中红外波光子晶体应用于热释电传感器
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔硅光子晶体(Porous Silicon Photonic Crystal)是一种新型光学功能材料,通常采用阳极氧化法(Anodization)制备,阳极氧化在单一方向上进行且高低电流密度周期交替变化可以构成不同孔度的多孔硅在一维空间上的周期交替排列,即造成了不同介电常数层的周期性排列,这种多层结构可形成类似于半导体中电子能量带隙的光子频率带隙(PBG,Photonic Band Gap),故称为一维光子晶体(1-Dimension Photonic Crystal),频率在某一带隙内的电磁波无法传播到光子晶体的另一端,这种制作薄膜的方法相对简便、制作成本非常低、具有孔度可调制等独特性质,使多孔硅成为一种在光学应用领域非常具有潜力的材料。如果氧化后的多孔硅一维光子晶体的“光子带隙”被设计在热释电传感器的信号波段,它的隔热性能可用于热释电传感器衬底从而提高探测器的灵敏度,同时又能对特定红外波段辐射实现阻断。
     热释电红外传感器因其灵敏度高、工作于常温下,长久以来成为红外研究的热点,近年来有很多研究致力于提高其综合性能,其衬底的绝热结构和红外辐射的阻断方式构成了影响非制冷红外焦平面探测器阵列的分辨率和探测率等性能提高的主要因素。本论文研究其衬底材料,希望采用氧化后的多孔硅一维光子晶体来构建热释电红外传感器的新型衬底。
     本文通过计算机模拟讨论了结构参数对光子晶体多层膜结构光学质量的影响,利用阳极氧化法形成多层膜结构,通过快速热氧化制备绝热性能优越且光子频率带隙位于中远红外波段一维光子晶体,并讨论和改进工艺因素以优化性能,利用这种材料探索非制冷红外焦平面探测器阵列的衬底。
     论文第一章扼要地阐述光子晶体和非制冷红外热释电探测器的概念,介绍目前基于多孔硅一维光子晶体发展现状以及存在的主要问题,并分析本论文立题依据、可行性和独特前沿性。
     论文第二章论述基于多孔氧化硅一维光子晶体的制备方法。探讨电流密度、电解液、腐蚀时间和温度、快速热氧化时间和温度等实验参数对其结构、性能的影响。
     论文第三章采用传输矩阵的方法对多孔硅一维光子晶体的光学结构参数进行了讨论,并分析周期数、折射率之比和中心波长对禁带的影响。
     论文第四章论述多孔硅一维光子晶体的处理和优化,介绍和分析氧化前后的傅立叶转换红外线光谱(FTIR)移动变化及与MATLAB拟合的结果对比并分析形成光子带隙的条件,并成功制备中心禁带位于中红外波段(5、6、7微米)具有良好绝热性能多孔氧化硅一维光子晶体,并探讨工艺改进方案。
     论文第五章论述对制备光子频率带隙位于远红外波段(10微米)一维光子晶体研究意义及傅立叶转换红外反射谱的实现与讨论,并对多孔氧化硅作为制作非制冷红外焦平面探测器阵列的衬底进行探索与实现,采用SEM对其多层膜结构进行了验证并成功地得到禁带中心位于10微米的高反射光学性能。
     论文第六章对全文工作进行总结,并对基于多孔氧化硅制作非制冷红外焦平面探测器阵列的衬底进行应用展望。
Porous Silicon,a brand new optical material,is usually fabricated by anodization. Periodically alternative changes of high/low current densities may form alternative porosities in anodization in one dimension.Therefore,it consists of alternating layers of different refractive indices,resulting in considerable novel characters named photonic band gap(PBG),which means the light can't transmit in the photonic crystal when light's frequency locates in the PBG.Thus,it is also called 1-Dimension photonic crystal.Large refractive index variation with porosity,as well as relatively simple fabrication and low manufacturing cost,makes porous silicon a very promising candidate for photonic applications.Since after oxidation,the porous silicon can be oxidized into one of excellent thermal isolative properties,if its photonic band gap is designed at the mid/far infrared(IR)wavelength,this porous structure can be used as the substrate for non-cooling infrared pyroelectric thin film IR detector,which can not only block the radiation for mid-IR but also can isolate the heat.
