] Bruce K. Ferguson. Introduction to Stormwater:Concept,Purpose,Design. John Wiley & Sons, Inc. (M), 1998
    [76] DAS S, RUDRA R P, GOEL P K, et al. Evaluation of AnnAGNPS in Cold and Temperate Regions[J].Water Science and Technology,2006,53 (2) :263 - 270.
    [77] YUAN Y, BINGNER R L, THEURER F D, et al. Water Quality Simulation of Rice/Crawfish Field Ponds Within Annualized AGNPS [J]. Applied Engineering in Agriculture, 2007,23 ( 5 ) :585 - 595
    [78] USDA. CREAMS, A field scale model for chemicals, runoff, and erosion from agricultural management system. Conservation Research Report No. 26. USDA, Washington, D.C., 1980
    [79] Arnold J G, Allen P M, Bernhardt G. A comprehensive surface-ground-water flow model. J Hydrol, 1993, 142: 47-69
    [80] Crawford N H, Linsley R K. Digital simulation in hydrology: Stanford Watershed Model IV. Dept Civil Engineering, Stanford University, Stanford, California, Technical Report, 1996, 39:210
    [81] Huber, W.C. and R.E. Dickinson. Storm Water Management Model Version 4, User’s Manual. U.S. EPA, Athens, GA. EPA/600/3-88/001a (NTIS PB88-236641/AS)
    [82] Pantalion, J., A. Scharlach, and G. Oswald. Water quality master planning in an urban watershed. Watershed Management: Planning for the 21st Century. Proceeding of the ASCE’s First International Conference of Water Resources Engineering, August 14-16, 1995
    [83] Connolly R D, Silburn D M. Distributed parameter hydrology model (ANSWERS) applied to a range of catchments scales using rainfall simulator data II: Application to spatially uniform catchments. J Hydrol, 1995, 172: 105-125
    [84] Beasley, D.B. Distributed parameter hydrologic and water quality modeling. Agricultural Nonpoint Source Pollution: Model Selection and Application. ed. Giorgini and F. Zingales. 1986: 345-362
    [85] Baxter E. Vieux, and Scott Needham. Nonpoint pollution model sensitivity to grid-cell size. J of Water Resour Plann Manage, 1993, 119 (2): 141-157
    [86] Udoyara S. Tim, Robert Jolly, and Hsiu-Hua Liao. Impact of landscape feature and feature placement on agricultural non-point source pollution control. J. of Water Resource Planning Manage, 1995, 121(6): 463-470
    [87] Chansheng He, Changan Shi, Changchun Yang, and Bryan P. Agosti. A windows-based GIS-AGNPS intergace. Am Water Res Assoc, 2001, 37 (2): 395-406
    [88] L.F. León, E.D. Soulis, N. Kouwen and G. J. Farquhar. Nonpoint source pollution: A distributed water quality modeling approach. Wat. Res., 2001, 35 (4): 997-1007.
    [89] A. Vali-Khodjeini. Estimating runoff from rainfall using the SCS curve number procedure. International Symposium on Comprehensive Watershed Management, 7-10 September 1998, Beijing, China: 303-310
    [90]贺宝根等.农田非点源污染研究中的降雨径流关系——SCS法的修正.环境科学研究,2001,14(3):49-51
    [91] Simanton, J.R., Hawkins, R.H., Mohseni-Saravi, M. and Renard, K. G. Runoff curve number variation with drainage area. Trans ASCE, 1996, 39 (4): 1391-1394.
