我国近海热带气旋活动与东亚副热带季风年际变化的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文基于既有的关于夏季中纬度亚洲大陆和太平洋对流层中上层温度纬偏年际变化存在的大尺度东西向反位相现象,即亚洲—太平洋涛动(Asian—Pacific Oscillation,简称APO)的研究成果,以夏季APO强度指数来定量表征东亚副热带夏季风强度。然后,本文系统分析了秋冬季也存在的APO现象及其与东亚副热带冬季风环流和温压场特征的关系,得出秋冬季APO强弱也能较好地表征东亚副热带冬季风强度的年际变化。
     在对比了分别基于美国关岛联合台风警报中心、东京区域专业气象中心以及上海台风研究所三组台风数据集的热带气旋(tropical cyclone,以下简称TC)频数等统计差异性的基础上,选择1976—2005年联合台风警报中心台风最佳路径资料和NCEP/NCAR再分析月平均资料,采用相关分析与合成分析等统计方法,分别分析了夏季和秋冬季APO强弱与同期东亚—西北太平洋海—气环境的关系,并进一步探讨APO强弱与我国近海TC活跃度的关系及其联系机制。鉴于秋冬季APO强弱与El Nio(La Nia)现象的显著相关,本文利用CAM3.0全球大气模式对北太平洋海温的强廹作用进行了模拟试验。全文主要结论如下: (1)无论是夏季还是秋冬季,我国近海TC的活跃度与同期APO强弱均存在密切关系。夏季APO强(弱)年西北太平洋TC活动密集区偏西(东)偏北(南),我国东部近海TC明显增多(减少)。初秋(9—10月)和深秋初冬(11—12月)APO强(弱)年西北太平洋TC活动密集区偏西(东),我国南部近海TC增多(减少)。
     (2)夏季APO强度变化可通过改变我国近海对流层纬向风垂直切变、低层辐合与对流等局地环境场从而影响我国近海TC活跃度。APO强(弱)年,东亚副热带夏季风加强(减弱),我国东部近海低层存在气旋(反气旋)性环流异常和对流加强(减弱),对流层纬向风垂直切变减小(加强),近海环境有利(不利)于TC的维持和发展。
     (3)夏季APO强弱也与南海—热带西太平洋季风槽强度、位置和以及对流层中层引导气流等关系紧密,即通过改变西北太平洋TC活动密集区分布和移动路径从而也影响着进入我国近海TC的多少: APO强(弱)年南海—热带西太平洋季风槽偏北偏西(偏南偏东),热带西太平洋TC活动密集带偏北偏西(偏南偏东),有利于进入我国东部近海TC的增多(减少)。与此同时,APO强(弱)年西北太平洋副热带高压(以下简称副高)偏北偏东(偏南偏西),副高南侧偏东气流减弱(加强),有利于TC的西北行或偏北(南)西行,进入我国东部近海的TC将增多(减少)。
     (4)秋冬季,APO强度变化与东亚副热带冬季风环流和温压场存在着密切关联。9—10月APO偏强年东亚副热带冬季风偏弱,在大气环流上表现为东亚中高纬环流呈纬向,东亚沿海大槽减弱,副高偏北偏东,中纬度东亚大陆与低纬热带海域间的Hadley经向环流减弱,北半球中低纬存在的纬向垂直环流也减弱。11—12月APO偏强年东亚副热带冬季风偏强,在大气环流上表现为东亚沿海大槽加强南伸,副高偏弱偏东,东亚大陆与近赤道热带西太平洋海域间的Hadley环流和热带东、西太平洋间的Walker环流均显著加强。
     (5)初秋APO强度影响我国近海TC活跃度的可能机制是通过改变我国近海纬向风垂直切变、低层辐合和对流场等局地环境以及影响副高强度和位置、引导气流等大尺度环流形势来实现的:APO强(弱)年,东亚副热带冬季风减弱(加强),副高加强西伸(减弱东移),中低纬对流层西太平洋为偏东(西)风异常,有(不)利于TC的西行或近海转向点偏西(东),进入我国近海的TC将增加(减少)。同时,APO强(弱)年我国近海对流层高低层纬向风垂直切变减小(增大)、对流加强(减弱)以及南海气旋(反气旋)环流异常的存在也使得我国近海环境有(不)利于TC的维持和发展。
     (6)深秋初冬APO影响我国南部近海TC活跃度的可能机制包括改变冷空气强度、纬向风垂直切变、低层辐合场以及引导气流来实现的。APO强(弱)时东亚副热带冬季风加强(减弱),副高东移南退(西伸北抬),热带西太平洋对流层中高层出现偏东(西)风异常,使得我国南部近海西风纬向风垂直切变减小(增大),而华南沿海低层东北风(西南风)异常又使得南海出现气旋(反气旋)性环流异常,且南海至热带西太平洋西区冷空气强度偏弱,因此我国南部近海环境有(不)利于TC的维持和发展;同时,APO强(弱)年热带西太平洋对流层中层引导气流为偏东(西)风异常,有(不)利于TC的西行或转向点偏西(东),进入我国东南近海TC将增多(减少)。
     (7)尽管秋冬季APO强弱与El Ni o(La Ni a)现象关系紧密,而数值试验结果显示,无论是初秋还是深秋初冬,强El Ni o(La Ni a)发生时的热带太平洋海温强廹并不能激发出APO。
In the context of scientific findings regarding a large-scale E–W negative correlation of the interannual variation of summer instantaneous temperature fields in the middle– upper troposphere over the Asia and the northern hemisphere Pacific region, referred to as Asian– Pacific Oscillation (APO) hereinafter, the paper is devoted to summer APO characterized quantitatively intensity of summer monsoons at Eastern Asian subtropics (EAS). A systematic analysis is also performed about the autumn and winter APO, as well as their relationships with the atmospheric circulation and temperature/pressure fields of the winter monsoons at Eastern Asian subtropics, respectively. Results show that the strength of autumn/winter APO can quantitatively represent the interannual variation of winter Eastern Asian Subtropical Monsoon intensity.