     Non-cooling infrared pyroelectric thin film IR detector has attracted great interest due to its high sensitivity and can be applied at room temperature. Unfortunately,the thermal isolative structure of the substrate and its infrared radiation was the major factors that limit the resolution of non-cooling infrared pyroelectric thin film IR detector.This thesis focuses on this problem and tries to find a substrate material for non-cooling infrared pyroelectric thin film IR detector, based on the oxidation of one dimension porous silicon photonic crystal.
     The structure factors of the PBG material is discussed,which can influence the photonic crystal multilayer through computer simulation and be referenced for the anodization process.Rapid thermal oxidation(RTO)is applied to achieve a good thermal isolative layer with a photonic band gap at expected mid/far infrared range. Several factors have been discussed to optimize the properties to get a substrate for non-cooling infrared pyroelectric thin film IR detector.
     In ChapterⅠ,the basic knowledge of photonic crystal is introduced briefly, especially one dimension photonic crystal together with the development status of photonic crystal and the problems it has encountered.The aim of this paper is also listed.
     In ChapterⅡ,the basic theories and fabrication technique are described for the one dimension porous silicon photonic crystal.The influence of the factors,such as current density,HF concentration,the type of substrate,formation temperature and RTO time and temperature are discussed to obtain the promising substrate material.
     In ChapterⅢ,one dimension porous silicon photonic crystal is designed by means of the transfer-matrix method(TMM).The influence of the number of periods and the ratio of refractive indices are investigated on the wavelength of mid-gap to the reflectivity spectra.
     In ChapterⅣ,the optimization of one dimension porous silicon photonic crystal is discussed.Fourier transform infrared spectroscopy(FTIR)is applied to check the difference before and after oxidation,contrast and comparison with simulation.Parameters for obtaining photonic crystals with the PBG gap ranging in mid(5、6、7 microns)have been successfully achieved.Such a material has also good thermal isolative properties due to RTO process.
     In ChapterⅤ,the practical use of the substrate at far-IR(10 microns)is discussed and the fabrication procedure of the array for non-cooling infrared pyroelectric thin film IR detector has been addressed and achieved.SEM is applied to find its multilayer structure while FTIR for its optical properties.
     ChapterⅥwill summarize the work and discuss the future application for this promising substrate.
引文
[1] S. John, Phys. Rev. Lett. 58(23):2486 - 2489,1987
    
    [2] E. Yablonovitch, Phys. Rev. Lett. 58(20) :2059 - 2061,1987
    
    [3] J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light Princeton Univ. Press, NJ, 1995
    [4] Photonic Band Gap Materials , NATO ASI, edited by C. M. Soukoulis (Kluwer Dordrecht 1996).
    [5] Photonic Band Gaps and Localization, NATO ARW, edited by C. M. Soukoulis (Plenum New York 1993).
