多比例尺地图数据不一致性探测与处理方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
比例尺和现势性(或时态)是地图数据的两个最基本的特征。不同比例尺的地图数据表达了地球空间现象或实体在不同层次的形态、结构和细节。不同时态的数据表达了地球空间现象或实体的变化过程、趋势或规律。因而,尺度效应或现实变化都可能导致同一地理实体在不同比例尺、不同时态的地图中存在几何、属性、拓扑等方面的差异,这种差异信息可能包含了真实变化、误差(或容许变化)和不一致性等。然而,真实变化和容许变化是不需要处理的,而不一致性必须加以处理,以提升空间数据质量和空间分析结果的准确性。
     不一致性是国际公认的空间数据质量指标之一,可以区分为空间不一致性、属性不一致性、拓扑不一致性、语义不一致性等类型。现有的不一致性研究主要局限于相同类型目标之间,特别是线目标,研究尺度多限于相同或相近比例尺,而对于多比例尺地图数据间的不一致性探测处理问题则涉及较少,这主要是由于尺度引起的不一致性类型更为复杂,并且有些不一致性是允许的,而有些又是不允许的,从而导致多比例尺地图数据不一致性的探测、判断和处理要比单一比例尺地图数据的不一致性探测处理复杂得多,因此迫切需要发展新的技术方法来探测和处理多比例尺地图数据不一致性问题。为此,本论文从分析归纳多比例尺地图数据变化分类、描述着手,通过对多比例尺地图数据变化信息的检测,获取包括地理实体真实变化、地理实体随比例尺变换的容许变化和地图数据不一致性等在内的复合信息。本文主要研究多比例尺地图数据的空间不一致性,并将其划分为四类,即几何不一致性、拓扑不一致性、度量不一致性和方向不一致性,并对每种类型不一致性进行了描述。进而,从拓扑关系、方向关系和距离关系三个方面论述了单类型空间关系的描述,并用于探测这些单一类型的不一致性。在此基础上,针对多种类型并存的空间不一致性,本论文进一步采用分解与组合策略对复杂空间关系进行层次分析,通过基本类型空间关系的组合对基于拓扑链的空间关系进行集成描述,从而指导多比例尺地图数据不一致性探测与处理。最后,在对多比例尺地图数据不一致性进行类型分析和探测、处理方法设计的基础上,结合河流、等高线、境界和行政区域等线目标和面目标进行实验分析,验证本文所提理论和方法的可行性,为改善空间数据质量、提升基础地理信息服务水平提供一定的参考和借鉴。
     本文的主要研究内容和贡献包括:
     1.从空间数据质量的角度阐述了空间数据不一致性研究的重要性,详细回顾了当前国际GIS界围绕地图空间数据不一致性问题取得的研究进展,分析总结了当前研究及需解决的主要问题和发展多比例尺地图数据不一致性探测处理方法的迫切需求。
     2.将多比例尺地图空间目标的变化类型按照、线和面目标三种基本目标类型分别进行归纳分类并进行了形式化描述,进而,提出采用4交差拓扑关系模型来探测同名目标变化的方法,有效地将真实变化从制图综合引起的几何差异信息中分离出来,有效地区分了地理实体真实变化和制图综合操作影响。
     3.构建了多比例尺地图数据不一致性的分类体系,完善了空间数据不一致性分类框架。针对多比例尺地图数据,详细而全面地总结归纳了不一致性的来源,将空间不一致性分为几何不一致性、拓扑不一致性、度量不一致性和方向不一致性四类,并分别进行了形式化描述,提升了现有空间数据不一致性研究的系统性。
     4.在描述空间目标基本关系的基础上,探讨了单类型空间关系不一致性的探测方法。进而,运用分解和组合策略对复杂空间关系进行层次分析,提岀了基于拓扑链的复杂空间关系集成描述方法,并将其应用于复杂空间关系不一致性的探测。通过河流与等高线等空间不一致性探测实验,验证了所提的空间不一致性探测方法的正确性和有效性。
     5.分析了当前空间数据不一致性处理处理方法的不足和局限性,在结点捕捉的基础上提岀了空间点、线段和折线目标的不一致性处理模型和方法,并导出了折线目标不一致性处理结果的误差估计公式;基于拓扑链的复杂空间关系集成描述方法,以等高线与河流为例论述了集成空间关系不一致性处理流程,通过与现有方法比较验证了本文所提方法在精度方面的优势。
Scale and time are two basic characteristics of map data. Due to different representation details of spatial objects in different scale maps, the same geographic entity may have different geometry, attribute and topology in multi-scale maps, which contain real change, error (or allowable variation) and inconsistency, etc. To improve the quality of spatial data and accuracy of spatial analysis results, inconsistency must be treated rather than real variation and allowable variation.
