用户名: 密码: 验证码:
生产车间设施布局优化方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生产制造企业的设施布局是设施规划领域的一个重要问题。它研究如何按照一定的原则,在预先给定的生产车间内,将生产系统所使用的机器、仓库等的位置以及与之相关的物料流和人员流进行合理地组织与布置,以达到最优的设计目标(如物流成本最低、设备利用率最高等)。一个设计良好的设施布局能加快物料处理效率,减少在制品的停留时间,显著提高企业的生产效率。在理论上,本问题属组合优化问题,NP-hard问题,本文讨论的车间设施布局问题与一般的布局优化问题(如Packing问题和Cutting问题)相比,在问题描述、数学建模、数值求解等方面更困难,在工程应用上,本文研究的生产制造系统的设施布局问题是实际生产中存在的尚未很好解决的难题,具有重要的工程实用价值。
     本文在国家自然科学基金项目的资助下,以生产车间设施布局为研究对象,研究该类布局问题的有效求解方法。车间设施布局可分为块状布局和详细布局,前者不考虑设备的尺寸形状,只确定其在车间内的相对位置,而后者考虑设备的尺寸形状等信息,并确定其在车间内的坐标和方位。与块状布局相比,详细布局的优化目标与约束条件更多,求解也更加复杂。本文重点讨论后者。
     论文的主要工作如下:
     (1)针对一类块状布局问题——环形布局问、题的求解,提出一种称之为设施相对位置编码的方法,并基于差异演化(DE)算法,构成相对位置编码的DE算法,用于环形布局问题的求解。编码方式是决定用进化算法求解问题效率和质量的关键,该编码方式利用环形布局序列问题的解具有设施的位置排序的特点,省去实数编码算法求解该类问题时需要进行实数到整数序列的映射过程,解决了用实数编码算法求解时编码空间远大于环形布置解空间的缺点,并且减少无效编码。
     (2)提出一种基于图论的求解设施之间避障曼氏最短路经的连接图生成方法,用于求解详细布局问题的设施间的最短曼氏距离。设施间的物流量是设施布局优化的一个最主要的目标,而物流量的大小又与选择的设施之间的路径长度直接相关,因而设施间的路径会直接影响布局优化算法求解的质量,对于详细布局问题尤其重要。本文连接图生成方法利用了曼氏距离不同于欧氏距离的特点,可较快计算设施间的最短路径及其距禺。
     (3)建立了更加贴近于实际的设施详细布局数学模型并且给出一种基于满意度的差异演化算法求解该详细布局问题。建模方面,与以往详细布局文献中仅考虑设施的外形尺寸不同,该数学模型还额外考虑了设施的装卸点、设施间的连通性、设施间的最短路径、设施布置的整齐美观性等要求。求解方面,针对设施详细布局问题的多约束、多目标且具有NP难度的特点,以及求解最优解难以实现的问题,本文提出用满意解代替最优解,将满意优化原理与差异演化算法相结合,用综合满意度函数作为差异演化算法的目标函数,并且在运行过程中综合考虑满意求解,从而完成详细布局问题的求解。
     (4)给出开发设施详细布局优化与仿真的系统原型及其关键技术,包括:①从设施的CAD几何图形数据库中检索给定设施的检索方法,本文给出一种基于三维几何模型局部缩放的三维CAD模型检索方法;②基于Pro/E的实体简化技术,用于设备几何外形数据提取;③干涉量计算模块,用于详细布局算法求解过程中设备间干涉量的计算;④基于Pro/E二次开发的布局仿真,用于将求解获得的设施布局结果在Pro/E环境中进行三维仿真,便于设施规划人员进行综合评判。
     本文给出车间设施的环形布局和详细布局的数学模型和相应的求解方法,并且给出开发一类设施详细布局优化与仿真的关键技术及其系统原型实现,可为设施规划人员提供设计参考。本文方法可望推广应用于其他类型的设施规划应用领域,如机场、医院、办公室等的设施布局问题。
The facility layout plays an important role in manufacturing industry. As a part of facility planning, the facility layout considers how to place the machines and storehouse and how to organize the material handling and operators in a pre-defined workshop. The major objective is to optimize the design goals, such as reduction of the material handling costs and improvement of the machine efficiency. A well-designed facility layout can speed up material handling, minimize the residence time during the production process, and significantly improve production efficiency. Theoritically, the facility layout problem under discussion is one type of combinatorial optimization problems, which belongs to NP-hard problem. Compared with cutting and packing problems, its problem description, mathematical modeling and solving process are much more complicated and also more difficult. As the facility layout problem is still unresolved in the engineering world, research on this problem has important practical significance.
     The work is supported by the National Natural Science Fundation of China (No. 60674078,50575031). Focusing on the layout in production workshop facilities, we look for effective methods to solve the layout problem. Facility layout can be classified into block layout and detailed layout. The former ignorzes the size and shape of facilities, and its solution is the relative position of the facilities in the workshop. In contrast, the latter takes into account the size and the shape of facilities, and its solution is the coordinate and the orientation of the facilities in the workshop. Compared with the block layout, solution of the detailed layout is more complicated, since it considers more objectives and constraints. The contents of the dissertation are as follows:
     (1) We propose a relative position-coded differential evolution (DE) with different encoding process from other algorighms for the loop layout problem, since encoding is the key of evolutionary algorithms. The proposed algorithm notices that the solution result of the loop layout problem is the relative position of the facilities, so it has following favourable characteristics:i it avoids mapping from float-point vectors to integer sequence; ii the coding space of the new algorithm corresponds to the solution space of loop layout; iii it resolves the illegal chromosomes in the solving process.