    [92] SEO D, KIM J S, CHANG E. Application of Medium Class Land Cover Maps to AVSWAT2000 for the Prediction of Inflow, CBOD, TN and TP for Yongdam Lake, Korea [J].Water Science and Technology ,2007,55 (1/2) :513 -518
    [93] De Roo A P J, Hazelhoff L, Heuvelink G B M. Estimating the effects of spatial variability of infiltration on the output of a distributed runoff and soil erosion model using Monte Carlo methods. Hydrol Processes, 1992, 6: 127-143
    [94] KANG M S, PARK S W, LEE J J, et al. Applying SWAT for TMDL Programs to a Small Watershed Containing Rice Paddy Fields [ J ]. Agricultural Water Management,2006,79 ( 1 ) :72 - 92
    [95] A. van Griensven and W. Bauwens. Integral water quality modeling of catchments. International Symposium on Comprehensive Watershed Management, 7-10 September 1998, Beijing, China: 321-328
    [96]李丹,薛联青,郝振纯.基于SWAT模型的流域面源污染模拟影响分析[J].环境污染与防治,2008,30(3):5-7
    [97]张建.CREAMS模型在计算黄土坡地径流量及侵蚀量中的应用.土壤侵蚀与水土保持学报,1995,1(1):54-57
    [98]章明奎.农业系统中氮磷的最佳管理实践[M].北京:中国农业出版社,2005:1-45
    [99]许春华,周琪,宋乐平.人工湿地在农业面源污染控制方面的应用[J].重庆环境科学,2001,23(3):70-72
    [100]尹澄清,单保庆.多水塘系统:控制面源磷污染的可持续方法[J].AMB10——人类环境杂志,2001,30(6):369-375
    [101]毛战坡,彭文启,尹澄清等.非点源污染物在多水塘系统中的流失特征研究[J].农业环境科学学报,2004,23(3):530-535
    [102]曹志洪,林先贵,杨林章等.论“稻田圈”在保护城乡生态环境中的功能Ⅱ.稻田土壤氮素养分的累积、迁移及其生态环境意义[J].土壤学报,2006,43(2): 256-260
    [103] DUNNE E J,CULLETON N,O DONOVAN G et a1.An Integrated Constructed Wetland to Treat Contaminants and Nutrients From Dairy Farmyard Dirty Water[J].Ecological Engineering,2005, 24(3):219-232
    [104]刘世梁,傅伯杰.景观生态学原理在土壤学中的应用[J].水土保持学报,2001,15(3): 102-106
    [105]郭青海,马克明,赵景柱等.城市非点源污染控制的景观生态学途径[J].应用生态学报,2005, 16(5): 977-981
    [106]谷丰.流域农业面源污染动态监控系统的建立和运行[J].环境保护科学,2008, 34(6): 39-41
    [107] Dillaba T A,Renear R B,Mostaghimi S,et a1.Vegetative Filter Strips for A cultural Nonpeint Source Pollution Control[J].Transactions of the American Society of A cultural Engineers,1989,32(4):5l3-5l9
    [108] Nahlik, A M, Mitsch, W J .Tropical treatment wetlands dominated by free-floating macrophytes for water quality improvement in Costa Rica. ECOLOGICAL ENGINEERING, 2006,28 (3): 246-257
    [109] David, M B, Wall, L G, Royer, T V,Tank, J L. Denitrification and the nitrogen budget of a reservoir in an agricultural landscape. ECOLOGICAL APPLICATIONS, 2006, 16 (6): 2177-2190
    [110]杨永兴,刘兴土,韩顺正等.三江平原沼泽区“稻一苇一鱼”复合生态系统生态效益研究[J].地理科学,1993,l3(1): 4l-48
    [111]尹澄清,兰智文,晏维金.白洋淀水陆交错带对陆源营养物质截留作用的初步研究[J],应用生态学报,1995, (6): 76-80
    [112]曲向荣,贾宏字,张海荣,李秀珍等.辽东湾芦苇湿地对陆源营养物质净化作用的初步研究[J].应用生态学报,2000, ll(2): 270-272
    [113]丁疆华,舒强.人工湿地在处理污水中的应用[J].农业环境保护,2000,19(5): 320-332
    [114] Gilliam JW, Parsons JE and Mikelsen RL.Nitrogen dynamics and buffer zones[M].In:Haycock NE,Burt TP, Goulding KW and Pinay G. eds.Bufer Zones: Their processes and potential in water protection. Quest Environmental, Harpenden, 1997, 54-61
    [115] Tockner K, Pennetzdorfer D,Reiner N,Schiemer F, Ward JF.Hydrological connectivity and the exchange of organic matter and nutrients in a dynamic river-floodplain system[J].Freshwater Biology,1999, 41: 521-535
    [116] UTLER G B, SRIVASTAVA P. An Alabama BMP Database for Evaluating Water Quality Impacts of Alternative Management Practices [ J ]. Applied Engineering in Agriculture, 2007,23 ( 6 ) : 727 - 736
    [117] Lowrance R, Altier L S, Williams R G, et al. REMM: the Riparian Ecosystem Management Model [J]. Journal-of-Soil-and-Water-Conservation- Ankeny. 2000, (55): 27-34.
    [118] BURFORD M A, LORENZEN K. Modeling nitrogen dynamics in intensive shrimp ponds: the role of sediment remineralization[J]. Aquaculture, 2004, 229(1): 129-145.