     Inconsistency is one of the internationally recognized spatial data quality indices, which can be divided into spatial inconsistency, property inconsistency and semantic inconsistency. Current researches are mostly presented for the same type of spatial objects with same or similar scales, especially for line objects. However, there is little research on inconsistency detection in multi-scale maps. Novel methods must be developed to detect and handle the inconsistency problems among multi-scale maps. For this purpose, existing methods of classification and representation of multi-scale map data variation are summarized systematically. Through the detection of multi-scale map data variation, the compound information including real variation of geographic entity, allowable variation of geographic entity changing with scale and inconsistency of map data are obtained. This thesis mainly focus on the spatial inconsistency of multi-scale map data, which is divided into four classes, including geometry inconsistency, topological inconsistency, metric inconsistency and direction inconsistency. The representation of individual spatial relation and the inconsistency in detection method are discussed from topological relation, direction relation and distance relation. Further, the idea of decomposition and combination is used to hierarchically analyze the complex spatial relation, and the spatial relation based on topology chain is represented integratedly through combination of basic spatial relation types. Based on the method desiged for type analysis, detection and processing of multi-scale map data inconsistency, the experimental results of analysis of line objects and region objects, such as rivers, contour lines, boundaries and administrative regions, have testified the feasibility of the proposed method, which will provide some referenced value for improving spatial data quality and promoting basic geographic information service level.
     The main contents and contributions of this thesis are presented as follows.
     1. The significance of inconsistency is elaborated from the aspect of spatial data quality. A detailed review of the progress on spatial data inconsistency in the fields of geographical information science (GIS) is made. Main issues involved in current methods are pointed out, and the urgency of developing inconsistency detection methods for multi-scale map data is analyzed.
     2. According to the basic spatial object types, the classification and formal representation of variation type of multi-scale map spatial objects are discussed respectively. A method adopting4-intersection-and-difference model to detect the variation of homonym objects is prosposed, which can effectively separate real variation from geometric diffence information caused by map generation and thus lay the foundation for analyzing the sources, classification and respresentation of multi-scale map data inconsistency.
     3. The main sources of multi-scale map data inconsistency are systematically studied from spatial data quality, thematic properties, storage and representation, and analysis and manipulation, and classified into geometry inconsistency, topological inconsistency, metric inconsistency and direction inconsistency. The four types of representations are given to provide the basis for detecting and processing the multi-scale map data inconsistency.
     4. Based on the representation of basic relation between spatial objects, the detection method of the inconsistency of the same type of spatial relations is discussed. Further, the complex spatial relation is hierarchically analyzed using the decomposition and combination strategy. An integrated representation method of complex spatial relation based on topology chain is proposed and applied to detect the complex spatial relation inconsistency. The experiments of spatial inconsistency detection among rivers and contour lines have verified the validity and effectiveness of the method.
     5. The shortage and limitation of existing spatial data inconsistency methods are analyzed. An inconsistency processing model and method are presented for point objects, line objects and poly-line objects based on node capture. An error estimation formula is derived for the processing results of poly-line object inconsistency. Based on integrated representation method of complex spatial relation on topology chain, the integrated spatial relation inconsistency processing procedure is discussed taking the rivers and contour lines as examples. A comparison with existing method verified the accuracy advantage of the method proposed in this thesis.