     (2) We propose a connectivity graph generation approach for obstacle-avoiding Manhattan shortest path calculation in detailed layout problem. Material handling cost, the reduction of which is the main aim of the detailed layout problem solution, is determined by the distance among facilities. Thus, the shortest path among facilities directly affects the quality of the layout optimization solution for detailed layout problem. By makeing full use of the characteristics of Manhattan distance which are different from those of Euclidean distance. the proposed approach can shorten the time of facility distance calculation in detailed layout.
     (3) We establish a mathematical model which is more adaptable to the actual environment and developed a satisfaction-based differential evolution to solve the detailed layout. In modeling, the mathematical model takes acount not only the shape of facilities, but also the pickup/dropoff point, the connectivity, the shortest path and orderliness of the facilities. In solving, because of multi-constraints, multi-objectives and NP-hard nature of the detailed layout problem, it is very difficult to find the global optimal solution. Therefore, we developed a method to find the satisfactory solution instead of the global optimal solution. The proposed method combines the satisfactory optimization theory and computational intelligence algorithm, and uses the overall satisfaction function as a differential evolution algorithm objective function to solve the detailed layout problem.
     (4) We give some key technologies while developing the facility layout optimization and simulation of the system prototype, including:①we derive a local scale-based 3D model retrieval method from the 3D model retrieval method from the CAD model library;②simplification method of irregular solid model based on Pro/E secondary development for geometry data extraction;③interference calculation module for calculating interference between facilities in detailed layout;④layout simulation based on Pro/E secondary development, to show the layout results in Pro/E three-dimensional simulation environment to facilitate comprehensive evaluation.
     In this dissertation, we present the mathematical models and corresponding solving methods for loop layout and detailed layout problems. Besides, we give some key technologies in developing facilities layout optimization and simulation of the system prototype. This method is expected to be applied to other fields where other types of facilities planning are involved, such as airports, hospitals, offices and so forth.
引文
[1]胡正华,王涛,庄长远.设施规划与设计[M].北京:科学出版社,2006.
    [2]Drira A, Pierreval H, Hajri-Gabouj S. Facility layout problems:A survey[J]. Annual Reviews in Control,2007,31(2):255-267.
    [3]Tompkins J A, White J A, Bozer Y A, et al. Facilities Planning[M]. New York:John Wiley & Sons, Inc.,2003.
    [4]Hassan M M D. Layout design in group technology manufacturing [J]. International Journal of Production Economics,1995,38(2-3):173-173.
    [5]Kouvelis P, Chiang W-C, Fitzsimmons J. Simulated annealing for machine layout problems in the presence of zoning constraints [J]. European Journal of Operational Research,1992, 57(2):203-223.
    [6]Francis R L, McGinnis L F, White J A. Facility layout and location[M]. Prentice Hall, 1998.
    [7]李志华,钟毅芳,刘继红.制造系统中的单向环型设备布局设计[J].计算机辅助设计与图形学学报,2003,15(7):818-822.
    [8]奚文.面向机械制造系统的设施布置与优化模型设计[D].辽宁工程技术大学,2006.
    [9]竺长安,齐继阳,曾议.基于遗传禁忌混合搜索算法的设备布局研究[J].系统工程与电子技术,2006,28(04):630-633.
    [10]Leung J. A graph-theoretic heuristic for designing loop-layout manufacturing systems [J]. European Journal of Operational Research,1992,57(2):243-252.
    [11]刘弟新.机械加工设备布局方法及其仿真技术研究[D].大连:大连理工大学,2006.
    [12]刘春玲.TFT-LCD中小尺寸模组组装车间设施布局问题研究[D].上海:上海交通大学,2007.
    [13]Muther R. Systematic Layout Planning[M]. Boston, MA.:Cahners Books,1973.
    [14]Dowsland W B. Three-dimensional packing-solution approaches and heuristic development [J]. International Journal of Production Research,1991,29(8):1673-1685.
    [15]Cagan J, Shimada K, Yin S. A survey of computational approaches to three-dimensional layout problems[J]. CAD Computer Aided Design,2002,34(8):597-611.
    [16]Dyckhoff H. Typology of cutting and packing problems [J]. European Journal of Operational Research,1990,44(2):145-159.
    [17]锁小红.基于制造系统功能的设施布局设计研究[D].济南:山东大学,2008.
    [18]Umetani S, Yagiura M, Ibaraki T. One-dimensional cutting stock problem to minimize the number of different patterns[J]. European Journal of Operational Research,2003, 146(2):388-402.
    [19]王小东,李刚,欧宗瑛.一维下料的一种新算法[J].大连理工大学学报,2004,44(3):407-411.
    [20]Yang C-T, Sung T-C, Weng W-C. An improved tabu search approach with mixed objective function for one-dimensional cutting stock problems [J]. Advances in Engineering Software, 2006,37(8):502-513.
    [21]李广强.布局方案设计的若干理论方法与应用[D].大连:大连大连理工大学,2003.