    [6] E. M. Purcell, Phys. Rev. 69 681,1964
    [7] E Yablonovitch, T J Gmitter and K M Leung, Phys. Rev. Lett. 67: 2295 - 2298,1991
    
    [8] S John, Physics Today. 32 - 33 1991
    [9] J M Drake and A Z Genack, Phys. Rev. Lett. 63,259 1989
    [10] Velev.O.D, Jede.T.A, Lobo.R.F, et al. J. Nature, 281:538-540, 1997
    
    [11] E R Brown and O B McMahon. Appl. Phys. Lett. 68, 1300 - 1302 1996
    
    [12] H Hirayama, T Hamano, Y Aoyagi, Appl. Phys. Lett. 69, 791 - 793 1996
    [13] L Shawnyu, C Edmund, and H Vince, et al., Science, 282 (5387): 274-276 1998
    [14] H. H(o|¨)gstr(o|¨)m, G. Forssell, C.G. Ribbing, Opt. Eng. 44 (2) 026001,2005
    [15] M. Ghulinyan, C. J. Oton, G. Bonetti, Z. Gaburro and L. Pavesi, J. Appl. Phys, 93,9724 2003
    [16] J. Diener, N. K(u|¨)nzner, D. Kovalev, E. Gross, V. Yu. Timoshenko, G.. Polisski, and F. Koch, Appl. Phys. Lett. 78, 3887 2001
    [17] A. Bruyant, G. Lerondel, P. J. Reece and M. Gal, Appl. Phys. Lett. 82, 3227 2003
    [18]J.E.Lugo,H.A.Lopez,S.Chan,and P.M.Fauchet,J.Appl.Phys.91 4966 2002
    [19]Krisztián Kordás,Andrea Edit Pap,Szabolcs Beke,Seppo Leppávuori,Opti.Mater.25 251 2004
    [20]A.Bruyant,G.Lerondel,P.J.Reece and M.Gal,Appl.Phys.Lett.82 3227 2003
    [21]C.Mazzoleni,L.Paavesi,Chu Jia-Ru,Appl.Phys.Lett.672983 2003
    [22]P.J.Reece,G.Lerondel,W.H.Zheng and M.Gal,Appl.Phys.Lett.81 4895 2002
    [23]V.Agarwal,J.A.del Rio,Appl.Phys.Lett.82 1512 2003
    [24]W.H.Zheng,P.Reece,B.Q.Sun and M.Gal,Appl.Phys.Lett.84 3519 2004
    [25]包晓清,钱敏,王连卫,朱自强,功能材料与器件学报,1259 2006
    [26]梅遂生,杨家德.光电子技术-信息装备的新秀.(北京:国防工业出版社 1999)
    [27]吴宗凡,柳美琳,张绍举等.红外与微光技术.(北京:国防工业出版社 1998)
    [28]R L Whatmore.Pyroelectric devices and materials.Rep.Prog.Phys,49:1335 1986
    [29]N M Shorrocks,A Patel,M J Walker,et al.Integrated thin film PZT pyroelectric detector array.Microelectron Eng.,29:591995
    [30]M Noda,K Hashimoto,R Kubo,et al.A new type of dielectric bolometer mode of detector pixel using ferroelectric thin film capacitors for infrared image sensor.Sensors and Actuators,A77:39-44 1999
    [31]S Tadashi.Piezo-,pyro-,and ferroelectric thin films.Proceedings of the 6th US-Japan Seminar on Dielectric and Piezoelectric Ceramics,USA,1 1993
    [32]R Takayama.Pyroelectric linear array infrared sensors made of c-axis-oriented La-modified PbTiO_3 thin films.J Appl.Phys,63(12)5868 1988
    [33]C Chsueh.Sol-gel derived ferroelectric thin films in silicon micromachining.Integrated Ferroelectrics,3,21 1993
    [34]L Pham,W Tjhen,C Ye,et al.Surface micro-machined pyroelectric infrared imaging array with vertically integrated signal processing circuitry.IEEE Trans U ultrasonic,Ferroelectrics,and Frequency Control,41(4):552 1994
    [35]C Marshall,N Butler,R Blackwell,et al.Uncooled infrared sensor with digital focal plane array.SPIE,2746:23 1996
    [36]P W Kruse,D D Skatrud.Uncooled infrared imaging arrays and systems.USA:Academic Press,103 1997
    [37]D Goustouridis,G Kaltsas,and A G Nassiopoulou,Proceedings of the IEEE Sensors 2004(IEEE Cat.No.04CH37603):2,848-851 2004