引文
[1]艾廷华,成建国.对空间数据多尺度表达有关问题的思考[J].武汉大学学报(信息科学版),2005,30(5):377-382.
    [2]艾廷华,毋河海.相邻多边形共享边界的一致化改正[J].武汉测绘科技大学学报,2000,25(5):426-432.
    [3]陈佳丽,易宝林,任艳.基于对象匹配方法的多重表达中的一致性处理[J].武汉大学学报(工学版),2007,40(3):115-119.
    [4]陈军,胡云岗,赵仁亮,等.道路数据缩编更新的自动综合方法研究[J].武汉大学学报(信息科学版),2007,32(11):1022-1027.
    [5]陈军,李志林,蒋捷,等.基础地理数据库的持续更新问题[J].地理信息世界,2004,2(5):1-5.
    [6]陈军.论数字化地理空间基础框架的建设应用[J].测绘工程,2002,11(2):1-6.
    [7]邓敏,李志林,李永礼.GIS线目标间拓扑关系描述的层次方法[J].遥感学报,2007,11(3):311-317.
    [8]邓敏,李志林,吴静.空间关系理论与方法[M].北京:科学岀版社,2013.
    [9]邓敏,刘文宝,冯学智.GIS面目标间拓扑关系描述的形式化模型[J].测绘学报,2005a,34(1):85-90.
    [10]邓敏,刘文宝,冯学智.GIS中地理边线不一致性的处理[J].遥感学报,2005,9(4):343-348.
    [11]邓敏,刘文宝,李俊杰,等.矢量GIS空间方向关系的演算模型[J].遥感学报,2006,10(6):821-828.
    [12]邓敏,马杭英.线与面目标间拓扑关系的层次表达方法[J].测绘学报,2008,37(4):507-513.
    [13]邓敏.矢量GIS中拓扑关系的扩展模型:理论和方法[D].博士学位论文,武汉大学,2003.
    [14]杜培军,柳思聪.融合多特征的遥感彤像变化检测[J].遥感学报,2012,16(4):663-677
    [15]杜世宏,秦其明,土桥.GIS中由多种方向关系推理拓扑关系的方法[J].计算机辅助设计与图形学学报,2005,17(9):1917-1927.
    [16]郜允兵,谢传节,戴华阳,等.Web空间数据编辑中数据一致性保护机制[J].测绘信息与工程,2007,32(1):1-3.
    [17]龚健雅.地理信息系统基础[M].北京:科学出版社,2002.
    [18]黄万里,李虎,林广发.尺度变化的土地利用类型数据的综合研究[J].地理信息科学学报,2010,12(3):329-334.
    [19]李光强,李姣姣,邓敏.相交剖面间空间不一致性检测方法的研究[J].武汉大学学报(信息科学版),2009,34(9):1039-1042.
    [20]李志林.地理空间数据处理的尺度理论[J].地理信息世界,2005,3(2):1-5.
    [21]刘万增,陈军,邓喀中,等.数据库更新中河流与山谷线一致性检测[J].中国图象图形学报,2008,13(5):1003-1006.
    [22]刘万增,陈军,邓喀中,等.线目标空间冲突自动检测方法研究[J].中国矿业大学学报,2006,35(6):767-771.
    [23]刘万增,赵仁亮.水系要素更新中空间冲突的自动检测研究[A].中国地理信息系统协会第八届年会论文集[C],2004:145-153.
    [24]刘文宝,夏宗国,崔先国.GIS结点捕捉的广义算法及误差传播模型[J].测绘学报,2001,30(2):140-147.
    [25]鲁伟,谢顺平,邓敏,等.多源空间数据间不一致性研究现状及其进展[J].测绘科学,2009,34(4):57-60.
    [26]马少娟,朱华吉,崔兴国.时空变化分类与表达研究[J].测绘科学,2007,32(4):88-90.
    [27]任艳,易宝林,陈佳丽.基于规则的空间一致性维护[J].计算机工程,2007,33(19):93-95.
    [28]史文中.空间数据与空间分析不确定性原理[M].北京:科学出版社,2005.