    [22]张刚,殷国富,邓克文,等.解空间编码遗传算法在三维布局中的应用[J].中国机械工程,2006,17(1):79-83.
    [23]Egeblad J, Nielsen B K, Brazil M. Translational packing of arbitrary polytopes[J]. Computational Geometry:Theory and Applications,2009,42(4):269-288.
    [24]查建中,唐晓君,陆一平.布局及布置设计问题求解自动化的理论与方法综述[J].计算机辅助设计与图形学学报,2002,14(8):705-712.
    [25]Lenat D B, Feigenbaum E A. On the thresholds of knowledge[J]. Artificial Intelligence, 1991,47(1-3):185-230.
    [26]王奕首.卫星有效载荷配置和布局设计方法及应用研究[D].大连:大连理工大学,2008.
    [27]滕弘飞,孙守林,葛文海,等.旋转舱内圆柱体及长方体群布局优化[J].大连理工大学学报,1993,33(3):303-309.
    [28]戴佐.三维布局中八叉树节点的快速分解算法[J].软件学报,1995,6(11):679-685.
    [29]Cagan J, Degentesh D, Yin S. A simulated annealing-based algorithm using hierarchical models for general three-dimensional component layout [J]. CAD Computer Aided Design,1998, 30(10):781-790.
    [30]Teng H-F, Sun S-L, Liu D-Q, et al. Layout optimization for the objects located within a rotating vessel-a three-dimensional packing problem with behavioral constraints [J]. Computers and Operations Research,2001,28(6):521-535.
    [31]唐晓君,查建中,陆一平.布局问题的复杂性和建模方法[J].北方交通大学学报,2003,27(1):12-15.
    [32]孙守迁,唐明,潘云鹤.面向人机工程的布局设计方法的研究[J].计算机辅助设计与图形学学报,2000,12(11):870-872.
    [33]Liu Z-w, Teng H-f. Human-computer cooperative layout design method and its application[J]. Computers and Industrial Engineering,2008,55(4):735-757.
    [34]袁苗龙,周济,张新访.三维几何布局的一类启发式求解算法[J].计算机学报,1999,22(9):923-930.
    [35]Wu Y-L, Huang W, Lau S-C, et al. An effective quasi-human based heuristic for solving the rectangle packing problem[J]. European Journal of Operational Research,2002, 141(2):341-358.
    [36]Udy J L, Balling R J, Benzley S E, et al. Computation of interference between three-dimensional objects and the optimal packing problem[J]. Advances in engineering software,1988,10(1):8-14.
    [37]Foulds L R, Tran H V. Library layout via graph theory[J]. Computers and Industrial Engineering,1986,10(3):245-252.
    [38]Chung Y-K. Application of a cascade BAM neural expert system to conceptual design for facility layout[J]. Computers and Mathematics with Applications,1999,37(1):95-110.
    [39]Han S-Y, Kim Y-S, Lee T-Y, et al. A framework of concurrent process engineering with agent-based collaborative design strategies and its application on plant layout problem[J]. Computers and Chemical Engineering,2000,24(2-7):1673-1679.
    [40]Chwif L, Barretto M R P, Moscato L A. A Solution to the facility layout problem using simulated annealing[J]. Computers in Industry,1998,36(1-2):125-132.
    [41]El-Baz M A. A genetic algorithm for facility layout problems of different manufacturing environments [J]. Computers & Industrial Engineering,2004,47(2-3):233-246.
    [42]史彦军.复杂布局的协同差异演化方法与应用研究[D].大连:大连理工大学,2005.
    [43]徐义春,肖人彬.用蚁群算法求解带平衡约束的圆形布局问题[J].控制与决策,2008,23(1):25-29.
    [44]张刚,殷国富,邓克文,等.改进的实数编码遗传算法在产品布局设计中的应用[J].计算机集成制造系统,2005,11(10):1451-1455.
    [45]Sun Z-G, Teng H-F. Optimal layout design of a satellite module[J]. Engineering Optimization,2003,35(5):513-529.
    [46]Huo J-Z, Teng H-F. Optimal layout design of a satellite module using a coevolutionary method with heuristic rules [J]. Journal of Aerospace Engineering,2009,22(2):101-111.
    [47]Lodi A, Martello S, Vigo D. Recent advances on two-dimensional bin packing problems[J]. Discrete Applied Mathematics,2002,123(1-3):379-396.
    [48]Singh S P, Sharma R R K. A review of different approaches to the facility layout problems [J]. International Journal of Advanced Manufacturing Technology,2006,30(5-6):425-433.
    [49]钱志勤.人机交互的演化设计方法及其在航天器舱布局方案设计中的应用[D].大连:大连理工大学,2001.
    [50]黄文奇,许如初.支持求解圆形packing问题的两个拟人策略[J].中国科学(E辑),1999,29(4):347-353.
    [51]王金敏,王玉新,曾维川,等.基于遗传算法的布局求解法[J].天津大学学报,2001,34(3):307-311.
    [52]Zadeh L A. Soft computing and fuzzy logic[J]. IEEE Software,1994,11(6):48-56.
    [53]齐继阳.可重构制造系统若干使能技术的研究[D].合肥:中国科学技术大学,2006.
    [54]龚全胜,李世其.基于遗传算法的制造系统设备布局设计[J].计算机工程与应用,2004,(26):202-204.