     From the statistical differences between annual frequencies of tropical cyclones (TC) given by the best track datasets of Joint Typhoon Warning Center (JTWC), Japan Meteorological Agency (JMA) and Shanghai Typhoon Institute (STI), the 1976-2005 JTWC TC optimal tracks and related NCEP/NCAR reanalysis monthly mean data are utilized for study by means of both correlation and composite analysis, by which to investigate, separately, the relationships between the APO intensity and Eastern Asian-western North Pacific air-sea environment in summer and autumn/winter, with the linkage explored of APO vigor with TC activities over Chinese coastal waters and TC distribution over western North Pacific. In view of the close association between autumn/winter APO strength and El Ni?o ( or La Ni?a ) events, CAM3.0-modeling is performed mainly forced by sea surface temperature over tropical Pacific, with dominant conclusions given below.
     1) There is an intimate relation of the TC activities over the coastal waters to APO intensity either in summer or autumn/winter on a synchronous basis. In summer when APO is strong (weak), the western North Pacific TC activities are largely west- (east-) and north- (south-)ward of mean, so that the offshore TC increases (decreases) greatly in frequency over eastern Chinese coastal waters. In September– October and November– December when intense (feeble) APO is occurring, western North Pacific TC activities are mostly west- (east-) ward of average, resulting in the Chinese offshore TC increasing (decreasing) in number.
     2) Summertime APO impacts the offshore TC activities and distributions by altering the vertical shear of zonal winds, low-level convergence and convection over coastal waters of China. For intense (weak) APO years, the EAS summer monsoon is strengthened (reduced), and there emerge anomalous cyclonic (anticyclonic) circulations and reinforced (diminished) convections in the lower troposphere over the coastal waters of East China, as well as declining (intensifying) vertical shear of troposphere zonal winds, thereby providing favorable (unfavorable) condition for the maintenance and development of the offshore TC activities.