    [29]宋振.线目标空间冲突自动检测研究现状[J].测绘,2009,32(6):246-248.
    [30]宋振.自动制图综合中空间冲突检测研究[D].郑州:解放军信息工程大学,2010.
    [31]谭笑,基于知识的线状水系要素自动综合研究[D].郑州:中国人民解放军信息工程大学,2005.
    [32]唐远彬,张丰,刘仁义,等.一种维护线状地物基本单元属性逻辑一致性的平差方法[J].武汉大学学报(自然科学版),2011,36(7):853-856.
    [33]王家耀,钱海忠.制图综合知识及其应用[J].武汉大学学报(信息科学版),2006,31(5):382-386.
    [34]王家耀.我国地图制图学与地理信息工程学科发展研究[J].测绘通报,2007,(5):1-6.
    [35]王强,曹辉.数字地形图中河流线与谷底线空间冲突自动检测及纠正[J].测绘通报,2010,(12):58-61.
    [36]王育红.空间数据集成及冲突消解方法综述[J].测绘科学,2011,36(2):81-83.
    [37]邬伦,刘瑜,张品等.地理信息系统:原理方法和应用[M].北京:科学岀版社,2005.
    [38]邬伦,张毅.分布式多空间数据库系统的集成技术[J].地理学与国土研究,2002,18(1):6-10.
    [39]吴建华,傅仲良.数据更新中要素变化检测与匹配方法[J].计算机应用,2008,28(6):1612-1615.
    [40]徐枫,邓敏,赵彬彬,等.空间目标匹配方法的应用分析[J].地球信息科学学报,2009,11(5):657-663.
    [41]徐文祥.基于空间特征码的矢量要素变化检测研究[D].南京:南京师范大学,2011.
    [42]闫浩文,郭仁忠.空间方向关系形式化描述模型研究[J].测绘学报,2003,32(1):42-46.
    [43]翟仁健.基于全局一致性评价的多尺度矢量空间数据匹配方法研究[D].郑州:解放军信息工程大学,2011.
    [44]詹陈胜,武芳,翟仁健,等.基于拓扑一致性的线目标空间冲突检测方法[J].测绘科学技术学报,2011,28(5):387-390.
    [45]张保钢,袁燕岩.城市大比例尺地形图数据库中地物变化的自动发现[J].武汉大学学报(信自科学版),2005,30(7):640-642.
    [46]张传明,潘懋,吴焕萍,等.保持拓扑一致性的等高线化简算法研究[J].北京大学学报(自然科学版),2007,43(2):216-222.
    [47]张刚,李东.水系自动制图综合算法研究[J].水利科技与经济,2009,15(4):302-304.
    [48]张利君.土地利用总体规划制图综合方法研究[D].上海:华东师范大学,2011.
    [49]张求喜,岳淑英,胡克新.基于MapX的道路线状数据拓扑不一致性自动检测[J].地理信息世界,2010,10(5):81-84.
    [50]赵彬彬,邓敏,李志林.GIS空间数据层次表达的方法探讨[J].武汉大学学报(信息科学版),2009,34(7):859-863.
    [51]赵东保,盛业华.一种基于等高线树和Strip树的等高线拓扑一致性化简算法[J].测绘科学,2008,33(4):91-93.
    [52]中华人民共和国国家质量监督检验检疫总局.GB/T 20257.2—2006.国家基本比例尺地形图图式第2部分:1:50001:10000地形图图式[S].北京:中国标准出版社.
    [53]朱华吉.地形数据增量信息分类与表达研究[D].北京:中国科学院研究生院,2005.
    [54]朱华吉,吴华瑞,马少娟.空间目标增量时空变化分类模型[J].武汉大学学报(信息科学版),2013,36(3):339-343.
    [55]Anders K H, Bobrich J. MRDB approach for automatic incremental update[C]. ICA Workshop on Generalization and Multiple Representation, Leicester, England,2004.
    [56]Badard T. Towards a generic updating tool for geographic databases//GIS/LIS'98[C]. Fort Worth, Texas,1998, pp 352-363.