    [55]Solimanpur M, Vrat P, Shankar R. An ant algorithm for the single row layout problem in flexible manufacturing systems[J]. Computers and Operations Research,2005, 32(3):583-598.
    [56]Yang T, Peters B A, Tu M. Layout design for flexible manufacturing systems considering single-loop directional flow patterns [J]. European Journal of Operational Research,2005, 164(2):440-455.
    [57]李火生,李志华,钟毅芳,等.生产车间设备布局线性模型及算法研究[J].计算机工程与应用,2002,(11):221-224.
    [58]宋华明,韩玉启.基于遗传算法的U型生产线平衡[J].系统工程学报,2002,17(5):424-429.
    [59]张毕西,刘永清.多对象生产单元设备双行布置优化分析[J].华南理工大学学报(自然科学版),1999,27(5):45-51.
    [60]Nearchou A C. Meta-heuristics from nature for the loop layout design problem[J]. International Journal of Production Economics,2006,101(2):312-328.
    [61]李志华,曾海红,陈立平,等.多单元制造系统布局设计[J].工程设计学报,2007,14(3):194-199.
    [62]曾议,竺长安,沈连婠,等.基于群智能算法的设备布局离散优化研究[J].计算机集成制造系统,2007,13(3):541-548.
    [63]锁小红,刘战强.制造系统设备布局的建模理论与求解方法[J].计算机集成制造系统,2007,13(10):1941-1951.
    [64]Hassan M M D. Machine layout problem in modern manufacturing facilities[J]. International Journal of Production Research,1994,32(11):2559-2584.
    [65]周亦波,李志华,戴同,等.单元制造系统布局模型及其求解[J].华中科技大学学报(自然科学版),2002,30(1):65-67.
    [66]Solimanpur M, Jafari A. Optimal solution for the two-dimensional facility layout problem using a branch-and-bound algorithm[J]. Computers & Industrial Engineering,2008, 55(3):606-619.
    [67]Xie W, Sahinidis N V. A branch-and-bound algorithm for the continuous facility layout problem[J]. Computers & Chemical Engineering,2008,32(4-5):1016-1028.
    [68]Konak A, Kulturel-Konak S, Norman B A, et al. A new mixed integer programming formulation for facility layout design using flexible bays[J]. Operations Research Letters,2006, 34(6):660-672.
    [69]Lee K-Y, Roh M-I, Jeong H-S. An improved genetic algorithm for multi-floor facility layout problems having inner structure walls and passages [J]. Computers and Operations Research, 2005,32(4):879-899.
    [70]Wang M-J, Hu M H, Ku M-Y. A solution to the unequal area facilities layout problem by genetic algorithm[J]. Computers in Industry,2005,56(2):207-220.
    [71]Asef-Vaziri A, Laporte G. Loop based facility planning and material handling[J]. European Journal of Operational Research,2005,164(1):1-11.
    [72]Liggett R S. Automated facilities layout:Past, present and future[J]. Automation in Construction,2000,9(2):197-215.
    [73]Pierreval H, Caux C, Paris J L, et al. Evolutionary approaches to the design and organization of manufacturing systems[J]. Computers & Industrial Engineering,2003, 44(3):339-364.
    [74]Altinel I K, Oncan T. Design of unidirectional cyclic layouts[J]. International Journal of Production Research,2005,43(19):3983-4008.
    [75]Asef-Vaziri A, Dessouky M, Sriskandarajah C. A loop material flow system design for automated guided vehicles[J]. International Journal of Flexible Manufacturing Systems, 2001,13(1):33-48.
    [76]Asef-Vaziri A, Goetschalckx M. Dual track and segmented single track bidirectional loop guidepath layout for AGV systems[J]. European Journal of Operational Research,2008, 186(3):972-989.
    [77]Asef-Vaziri A, Ortiz R A. The value of the shortest loop covering all work centers in a manufacturing facility layout [J]. International Journal of Production Research,2008, 46(3):703-722.
    [78]Lee K-Y, Han S-N, Roh M-I. An improved genetic algorithm for facility layout problems having inner structure walls and passages[J]. Computers and Operations Research,2003, 30(1):117-138.
    [79]Lee Y H, Lee M H. A shape-based block layout approach to facility layout problems using hybrid genetic algorithm [J]. Computers & Industrial Engineering,2002,42(2-4):237-248.
    [80]Balakrishnan J, Cheng C H. Multi-period planning and uncertainty issues in cellular manufacturing:A review and future directions[J]. European Journal of Operational Research,2007,177(1):281-309.
    [81]Balakrishnan J, Cheng C-H, Wong K-F. FACOPT:A user friendly facility layout optimization system [J]. Computers and Operations Research,2003,30(11):1625-1641.
    [82]Balamurugan K, Selladurai V, Ilamathi B. Design and optimization of manufacturing facilities layouts[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,2006,220(8):1249-1257.
    [83]陈希,王宁生.基于脑模型联接控制器的车间布局多目标优化技术研究[J].南京理工大学学报,2004,28(6):595-600.
    [84]柏甫荣,秦永法.基于智能优化算法的设备布局设计[J].组合机床与自动化加工技术,2004,(6):50-52.
    [85]王定益,王丽亚.一种改进遗传算法在生产车间设备布局中的应用[J].计算机工程与应用,2005,(14):190-193.