     3) Summertime APO intensity bears a close relation to the vigor and position of monsoon trough over the South-China Sea (SCS)– tropical western Pacific (TWP) and to the direction of steering airflows, i.e., they determine the TC annual frequency in Chines offshore waters by affecting the location of the TC concentration area and their tracks. When APO is strong (weak), the SCS-TWP monsoon trough is positioned north-(south-) and west-(east-)ward of mean, and the concentration belt of TWP TC activities is west- (east-) and north- (south-)ward of mean, thus responsible for an increased (decreased) frequency of TC in eastern coastal waters of China. Also, in the years of higher (lower) APO strength, the TWP subtropical high is north-(south-) and east-(west-)ward of mean, with the easterlies on its south side diminished (enhanced), consequently favorable for TC moving in the northwest or west by north (south) to cause more (fewer) TC to come into the coastal waters of East China.
     4) In autumn and winter, there is a close association of the APO intensity with the atmospheric circulation and temperature/pressure fields of the EAS winter monsoons. In September– October when APO is strong, the EAS winter monsoons are weakened, indicated by the circulation as zonal straight flows over middle-high latitudes of East Asia, declined East Asia deep trough, subtropical high north- and eastward of mean, as well as decreased Hadley cell (Walker circulation) over East Asia continent and Low-latitude waters (subtropical areas of the northern hemisphere). On the other hand, in November– December when APO is weak, the EAS winter monsoons are strengthened, demonstrated by the circulation as intensified East Asia deep trough expanding to the south, decreased subtropical high eastward of mean, and significantly strengthened Hadley cell (Walker circulation) over East Asia continent and equatorial waters (tropical Pacific).
     5)In early autumn (September– October) the APO intensity affects offshore TC activities through a possible mechanism to alter the zonal wind vertical shear, low-level convergence and convective fields as the local environment over coastal waters of China , as well as west Pacific subtropical high’s position, intensity and steering flow’s direction as the large-scale circulation pattern. For strong (weak) APO the subtropical winter monsoon is decreased(increased) while the subtropical high is enhanced (weakened), with the high’s ridge line extending (retreating) more westward (eastward), and the troposphere of middle-lower latitude western Pacific is under the control of anomalous easterly (westerly) wind, all these are favorable (unfavorable) for TC traveling westward or the TC turning point toward the shore over coastal waters being east- (west-)ward of average, making the yearly TC frequency increase (decrease). Besides, in the year of stronger (weaker) APO the offshore zonal wind vertical shear in the higher and lower troposphere becomes decreased (increased), convection is enhanced (enfeebled) and the SCS cyclonic (anticyclonic) circulation undergoes anomaly, all these favor (do not favor) the maintenance and intensification of the offshore TC activities.
     6) In late autumn and early winter (November– December), the possible mechanism for APO vigor impinging on the southern coastal TC activities acts to alter cold air strength, vertical shear of zonal winds, the low-level convergence intensity and steering airflow’s direction. For strong (weaker) APO, the subtropical winter monsoon enhances (enfeebles), the subtropical high moves south- (north) and east-(west-) ward, the middle and upper troposphere of tropical western Pacific is under the control of anomalous easterly (westerly) winds, decreasing (increasing) the vertical shear of zonal westerlies over coastal waters of south China, while anomalies happen to SCS cyclonic (anticyclonic) circulation because of the lower anomalous northeast (southwest) winds over south coasts of China, plus declined(enriched) cold air in the SCS and western TWP, all these are favorable for intensifying (weakening) the TC maintenance and development in southern China coastal waters. Meanwhile, in years of intense (weak) APO, the steering airflow in the TWP middle troposphere is under the control of anomalous easterly (westerly) winds, a condition favorable (unfavorable) for TC traveling westward or the TC turning point towards the shore being west-(east-)ward of mean, causing a larger (smaller) number of TC in the coastal waters of southeast China.
     7) Despite the fact that the APO vigor in autumn and winter bears an intimate relation to El Ni?o or La Ni?a events , modelings show that these vigorous episodes excite no APO both in September– October and November– December.