    [57]Billen R, Clementini E. Introducing a reasoning system based on ternary projective relations[J]. In:Fisher P, Ed, Developments in Spatial Data Handling,2004, pp. 381-394.
    [58]Breunig M. "Integration of spatial information for geo-information systems", Springer Cop., Berlin.1996.
    [59]Chen J, Li C M, Li Z L, et al. A voronoi-based 9-intersection model for spatial relations[J]. International Journal of Geographical Information Science,2001,15(3): 201-220.
    [60]Claramunt C, Theriault M. Managing time in GIS:an event-oriented approach. Clifford J, Tuzhilin A. Recent Advances on Temporal Databases[C]. Zurich Switzerland:Springer-Verlag,1995.
    [61]Cockcroft C. User defined spatial business rules:storage management and implementation-a pipe network[C]. In:Proceedings of the 10th Colloquium of the Spatial In formation Research Centre, Otago, New Zealand,1998:16-19.
    [62]Corcoran P, Mooney P, Winstanley A. Planar and non-planar topologically consistent vector map simplification[J]. International Journal of Geographical Information Science,2011,25(10):1659-1680.
    [63]Couclelis Ⅱ. "Aristotelian Spatial Dynamics in the Age of Geographic Information Systems." spatial and temporal reasoning in geographic information systems. Max J. Egenhofer and Reginald G. Golledge, Eds. New York:Oxford University Press,1998. 109-118.
    [64]Dangermond J. How to cope with Geographical Information Systems in your organization[J]. In Scholten and Stilwell(eds). Geographical Information Systems for Urban and Regional Planning, Kluwer Academic Publishers,1990,203-211.
    [65]Deng M, Cheng T, Chen X, et al. Multi-level topological relations between spatial regions based upon topological invariants[J]. Geolnformatica,2007a,11(2):239-267.
    [66]Deng M, Chen X Y, Liu W B, et.al. Modeling error propagation for spatial consistency[J]. Journal of Geospatial Engineering,2003,5(2):51-60.
    [67]Deng M, Li Z L. A statistical model for directional relations between spatial objects[J]. GeoInformatica,2008,12(2):193-217.
    [68]Deng M, Li Z L, Cheng X Y. Extended Hausdorff distance for spatial objects in GIS[J]. International Journal of Geographical Information Science,2007b,21(4): 459-475.
    [69]Devogele T. A new merging process for data integration based on the discrete Frochet distance[C]. In:Richardson D, Oosterom van P(eds.), Proceedings of the 10th International Symposium on Spatial Data Handling. Springer:2002,167-181.
    [70]Dougenik J. Whirlpool:a geometric processor for polygon coverage data[J]. Proceedings Auto-Carto IV,1980,2:304-311.
    [71]Du S, Guo L, Wang Q. A scale-explicit model for checking directional consistency in multi-resolution spatial data[J]. International Journal of Geographical Information Science,2010,24(3):465-485.
    [72]Dutta S. Approximate spatial reasoning:integrating qualitative and quantitative constraints[J]. International Journal of Approximate Reasoning,1991, Vol.5, pp. 307-331.
    [73]Egenhofer M. Pre-processing queries with spatial constrains[J]. Photogrammtric Engineering & Remote Sensing,1994,60(6):783-970.
    [74]Frank A. Qualitative spatial reasoning about distances and directions in geographic space[J]. Journal of Visual Language and Computing:1992, Vol.3, pp.343-371.
    [75]Gadish D A. Inconsistency detection and adjustment of spatial data using rule discovery[D]. Ph.D. Thesis, University Of Guelph, In Canada,2001.
    [76]Ghawana T. Data consistency checks for building of 3d model:a case study of technical university delft campus the netherlands[EB/OL].2011. http://www.gdmc.nl/publications/2010/Data_consistency_checks_3 D_model.pdf.
    [77]Gong P, Mu L. Error detection in map databases:a consistency checking approach[J]. Geographic Information Sciences,2000,6(2):188-193.