    [86]曹振新,朱云龙,宋崎.制造系统的设备布局方法[J].辽宁工程技术大学学报,2005,24(3):413-416.
    [87]王福吉,贾振元,王林平,等.生产线的设备规划布局设计与加工仿真的实现[J].组合机床与自动化加工技术,2007,(9):96-99.
    [88]陈旭辉.汽车装焊生产线优化设计[D].南京:南京航空航天大学,2006.
    [89]俞静,钱省三,邵志芳.半导体制造车间设施规划浅析[J].半导体技术,2003,28(6):21-24.
    [90]周文玲,刘安静.啤酒包装线的布局及单机的选配[J].包装工程,2007,28(5):62-64.
    [91]Meller R D, Gau K-Y. The facility layout problem:Recent and emerging trends and perspectives [J]. Journal of Manufacturing Systems,1996,15(5):351-366.
    [92]Yang T, Su C-T, Hsu Y-R. Systematic layout planning:a study on semiconductor wafer fabrication facilities[J]. International Journal of Operations & Production Management, 2000,20(11):1359-1371.
    [93]Chiang W-C. Visual facility layout design system[J]. International Journal of Production Research,2001,39(9):1811-1836.
    [94]齐二石,田青,宋宁华.物流系统规划设计方法综述[J].天津大学学报(社会科学版),2003,5(3):225-228.
    [95]罗亚波,陈定方.面向远程布局的分布式虚拟车间研究[J].工程设计学报,2005,12(5):262-264.
    [96]Ertay T, Ruan D, Tuzkaya U R. Integrating data envelopment analysis and analytic hierarchy for the facility layout design in manufacturing systems [J]. Information Sciences,2006, 176(3):237-262.
    [97]郝理想,蒋增强,葛茂根,等.基于可视化仿真的车间设施布局研究[J].合肥工业大学学报(自然科学版),2006,29(10):1024-1027.
    [98]王红军,韩秋实,柴树峰.基于仿真的生产系统规划技术研究[J].机械设计与制造,2007,(10):205-207.
    [99]Deb S K, Bhattacharyya B. Solution of facility layout problems with pickup/drop-off locations using random search techniques[J]. International Journal of Production Research,2005,43(22):4787-4812.
    [100]Bean J C. Genetics and Random Keys for Sequencing and Optimization[J]. ORSA Journal on Computing,1994,6(2):154-160.
    [101]Nearchou A C, Omirou S L. Differential evolution for sequencing and scheduling optimization[J]. Journal of Heuristics,2006,12(6):395-411.
    [102]滕弘飞,孙守林,葛文海,等.转动圆桌平衡摆盘--带平衡性能约束的Packing问题[J].中国科学(A辑),1994,24(7):1212-1218.
    [103]唐飞,滕弘飞.一种改进的遗传算法及其在布局优化中的应用[J].软件学报,1999,10(10):1096-1102.
    [104]李广强,滕弘飞,霍军周.并行混合免疫算法及其在布局设计中的应用[J].机械工程学报,2003,39(6):79-85.
    [105]张子辉.面向车间设备布局随机键实数编码的差异进化方法研究[D].大连:大连理工大学,2009.
    [106]孙治国.一类航天器布局设计问题的顺序、物理(空间)分解协调方法[D].大连:大连理工大学,2006.
    [107]曾威,史彦军,滕弘飞.卫星舱布局CAD系统:Pro/Engineer二次开发若干关键技术[J].计算机辅助设计与图形学学报,2005,17(11):2575-2579.
    [108]王家善,吴清一,周佳平.设施规划与设计[M].北京:机械工业出版社,1995.
    [109]张毕西.加工-装配式生产系统组织与优化[D].华南理工大学,2000.
    [110]曾议.计算机集成制造系统中若干重要技术的研究[D].中国科学技术大学,2006.
    [111]邹世伟.车间柔性布局算法及三维仿真研究[D].武汉:武汉理工大学,2007.
    [112]刘占伟.人机结合的布局设计方法及其应用研究[D].大连:大连理工大学, 2006.
    [113]Koopmans T C, Beckmann M. Assignment Problems and the Location of Economic Activities [J]. Econometrica,1957,25(1):53-76.
    [114]Ioannou G. An integrated model and a decomposition-based approach for concurrent layout and material handling system design[J]. Computers & Industrial Engineering,2007, 52(4):459-485.
    [115]Bock S, Hoberg K. Detailed layout planning for irregularly-shaped machines with transportation path design[J]. European Journal of Operational Research,2007, 177(2):693-718.
    [116]Meller R D, Narayanan V, Vance P H. Optimal facility layout design[J]. Operations Research Letters,1999,23(3-5):117-127.
    [117]Paul R C, Asokan P, Prabhakar V I. A solution to the facility layout problem having passages and inner structure walls using particle swarm optimization[J]. International Journal of Advanced Manufacturing Technology,2006,29(7-8):766-771.
    [118]钱玲.可重构虚拟制造系统研究[D].南京:南京理工大学,2005.
    [119]张晓东.计算机辅助化工厂设计[M].北京:化学工业出版社,2005.
    [120]王金敏,王玉新,查建中.布局问题约束的分类及表达[J].计算机辅助设计与图形学学报,2000,(5):349-354.
    [121]胡广华,陈幼平,袁楚明,等.CMS环境下基于智能优化算法的单元间布局问题研究[J].计算机应用研究,2007,24(6):72-74.