    [119] Noemi Ran, Moshe Agami, Gideon Oron. A pilot study of constructed wetlands using duckweed (Lemna gibba L.) for treatment of domestic primary effluent in Israel [J]. Water Research ,2004, 38 :224-248
    [120]杨文龙,黄永泰,杜娟.前置库在滇池非污染源控制中的应用研究.云南环境科学,1996,15(4):8~10
    [121]边金钟,王建华,王洪起等.于桥水库富营养化防治前置库对策可行性研究.城市环境与城市生态,1994,7(3):5~9
    [122]自申.前置库在滇池流域运用研究.云南环境科学,1996,5(2):33~35
    [123]钟勇.美国水土保持中的缓冲带技术[J].国外水利, 2004,(10):63-65
    [124] Greg Ruark. Inside Agroforestry:Buffers: More Relevant Today Than Ever,USDA, Nebraska, 2001
    [125]谢德体,张文,曹阳.北美五大湖区面源污染治理经验与启示[J].西南大学学报(自然科学版),2008,30(11):81-91
    [126]诸葛亦斯,刘德富,黄钰铃.生态河流缓冲带构建技术初探[J].水资源与水工程学报, 2006,17(2):63-67
    [127]邓红兵,王青春,王庆礼等.河岸植被缓冲带与河岸带管理[J].应用生态学报,2001, 12(6):951-954
    [128]叶建锋,操家顺.生态修复技术在保护水库水源地中的应用[J].环境科学与技术,2004, 27(2):61- 63
    [129]杨馥,曾光明,焦胜等.城市滨水区的生态恢复研究[J].环境科学与技术,2005,28(4): 108-110
    [130]颜昌宙,金相灿,赵景柱等.湖滨带的功能及其管理[J].生态环境,2005,14(2):294- 298
    [131]潘响亮,邓伟.农业流域河岸缓冲区研究综述[J].农业环境科学学报, 2003, 22(2): 244-247
    [132]彭超英,朱国洪等.人工湿地处理污水的研究[J].重庆环境科学, 2000, 22(6): 43-45
    [133] U.S.EPA.Guiding Principles For Constructed Treatment Wetlands: Providing for Water Quality and Wildlife Habit[C]. EPA843-B-00-003, U.S.EPA, Office of Wetlands, Oceans and Watershed, Washington DC,2000
    [134] Z.H.Ye, S.N.Whiting,et al. Removal and Distribution of Iron, Manganese, Cobalt, and Nickel within a Pennsylvania Constructed Wetland Treating Coal Combustion By-Product Leachate. J.ENVIRON [J]. QUAL, 2001, 30(7-8):1464-1473
    [135] Keefer, Kim S. Bedtime for biosolids [J]. Water Environment & Technology, 2000,12(2):61-65
    [136] J.N.Carleton, T.J.Grizzard, et al. Factors Affecting the Performance of Stormwater Treatment Wetlands [J]. Water Research, 2001,35(6):1552-1562
    [137] RICHARDS C E, MUNSTER C L, VIETOR D M, et al. Assessment of a Turfgrass Sod Best Management Practice on Water Quality in a Suburban Watershed[J]. Journal of Environmental Management, 2008,86 (1 ) : 229– 245
    [138]白晓慧,王宝贞等.人工湿地污水处理技术及其发展应用[J].哈尔滨建筑大学学报, 1999,32(6):88-92
    [139]吴亚英.人工湿地在新西兰的应用[J].江苏环境科技,2000,13(3):32-33
    [140]谢龙,汪德爟,戴.水平潜流人工湿地有机物去除模型研究[J].中国环境科学,2009,29(5):502-505
    [141]郭跃东,何岩,邓伟等.扎龙河滨湿地对地表径流氮磷污染物的净化作用[J].环境科学,2005, 26(3):49-55
    [142]夏汉平,人工湿地处理污水的机理与效率[J].生态学杂志,2002,21(4):51-59
    [143]王海珍,陈德辉,王全喜,等.水生植被对富营养化湖泊生态恢复的作用[J].自然杂志,2002,24(l):33-36
    [144] CHOU W S, LEE T C, LIN J Y, et al. Phosphorus Load Reduction Goals for Feitsui Reservoir Watershed, Taiwan[J]. Environmental Monitoring and Assessment, 2007, 131 (1/2/3): 395-408
    [145] Salinger Y, Geifman Y and Aronowich M. Orthophosphate and calcium carbonate solubilities in the Upeer Jordan watershed basin.J.Environ.Qual.2002,22:672-679
    [146]邓红兵,王庆礼.流域生态学——新学科、新思想、新途径[J].应用生态学报, 1998, 9(4):423-427
    [147] Sherwell J. Riparian Buffer Effectiveness Literature Review [A]. Maryland Department of Natural Resources January, 2003: 62-64
    [148] Inamdar S P, Sheridan J M, Williams R G, et al. Riparian ecosystem management model (REMM): I. testing of the hydrologic component for a coastal plain riparian system [A]. Transactions-of-the-ASAE, 1999, 42(6): 1679-1689