    [78]Goodchild M F. Statistical aspects of the polygon overlay problem[J]. Harvard Papers on Geographic Information System,1978,6.
    [79]Goyal R K. Similarity assessment for cardinal directions between extended spatial objects[D]. PhD Thesis. University of Maine, Orono, ME,2000.
    [80]Groger G, Plumer L. How to achieve consistency for 3D city models[J]. GeoInformatica,2011,15(1):137-165.
    [81]Haala N, Becker S, Kada M. Cell decomposition for building model generation at different scales[C]. In Proceedings of Urban Remote Sensing Joint Event, Paris, France,2007,1-6.
    [82]Haar R. Computational Models of Spatial Relations[R]. Technical Report:TR-478, MSC-72-03610, Computer Science, University of Maryland, College Park, MD, 1976.
    [83]Harvey F. Defining unmovable nodes/segments as part of vector overlay[J]. In: Advances in GIS Research. Taylor and Francis, London,1994,159-176.
    [84]Hornsby K, Egenhofer M. Identity-based change:a foundation for spatio-temporal knowledge representation[J]. International Journal of Geographical Information Science,2000,14(3):207-224.
    [85]Hong J H. Qualitative distance and direction reasoning in geographic space[D]. PhD Thesis. University of Maine, Orono, United States,1996.
    [86]Huh Y, Yu K, Heo J. Detecting conjugate-point pairs for map alignment between two polygon datasets[J]. Computers, Environment and Urban Systems,2011,35(3): 250-262.
    [87]Jain A K, Murty M N, Flynn P J. Data clustering:a review[J]. ACM computing surveys,1999,31(3):264-323.
    [88]Kainz W. Logical consistency. In:Guptill S C, Morrison J L(eds.), Elements of Spatial Data Quality[M], Newyork:Elsevier,1995,139-151.
    [89]Ledoux H, Meijers B M. Topologically consistent 3D city models obtained by extrusion[J]. International Journal of Geographical Information Science,2011,25(4): 557-574.
    [90]Li Z L. Algorithmic foundation of multi-scale spatial representation[M]. CRC Press (Taylor & Francis Group), Bacon Raton.2007,280pp.
    [91]Liu X, Shekhar S, Chawla S. Consistency checking foreuclidean spatial constraints:a dimension graph approach[C].12th IEEE International Conference on Tools with Artificial Intelligence, Vancouver, BC, Canada,11-13 Nov,2000,333-342.
    [92]Maras S S, Maras H H, Aklug B, et al. Topological error correction of GIS vector data[J]. International Journal of the Physical Sciences,2010,5(5):476-483.
    [93]McAlpine J R, Cook B G. Data reliability from map overlay[C]. In Proceedings, Australian and New Zealand Association for the Advancement of Science,43rd Congress. Brisbane:Section 21-Geographical Sciences.1971.
    [94]Mikhail E. Observations and least squares[M]. New York:A Dun-Donnelley Publisher, 1976.
    [95]Mukerjee A, Joe G. A qualitative model for space[C]. Proceedings 8th National Conference on Artificial Intelligence/Boston, MA,1990, pp.721-727.
    [96]Papadias D, Karacapilidis N, Arkoumanis D. Processing fuzzy spatial queries:a configuration similarity approach[J]. International Journal of Geographical Information Science,1999,13 (2):93-118.
    [97]Peuquet D, Zhan C X. An Algorithm to determine the directional relationship between arbitrary-shape polygons in the plane[J]. Pattern Recognition,1987,20(1):65-74.
    [98]Perkal J. On epsilon length[J]. Bull. Acad. Pol. Sci,1956,4:399-403.
    [99]Pullar D. Consequences of using a tolerance paradigm in spatial overlay[C]. In Proceedings of Auto-Carto 11 (ACSM-ASPRS),1993, pp.288-296.
    [100]Raza A, Kainz W. An object-oriented approach for modeling urban land-use changes[J]. URISA Journal,2002,14(1):37-55.