    [122]于瑞峰.基于人因学的工作地设施布局的优化设计研究[D].北京:清华大学,2004.
    [123]Gomez A, Fernandez Q I, De la Fuente Garcia D, et al. Using genetic algorithms to resolve layout problems in facilities where there are aisles[J]. International Journal of Production Economics,2003,84(3):271-282.
    [124]黄小荣.基于遗传算法的双阶段设施布置方法研究[D].天津大学,2007.
    [125]马立坤.生产系统计算机辅助设施布置的研究[D].武汉理工大学,2008.
    [126]Kouvelis P, Kim M W. Unidirectional loop network layout problem in automated manufacturing systems [J]. Operations Research,1992,40(3):533-550.
    [127]Lee S-D, Huang K-H, Chiang C-P. Configuring layout in unidirectional loop manufacturing systems[J]. International Journal of Production Research,2001,39(6):1183-1201.
    [128]Oncan T, Altinel I K. Exact solution procedures for the balanced unidirectional cyclic layout problem[J]. European Journal of Operational Research,2008,189(3):609-623.
    [129]Leung J. A new graph-theoretic heuristic for facility layout [J]. Management Science,1992, 38(4):594-605.
    [130]Hassan M M D, Hogg G L, Smith D R. SHAPE:A construction algorithm for area placement evaluation [J]. International Journal of Production Research,1986,24(5):1283-1295.
    [131]Armour G C, Buffa E S. A Heuristic Algorithm and Simulation Approach to Relative Location of Facilities[J]. Management Science, 1963,9(2):294-309.
    [132]Bozer Y A, Meller R D, Erlebacher S J. An improvement-type layout algorithm for single and multiple-floor facilities [J]. Management Science,1994,40(7):918-932.
    [133]Afentakis P. A loop layout design problem for flexible manufacturing systems[J]. International Journal of Flexible Manufacturing Systems,1989,1(2):175-196.
    [134]Tansel B C, Bilen C. Move based heuristics for the unidirectional loop network layout problem [J]. European Journal of Operational Research,1998,108 (1):36-48.
    [135]Loiola E M, de Abreu N M M, Boaventura-Netto P 0, et al. A survey for the quadratic assignment problem[J]. European Journal of Operational Research,2007,176(2):657-690.
    [136]田勇兵.基于遗传算法和非线性目标划模型的设施布置研究[D].武汉理工大学,2009.
    [137]Kirkpatrick S, Gelatt C D J, Vecchi M P. Optimization by simulated annealing[J]. Science, 1983,220:671-680.
    [138]Souilah A. Simulated annealing for manufacturing systems layout design[J]. European Journal of Operational Research,1995,82(3):592-614.
    [139]McKendall Jr A R, Shang J, Kuppusamy S. Simulated annealing heuristics for the dynamic facility layout problem [J]. Computers and Operations Research,2006,33(8):2431-2444.
    [140]Mir M, Imam M H. Hybrid optimization approach for layout design of unequal-area facilities[J]. Computers & Industrial Engineering,2001,39(1-2):49-63.
    [141]Glover F. Tabu Search:A Tutorial [J]. Interfaces,1990,20(4):74-94.
    [142]王凌.智能优化算法及其应用[M].北京:清华大学出版社,2001.
    [143]Abdinnour-Helm S, Hadley S W. Tabu search based heuristics for multi-floor facility layout[J]. International Journal of Production Research,2000,38(2):365-383.
    [144]Liu W-H. Tabu Search Heuristics for the Dynamic Facility Layout Problem[D]. Virginia: West Virginia University,2005.
    [145]Liang L Y, Chao W C. The strategies of tabu search technique for facility layout optimization[J]. Automation in Construction,2008,17(6):657-669.
    [146]Tate D M, Smith A E. Unequal-area facility layout by genetic search[J]. IIE Transactions, 1995,27(4):465-472.
    [147]Cheng R, Gen M. Loop layout design problem in flexible manufacturing systems using genetic algorithms[J]. Computers & Industrial Engineering,1998,34(1):53-61.
    [148]Mak K L, Wong Y S, Chan E T S. Genetic algorithm for facility layout problems [J]. Computer Integrated Manufacturing Systems,1998,11(1-2):113-127.
    [149]Li H, Love P E D. Genetic search for solving construction site-level unequal-area facility layout problems[J]. Automation in Construction,2000,9(2):217-226.
    [150]Wu Y, Appleton E. The optimisation of block layout and aisle structure by a genetic algorithm[J]. Computers & Industrial Engineering,2002,41(4):371-387.
    [151]Balakrishnan J, Cheng C H. Genetic search and the dynamic layout problem[J]. Computers and Operations Research,2000,27(6):587-593.
    [152]Balakrishnan J, Cheng C H, Conway D G, et al. A hybrid genetic algorithm for the dynamic plant layout problem[J]. International Journal of Production Economics,2003, 86 (2):107-120.
    [153]许立,李经民,王秀伦.基于遗传算法的车间设备布局优化设计[J].组合机床与自动化加工技术,2004,(12):45-48.
    [154]吴永忠,吴永明,袁红亮.家族保护遗传算法(KPGA)解决设备布局问题的研究[J].计算机工程与应用,2005,31(6):186-188.