引文
1.布和朝鲁,纪立人,东亚冬季风活动异常与热带太平洋海温异常,科学通报,1999,44(3),252~259
    2.陈联寿,丁一汇,西北太平洋台风概论[M].北京,科学出版社,1979,10~15
    3.陈联寿,台风科学试验及其主要成果,中美减轻自然灾害研讨会,北京,1997,64:19~22
    4.陈联寿,孟智勇,我国热带气旋研究十年进展,大气科学,2001,25(3):420~432
    5.陈联寿,罗哲贤,李英,登陆热带气旋研究的进展,气象学报,2004,62(5):541~549
    6.陈烈庭,吴仁广,2000.ENSO循环与亚、澳季风和南、北方涛动的关系.气象学报,58(2):168~179
    7.陈隆勋,朱乾根,罗会邦等,东亚季风,北京:气象出版社,1991
    8.陈隆勋,丁一汇,村上胜人等,亚洲季风机制研究新进展,气象出版社,1999
    9.陈隆勋,李薇,赵平等,东亚地区夏季风爆发过程,气候与环境研究,2000,5(4):345~355
    10.陈隆勋,张博,张瑛,东亚季风研究的进展,应用气象学报,2006,17(6):711~724
    11.陈受钧,厄尔尼诺与东亚暖冬的数值模拟,气象学报,1995,53 (3):380~384
    12.陈锡璋,西北太平洋热带气旋近中心最大风速资料的订正[C] .热带气旋科学讨论会文集(1990),上海:气象出版社,1992
    13.陈锡璋,西北太平洋热带气旋强度的若干气候特征[J].海洋通报,1997,16(4):16~25
    14.陈兴芳,晁淑懿,台风活动的气候突变,热带气象学报,1997,13(2)
    15.端义宏等,海温变化对热带气旋强度影响的数值试验(Ⅰ)热带气旋强度的数值模拟和海温试验,台学、业务试验和天气动力学理论的研究(三),北京:气象出版社,1996,129~134
    16.端义宏,热带气旋强度研究进展,气象学报,2005,63(5):636~645
    17.范永祥,台风现场科学业务试验综述,台风科学业务试验和天气动力学理论研究(一),北京,气象出版社,1996,1~4
    18.郭其蕴,东亚夏季风强度指数及其变化的分析,地理学报,1983,38(3):207~216
    19.高由禧,徐淑英,郭其蕴,中国的季风区域和区域气候[A],东亚季风的若干问题[C].北京:科学出版社,1962,155~169
    20.贺海晏,简茂球,宋丽莉,近50a广东登陆热带气旋的若干气候特征[J],气象科学,2003,23(4):401~409
    21.何金海,丁一汇,高辉等,南海夏季风建立日期的确定与季风指数,气象出版社,2001
    22.何金海,祁丽,韦晋等,关于东亚副热带季风和热带季风的再认识,大气科学,2007,31(6):1257~1265
    23.黄荣辉,张振洲,黄刚等,夏季风东亚水汽输送特征及其与南亚季风区水汽输送的差别,大气科学,1997,21(4):460~469
    24.金啟华,何金?侣⊙龋侵弈喜康厍B椒植己湍习肭蚵降囟匝侵尴募痉缬跋斓氖?试验,大气科学,2006,30(5):1143~1053
    25.江吉喜,海表温度对台风移动的影响,热带气象学报,1996,12(3):246~251
    26.江滢,东亚季风指数分类初析,气象,31(5):3~7
    27.李崇银,环境流场对台风发生发展的影响,气象学报,1983,41(3):275~284.