    [101]Renolen A. Modelling the real world-conceptual modelling in spatiotemporal information system design[J]. Transactions in GIS,2000,4(1):23-42.
    [102]Rodrfguez A, Inconsistency issues in spatial databases[J]. In:L. Bertossi, T. Hunter, T. Schaub (Eds.), Inconsistency Tolerance, Lecture Notes in Computer Science, vol. 3300,2005, pp.237-269.
    [103]Rucklidge W J. Efficient visual recognition using the hausdorff distance [J]. Lecture Notes in Computer Science, Springer-Verlag Berlin Heidelberg:1996,1173.
    [104]Schlieder C. Reasoning about ordering[J]. Frank W K ed. Spatial Information Theory: a theoretical basis for GIS, number 988 in Lecture Notes in Computer Science, Berlin/Springer-Verlag:1995,341-349.
    [105]Servigne S, Ubeda T, Puricelli A, et al. A methodology for spatial consistency improvement of geographic databases[J]. Geoinformatica,2000,4(1):7-34.
    [106]Sharma J.Integrated spatial reasoning in geographic information systems:combining topology and direction[D]. PhD Thesis, University of Maine, Orono, United States, 1996.
    [107]Sheeren D, Mustiere S, Zucker J D. A data-mining approach for assessing consistency between multiple representations in spatial databases [J]. International Journal of Geographical Information Science,2009,23(8):961-992.
    [108]Singh A. Digital change detection techniques using remotely sensed data[J]. International Journal of Remote Sensing,1989,10,989-1003.
    [109]Skiadopoulos S, Koubarakis M. Composing cardinal directions relations[C]. In: Proceedings of the 7th International Symposium on Spatial and Temporal Databases (SSTD'01), Lecture Notes in Computer Science, Springer/Berlin:2001, Vol.2121, pp.299-317.
    [110]Song Y, Jia X X. Remote sensing change detection based on growing hierarchical self-organization map[C]. Environmental Science and Information Application Technology (ESIAT),2010 International Conference, Wuhan, China, July 17-18, 2010.
    [111]Theodoridis Y, Papadias D, Stefanakis E. Supporting Directional Relations in Spatial Database Systems. In:Kraak J M. Moleenar M, Eds., Proceedings of the 7th International Symposium on Spatial Data Handling, Taylor Francis, Delft, the Netherlands:1996, pp.739-752.
    [112]Tryfona N, Egenhofer M. Consistency among parts and aggregates:a computational model[J]. Transactions in GIS,1997,1(3):189-206.
    [113]Ubeda T, Egenhofer M J. Topological error correcting in GIS[J]. In:M. Scholl and A. Voisard (Eds.), Advances in Spatial Databases SSD'97, Berlin, Germany. Springer, 1997:283-297.
    [114]Veltkamp R C. Shape matching:similarity measures and algorithms[C]. In:Pasko A, Spagnuolo M. Proceedings of International Conference on Shape Modeling and Applications, Genova/Italy:2001,188-197.
    [115]Wilmsen D. Derivation of Change from Sequences of Snapshots[D]. Maine:The University of Maine,2006.
    [116]Winter S. Uncertain topological relation between imprecision regions[J]. International Journal of Geographical Inforamtion Science,2000,14(5):411-430.
    [117]Yan H, Chu Y, Li Z, et al. A quantitative description model for directional relations based on direction groups[J]. Geolnformatica,2006,10(2):177-195.
    [118]Zhang G, Tulip J. An algorithm for the avoidance of sliver polygons and clusters of points in spatial overlay[C]. In Proceedings of 4th International Symposium on Spatial Data Handling, Zurich, Switzerland,1990, vol.1, pp.141-150.
    [119]Zhou X G, Chen J, Jiang J, et al. Event-based incremental updating of spatio-temporal database[J]. Journal of Central South University of Technology, 2004,11(2):192-198.
    [120]Zhu X Y, Li D R, Gong J Y. A study on data consistency in spatial database system[C]. International Archives of Photogrammetry and Remote Sensing.2000, Vol.ⅩⅩⅩⅢ, Part B4. Amsterdam.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700