    [155]Ozcelik F, Islier A A. Unidirectional loop layout problem with balanced flow [A]. Lecture Notes in Computer Science[C]. Annecy, France:Springer Verlag,2006.741-749
    [156]Dorigo M, Maniezzo V, Colorni A. The ant system:optimization by a colony of cooperating agents [J]. IEEE Transactions on Systems, Man, and Cybernetics,1996,26 (1):29-41.
    [157]Baykasoglu A, Dereli T, Sabuncu I. An ant colony algorithm for solving budget constrained and unconstrained dynamic facility layout problems[J]. Omega,2006,34(4):385-396.
    [158]Pour H D, Nosraty M. Solving the facility and layout and location problem by ant-colony optimization-meta heuristic[J]. International Journal of Production Research,2006, 44(23):5187-5196.
    [159]Kennedy J, Eberhart R. Particle swarm optimization[A]. Proceedings of the 1995 IEEE International Conference on Neural Networks. Part 4 (of 6), Nov 27-Dec 1 1995 [C]. Perth, Aust:IEEE,1995.1942-1948
    [160]张宝.粒子群算法及其在卫星舱布局中的应用研究[D].大连:大连理工大学,2006.
    [161]Satheesh Kumar R, Asokan P, Kumanan S. Design of loop layout in flexible manufacturing system using non-traditional optimization technique[J]. International Journal of Advanced Manufacturing Technology,2008,38(5-6):594-599.
    [162]Storn R, Price K. Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization,1997, 11(4):341-359.
    [163]Price K V, Storn R M, Lampinen J A. Differential evolution:a practical approach to global optimization[M]. Springer,2005.
    [164]Feoktistov V. Differential evolution:In Search of Solutions[M]. Springer,2006.
    [165]Babu B V, Munawar S A. Differential evolution strategies for optimal design of shell-and-tube heat exchangers[J]. Chemical Engineering Science,2007, 62(14):3720-3739.
    [166]Reddy M J, Kumar D N. Multiobjective differential evolution with application to reservoir system optimization [J]. Journal of Computing in Civil Engineering,2007,21(2):136-146.
    [167]Rogalsky T, Kocabiyik S, Derksen R W. Differential evolution in aerodynamic optimization[J]. Canadian Aeronautics and Space Journal,2000,46(4):183-190.
    [168]Lopez Cruz I L, Van Willigenburg L G, Van Straten G. Efficient Differential Evolution algorithms for multimodal optimal control problems[J]. Applied Soft Computing Journal, 2003,3(2):97-122.
    [169]Dunker T, Radons G, Westkamper E. Combining evolutionary computation and dynamic programming for solving a dynamic facility layout problem[J]. European Journal of Operational Research,2005,165(1):55-69.
    [170]董海,佟立哲,李彦平.利用GASA混合算法对离散生产系统车间设施布置优化研究[J].机械设计与制造,2006,(3):83-85.
    [171]毛宁,顾军华,谭庆,等.蚁群遗传混合算法[J].计算机应用,2006,26(7):1692-1694.
    [172]李大卫,王莉,王梦光.遗传算法与禁忌搜索算法的混合策略[J].系统工程学报,1998,13(3):28-34.
    [173]Malakooti B. Unidirectional loop network layout by a LP heuristic and design of telecommunications networks[J]. Journal of Intelligent Manufacturing,2004, 15(1):117-125.
    [174]McKendall Jr A R, Hakobyan A. Heuristics for the dynamic facility layout problem with unequal-area departments[J]. European Journal of Operational Research,2010, 201(1):171-182.
    [175]Asef-Vaziri A, Laporte G. Integration of Operational Dispatching Policies into the Design Phase of a Circular Material Handling [J]. Journal of Advanced Operations Management,2009, 1(2):108-134.
    [176]徐宗本,王国俊.计算智能(第一册)—模拟进化计算[M].北京:高等教育出版社,2005.
    [177]Cormen T H, Leiserson C E, Rivest R L. Introduction to Algorithms[M]. London:The MIT Press,2001.
    [178]Ono I, Yamamura M, Kobayashi S. A Genetic algorithm for job-shop scheduling problems using job-based order crossover[A]. Proceedings of the 1996 IEEE International Conference on Evolutionary Computation, ICEC'96, May 20,1996-May 22,1996[C]. Nagoya, Jpn:IEEE,1996. 547-552
    [179]Tian P, Ma J, Zhang D-M. Application of the simulated annealing algorithm to the combinatorial optimization problem with permutation property:An investigation of generation mechanism[J]. European Journal of Operational Research,1999,118(1):81-94.
    [180]Optimization Algorithm Toolkit. http://optalgtoolkit.sourceforge.net/
    [181]de Rezende P J, Lee D T, Wu Y F. Rectilinear shortest paths with rectangular barriers [A]. Proceedings of the first annual symposium on Computational geometry[C]. ACM New York, NY, USA,1985.204-213
    [182]Gau K-Y. Facility layout with an iterative algorithm[D]. Auburn University,1998.
    [183]Lee C Y. An algorithm for path connections and its applications [J]. IRE Transactions on Electronic Computers,1961,10(3):346-365.
    [184]Mikami K, Tabuchi K. A computer program for optimal routing of printed circuit connectors[A]. IFIPs Proceedings[C].1968.1475-1478
    [185]Mitchell J S B. L1 shortest paths among polygonal obstacles in the plane [J]. Algorithmica, 1992,8(1):55-88.