    [149] BENNE Tr Pau1. Guidelines for assessing and monitoring riverbank health [M]. NSW: Hawkesbury-Nepean Catchment Management Trust. 2000: 3-4
    [150] Inamdar S P, Lowrance R, Altier L S, et al. Evaluation of the Riparian Ecosystem Management Model: IV. Multiple buffer scenarios [M]. Transactions-of-the-ASAE. 2000, (41): 179-189
    [151] Lowrance R,Altier L S,Williams R G,et al. REMM: the Riparian Ecosystem Management Model [J]. Journal-of-Soil-and-Water-Conservation- Ankeny. 2000, (55): 27-34
    [152] Jordan T E, Correll D L, Weller D E. Nutrient interception by a riparian forest receiving inputs from adjacent cropland [J]. Journal of Environmental Quality, 1993, 22(3): 467-473
    [153] Fennesy M S, Cronk J K. The effectiveness and restoration potential of riparian ecotones for the management of nonpoint source pollution , particularly nitrate[J]. Critical Reviews in Environmental Science and Technology, 1997, 27(4): 285-317
    [154] LLOYD A ,LAW B,GOLDINGAY R.Bat activity on riparian zones and upper slopes in Australian timber production forests and the effectiveness of riparian buffers[J].Biological Conservation,2006,129(2):207-220
    [155] CULLUM R F, KNIGHT S S, COOPER C M, et al. Combined Effects of Best Management Practices on Water Quality in Oxbow Lakes From Agricultural Watersheds[ J]. Soil & Tillage Research, 2006,90(1/2) :212– 221
    [156] Klapproth J C, Johnson J E. Understanding the science behind riparian forest buffers: Effects on water quality [M]. Virginia Cooperative Extension. 2000, Publication Number 420-151
    [157]罗璇,史志华,尹伟等.小流域土地利用结果对氮素输出的影响[J].环境科学,2010,31(1):58-62
    [158]全国水环境容量核定技术指南[M].中国环境规划院, 2003年
    [159]长江口及毗邻海域碧海行动计划[M].江苏省环境监测中心, 2006年
    [160] 2008年沛县年鉴[M].沛县人民政府,2009年
    [161]鲁如坤主编.土壤农业化学分析方法[M].中国农业科技出版社,1999
    [162]高祥照.测土配方施肥技术[M].北京:中国农业出版社,2005
    [163]袁辉,黄川,崔志强等.三峡库区消落带与水环境响应关系预测[J].重庆大学学报(自然科学版),2007,l30(9):134-137
    [164]于丹,张克强,王风等.天津黄潮土剖面磷素分布特征及其影响因素研究[J].农业环境科学学报,2009,28(3):518-521
    [165]袁辉,王里奥,胡刚,等.三峡库区消落带受淹土壤氮和磷释放的模拟实验[J].环境科学研究,2008,21(1):103-106
    [166] Kima L H , Choib E , Gilb K I , et al . Phosphorus release rates from sediments and pollutant characteristics in Han River, Seoul , Korea[J]. Sci Total Environ, 2004 , 321 : 115-125
    [167]杨晓华,刘瑞民,曾勇.环境统计分析[M].北京:北京师范大学出版社,2008
    [168]王少丽,王兴奎,许迪.农业非点源污染预测模型研究进展[J].农业工程学报,2008,24 (1):265-271
    [169]荚德安,陈金林,王世红等.太湖流域农田生态系统管理与非点源污染控制[J].长江流域资源与环境,2007,16(4):489-493
    [170]梁涛,王红萍,张秀梅等.官厅水库周边不同土地利用方式下氮、磷非点源污染模拟研究[J].环境科学学报,2005,25(4):483-490
    [171]黄满湘,章申,唐以剑等.模拟降雨条件下农田径流中氮的流失过程[J].土壤与环境, 2001,10(1):6-10
    [172]张瑞国,王克勤,陈奇伯等.昆明市水源区不同利用类型坡地径流氮和磷的输出特征[J].环境科学研究,2009,22(5):607-611
    [173]徐泰平,朱波,况福虹等.平衡施肥对紫色土坡耕地磷素径流流失的影响[J].农业环境科学学报,2006,25(4);1055-1059
    [174]陆敏,刘敏,黄明蔚等.大田条件下稻麦轮作土壤氮素流失研究[J].农业环境科学学报,2006,25(5):1234-1239
    [175]沈晋,沈冰,李怀恩等.环境水文学[M].安徽科技技术出版社,1992:49-50
    [176]薛素玲.基于GIS的黑河流域非点源氮磷模拟:硕士学位论文[D].西安:西安理工大学,2006
    [177] Wischmeier W.H.,Use and Misuse of Universal Soil Loss Equation.J.of Soil and Conservation,31(1),1976
    [178]王万中,焦菊英,郝小品等.中国降雨侵蚀力R值的计算与分布[J].水土保持学报,1995(4):45-50
    [179]卜兆宏.降雨侵蚀力因子的算法的初步研究[J].土壤学报,1992(4):63-68.