    [38]H S Choi,C T Seo,D S Eun,et al.Japanese Journal of Applied Physics,Part 1.vol.43,no.6 B:3868-71 2004
    [39]G Kaltsas,A A Nassiopoulos,and A G Nassiopoulou,IEEE Journal of Sensors vol.2,no.5:463-475 2002
    [40]L Li,X Yao,and L Y Zhang,Chinese Journal of Semiconductors,847 2004
    [41]C Mazzoleni and L Pavesi,Appl.Phys.Lett.67,2983 1995
    [42]A Jhlir,Bell System Tech J.36:333.1956
    [43]K Imai,Solid State Electron J.24:59.1981
    [44]LT Canham.Appl Phys LettJ.57:1046 1990
    [45]R L Smith and S D Collins.Porous silicon formation mechanisms.J.Appl.Phys.71(8),R1-22 1992
    [46]Beale MIJ,Benjam in JD,Uren MJ,J Cryst Growth,73:622.1985
    [47]Witten TA,Sander L.M.Phys.Rev J.,B27:5686.1983,
    [48]V.Lehman and U.Gosele,Appl.Phys.Lett.O.58:856.1991
    [49]ADLINK DAQ-2500 Series Data Book 2005http://www.adlinktech.com/pd
    [50]薛奇.红外傅里叶变换反射吸收光谱的原理及金属表面涂层结构的表征.化学通报.12,33-36 1989
    [51]G Bomchil,A Halimaoui,I Sagnes,et al.,Appl.Surf.Sci., 65/66(2),394 1993
    [52]R.L.Smith and S.D.Collins.Porous silicon formation mechanisms.J.Appl.Phys.71(8),R1-22 1992
    [53]G.Lerondel,R.Romestain,and S.Barret.J.Appl.Phys.81,6171 1997
    [54]Z.J.Wang,J.Zhang,S.H.Xu,L.W.Wang,J.Phys.D:Appl.Phys.40 4482-4484 2007
    [55]田斌,胡明,张之圣.电化学方法制备多孔硅.天津大学学报.37(9),823 2004
    [56]C Mazzoleni and L Pavesi.Application to optical components of dielectric porous silicon multilayers.Appl.Phys.Lett.67(20),2983 1995
    [57]G Lerondel and R Romestain.Thin Solid Films.297,114 1996
    [58]G Lerondel,R Romestain,F Madeore,et al.,Thin Solid Films.276,80 1996
    [59]S Setzu,G Lerondel and R Romestain.J.Appl.Phys.84,31291998
    [60]P J Reece,G Lerondel,W H Zheng,et al.,Appl.Phys.Lett.81,4895 2002
    [61]M Ghulinyan,C J Oton,G Bonetti,et al.Free-standing porous silicon single and multiple cavities.J.Appl.Phys.93,9724-97292003
    [62]http://www.mathworks.com/products/matlab/
    [63]薛定宇,陈阳泉.基于MATLAB Simulink的系统模拟技术与应用.(北京:清华大学出版社,2002)
    [64]M Kristensen.Phys.Rev.B.64,1442 2001
    [65]梁辁廷.物理光学.(北京:机械工业出版社,1980)
    [66]M Born and E Wolf.Principles of Optics.(Cambridge Univ.Press,UK,1999)
    [67]C G ASKINS.Opt.Lett.17(11),833 1992
    [68]清源计算机工作室,MATLAB基础及其应用[M]1 北京:机械工业出版社,2000
    [69]Z.J.Wang,J.Zhang,S.H.Xu,L.W.Wang,Z.S.Cao,P.Zhan,and Z.L.Wang,J.Phys.D:Appl.Phys.40,4482-4484,2007
    [70] L Pavesi and P Dubos, Semicon. Science Technol. 12, 570 1997
    [71] Bin.Tian and Ming. Hu. Thermal isolation with porous silicon technology and the application in the micro-sensors. JournalofInorganicMaterial, 20(3), May 2005.
    [72] Xian.Wen. Yu, Rong.Jin. Zhu, Zi.Qiang. Zhu, Tao.Kai. Ying, and Ai.Zhen. Li. Drying of porous silicon. Chinese Journal of Semiconductors, 24(6):663-667, June 2003.
    [73] Xiao-yuan Hou, Hong-lei Fan, Lei Xu, Fu-long Zhang, Appl. Phys. Lett. 68,17 1996
    [74] Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, Science 282,1679,1998.
    [75] V Agarwal and J A del Rio. Tailoring the photonic band gap of a porous silicon dielectric mirror. Appl. Phys. Lett. 82 (10), 1512 2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700