    [186]Inkulu R, Kapoor S. Planar rectilinear shortest path computation using corridors[J]. Computational Geometry,2009,42(9):873-884.
    [187]Fredman M L, Tarjan R E. Fibonacci heaps and their uses im improved network optimization algorithms [J]. Journal of the ACM,1987,34(3):596-615.
    [188]Janet J A, Luo R C, Kay M G. Essential visibility graph:an approach to global motion planning for autonomous mobile robots[A]. Proceedings of the 1995 IEEE International Conference on Robotics and Automation. Part 2 (of 3), May 21-27 1995[C]. Piscataway, NJ, USA:IEEE,1995.1958-1963
    [189]De Berg M, Cheong 0, van Kreveld M. Computational geometry:algorithms and applications[M]. Springer,2008.
    [190]Clarkson K, Kapoor S, Vaidya P. Rectilinear shortest paths through polygonal obstacles in 0(n(logn)2) time[A]. Proceedings of the third annual symposium on Computational geometry[C]. Waterloo, Ontario, Canada:ACM,1987.251-257
    [191]Wu Y-F, Widmayer P, Schlag M D F, et al. Rectilinear Shortest Paths and Minimum Spanning Trees in the presence of Rectilinear Obstacles [J]. IEEE Transactions on Computers,1987, C-36(3):321-331.
    [192]胡广华.制造车间布局优化方法研究与系统实现[D].华中科技大学,2007.
    [193]Yang C D, Lee D T, Wong C K. On bends and lengths of rectilinear paths:a graph theoretic approach[J]. International Journal of Computational Geometry and Applications,1992, 2(1):61-74.
    [194]周智,陈国良,顾钧.用0(tlogt)的连接图求有障碍时的最短路径[J].计算机学报,1999,22(5):519-524.
    [195]Taxicab geometry.http://en. wikipedia. org/wiki/Taxicab_geometry
    [196]Taxicab Metric. http://mathworld.wolfram.com/TaxicabMetric.html
    [197]Lee D T, Yang C D, Wong C K. Rectilinear paths among rectilinear obstacles[J]. Discrete Applied Mathematics,1996,70(3):185-215.
    [198]刑修三.物理熵、信息熵及其演化方程[J].中国科学(A辑),2001,37(1):77-84.
    [199]邵容宽.熵、信息及其互补与守恒假说[J].中国民航学院学报,1994,12(1):88-92.
    [200]Shannon C E. A Mathematical Theory of Communication[J]. Bell System Technical Journal, 1948,27:379-423.
    [201]朱稼兴.信息和熵[J].北京航空航天大学学报,1995,21(2):84-89.
    [202]Simon H A.现代决策理论的基石[M].北京:北京经济学院出版社,1989.
    [203]温碧丽.多准则满意优化方法及应用研究[D].成都:西南交通大学,2007.
    [204]金炜东.满意优化问题与列车操纵优化方法的研究[D].成都:西南交通大学,1998.
    [205]黄婉平.自适应粒子群优化算法及其应用研究[D].杭州:浙江大学,2006.
    [206]姚新胜.满意优化原理及其在机械工程领域中的应用研究[D].成都:西南交通大学,2002.
    [207]肖新平.多目标数学规划的最弱有效解[J].武汉水运工程学院学报,1992,16(1):51-58.
    [208]Ayres R U. History of Mechanization[M]. Chapman & Hall,1991.
    [209]孙连胜,宁汝新,王新永.虚拟制造中生产线可视化设计[J].北京理工大学学报,2002,22(1):32-35.
    [210]霍军周,史彦军,滕弘飞.卫星舱布局CAD系统:干涉计算和质量特性计算[J].计算机辅助设计与图形学学报,2007,19(9):1218-1222.
    [211]Wei L, Yuanjun H. Representation and retrieval of 3D CAD models in parts library[J]. International Journal of Advanced Manufacturing Technology,2008,36(9-10):950-958.
    [212]徐敬华,张树有.基于形态分布图与BP神经网络的三维模型检索方法[J].浙江大学学报(工学版),2009,43(5):877-883.
    [213]杨育彬,林珲,朱庆.基于内容的三维模型检索综述[J].计算机学报,2004,27(10):1297-1310.
    [214]Papadakis P, Pratikakis I, Perantonis S, et al. Efficient 3D shape matching and retrieval using a concrete radialized spherical projection representation[J]. Pattern Recognition, 2007,40(9):2437-2452.
    [215]Vranic D V. An improvement of rotation invariant 3D-shape descriptor based on functions on concentric spheres[A]. IEEE International Conference on Image Processing[C]. Barcelona, Spain:Institute of Electrical and Electronics Engineers Computer Society, 2003.757-760
    [216]Kazhdan M, Funkhouser T, Rusinkiewicz S. Rotation Invariant Spherical Harmonic Representation of 3D Shape Descriptors [A]. Symposium on Geometry Processing [C]. Aachen, Germany2003.156-164
    [217]Brownlee J. OAT:The optimization algorithm toolkit[R].2007.
    [218]General Polygon Clipper for Java. http://www.seisw.com/GPCJ/GPCJ.html
    [219]曾威.卫星布局的双系统协同进化算法与CAD系统关键技术[D].大连:大连理工大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700