    [180]蔡崇法.应用USLE模型与地理信息系统IDRISI预测小流域土壤侵蚀量研究[J].水土保持学报,2000,2:113~120
    [181]游松财.GIS支持下的土壤侵蚀量估算[J].自然资源学报,1999,14(2):27~33
    [182]陈欣,郭新波.采用AGNPS模型预测小流域磷素流失的分析[[J].农业工程学报,2000,16(5):44~47
    [183]傅伯杰,陈利顶等.黄土丘陵区小流域土地利用变化对生态环境的影响[J].地理学报,1999, 54(3):326-335
    [184]刘瑞民,杨志峰,丁晓雯等.土地利用/覆盖变化对长江上游非点源污染影响研究[J].环境科学,2006,27(12):2407-2414
    [185]李兆富,杨桂山,李恒鹏.基于改进输出系数模型的流域营养盐输出估算[J].环境科学,2009,30(3):668-672
    [186]史志华,蔡崇法等.基于GIS的汉江中下游农业面源氮磷负荷研究[J].环境科学学报,2002,22(4):473~477
    [187]孙艳玲,谢德体等.基于DEM的流域降雨径流模拟研究——以三峡库区晏家河小流域为例[J].水土保持学报,2004,18(1):82~84
    [188]任磊,黄廷林.水环境非点源污染的模型模拟[J].西安建筑科技大学学报,2002,34(1):9~13
    [189]李强坤,李怀恩,胡亚伟等.农业非点源污染田间模型及其应用[J].环境科学,2009,30(12):3509-3513
    [190]王晓燕.非点源污染及其管理[M].北京:海洋出版社,2003:43-48
    [191]贺锋,吴振斌,陶菁等.复合垂直流人工湿地污水处理系统硝化与反硝化作用[J].环境科学, 2006,26 (1):47~50李涛,周律.湿地植物对污水中氮、磷去除效果的试验研究[J].环境工程,2009,27(4):25-28
    [192]常会庆,寇太记,乔鲜花等.几种植物去除污染水体中养分效果研究[J].水土保持通报, 2009, 29(5): 118-122
    [193]沈根祥,徐介乐,胡双庆等.浅水体浮萍污水净化系统的除氮途径[J].生态与农村环境学报, 2006, 22(1): 42-47
    [194]袁东海,任全进,高士祥等.几种湿地植物净化生活污水COD、总氮的比较[J].应用生态学报, 2004, 15(12) : 2337- 2341
    [195]李建娜,胡曰利,吴晓芙等.人工湿地污水处理系统中的植物氮磷吸收富集能力研究[J].环境污染与防治, 2007, 19 (7) : 505-509
    [196] Andrew M Ray, Richard Sinouye. Development of vegetation in a constructed wetland receiving irrigation return flows [J]. Agriculture, Ecosystems and Environment, 2007, 121: 401-406.
    [197] Cristina S C, Antonio O S, Paula M L C. Constructed wetland systems vegetated with different plants applied to the treatment of tannery wastewater [J] .Water Research ,2007 ,41 :1790-1798.
    [198]周早弘,张敏新.防治农业面源污染的工程技术[J].环境与可持续发展,2007,(6):55-57
    [199]王晓燕,张雅帆,欧洋,阎育梅.最佳管理措施对非点源污染控制效果的预测[J].环境科学学报.2009,29(11):2440-2450
    [200]姜甜甜,高如泰,夏训峰等.北京市农田生态系统氮素养分平衡与负荷研究—以密云县和房山区为例[J].农业环境科学学报,2009,28(11):2428-2435
    [201]李健忠,庞明,叶朝霞等.我国农业非点源污染研究进展及其防治措施[J].广州化学. 2008,33(2):54-58
    [202]崔键,马友华,赵艳萍等.农业面源污染的特性及防治对策[J].中国农学通报.2006,22(1):335-340
    [203]王晓燕,曹利平.控制农业非点源污染的排污收费理论探讨[J].环境科学与技术.2007, 30(12):47-49

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700