    28.李崇银,频繁的强东亚大槽活动与El Ni?o的发生,中国科学, B辑,1988,(6):667~674
    29.李崇银,大气低频振荡[M].北京:气象出版社,1993,213~216
    30.李崇银,动力气候学引论[M].北京:气象出版社,2000,515
    31.李崇银,王作台,林士哲等,东亚夏季风活动与东亚高空西风急流位置北跳关系的研究,大气科学,2004,28(5):641~658
    32.梁建茵,吴尚森,南海夏季风爆发日期的确定及其机理研究.SCSMEX研讨会文集,北京. 2000 :4
    33.林惠娟,张耀存,影响我国热带气旋活动的气候特征及其与太平洋海温的关系,热带气象学报,2004,20(2):218~224
    34.毛江玉,谢安,宋焱云,海温及其变化对南海夏季风爆发的影响,气象学报,2000,58(5):556~569
    35.潘增弟,王俊勤,赵伟,论南海台风风场参数问题[C],第十届全国热带气旋科学讨论会议论文摘要,1996:163~166
    36.施能,朱乾根,吴彬贵,近40年东亚夏季风及中国夏季大尺度天气气候异常,大气科学,1996,20(5):575~583
    37.孙柏民,孙淑清,海温异常对热带内外环流相互作用影响的对比分析,大气科学,1998,22(1):83~96
    38.孙秀荣,陈隆勋,何金海,东亚海陆热力差指数与东亚夏季风强度关系探讨,南海夏季风建立日期的确定与季风指数,气象出版社,2001:96~108
    39.孙秀荣,端义宏,对东亚夏季风与西北太平洋热带气旋频数关系的初步分析,大气科学,2003,27(1):67~74
    40.孙颖,丁一汇,1998和1999年西北太平洋热带气旋的异常特征及其大尺度条件,气象学报, 2002,60(5):527~537
    41.陶诗言,何诗秀,杨祖芳,1979季风试验期间东亚夏季风爆发的观测研究,大气科学,1983,7(3):347~355
    42.涂长望,黄仕松,中国夏季风之进退,气象学报,1944,18,81~92.
    43.王慧,丁一汇,何金海,西北太平洋夏季风的变化对台风生成的影响,气象学报,2006,64(3):345~355
    44.王会军,范可,西北太平洋台风生成频次与南极涛动的关系,科学通报,2006,51(24):2910~2914
    45.王小玲等,影响中国的台风频数年代际变化趋势:1951~2004,气候变化研究进展,2006,2(3):135~138
    46.王志烈,亚洲上空西凤带长波槽对西太平洋台风路径的影响,大气科学,1981,5(2).
    47.吴迪生,白毅平,张红梅等,赤道西太平洋暖池次表层水温变化对热带气旋的影响,热带气象学报,2003,19(3):253~259
    48.谢义炳,陈受钧,张一良等,东南亚基本气流与台风发生的一些事实的统计分析,气象学报,1963 , 33 (2):217~229
    49.徐晶,陈联寿,徐祥德,青藏高原高空流型对西太平洋台风路径影响的诊断分析,应用气象学报,1999,10(4):410~419
    50.徐祥德,陈联寿等,环境场大尺度锋面系统与变性台风结构特征及其暴雨的形成,大气科学,1998,22(5),744~752
    51.徐亚梅,伍荣生,南半球冷空气入侵与热带气旋的形成,气象学报,2003,61(5):540~547
    52.阎俊岳,张秀芝,李江龙,135°E以西西北太平洋热带气旋迅速加强的气候特征,1997,13(4):297~305
    53.燕芳杰,范永祥,西北太平洋热带气旋近中心最大风速和中心最低海平面气压的统计相关[J].气象科技,1994,(1):56~59
    54.杨辉,陈隽,孙淑清,东亚冬季风异常激发El nino现象的数值试验研究.大气科学,2005,29(2):321~333
    55.叶笃正,陶诗言,李麦村,在六月和十月大气环流的突变现象,气象学报,1958,29,249~263
    56.余晖,胡春梅,蒋乐贻,热带气旋强度资料的差异性分析[J].气象学报,2006,64(3):357~363
    57.张光智,张先恭,魏凤英,近百年西北太平洋热带气旋年频数的变化特征[J].热带气象学报,1995,11(4):315~323
    58.张家诚,关于中国季风性质的几个问题,气象学报,1959,30(4):350~361
    59.张家诚,经向海陆分布对大气环流的热力作用,气象学报,1980,38(3):210~226
    60.张家诚,极冰的冷源作用和季风,气象,1981,(7):6~8
    61.张家诚,中国及邻近地区冬到夏的季节变化,气象,1995,21(7):3~8
    62.张庆云,陶诗言,夏季东亚热带和副热带季风与中国东部汛期降水,应用气象学报, 1998 , 9 (增刊),16~23
    63.张庆云,彭京备,夏季东亚环流年际和年代际变化对登陆中国台风的影响,大气科学,2003,27(1):97~106
    64.张秀芝,李江龙,阎俊岳等,南海夏季风爆发的环流特征及指标的研究.南海夏季风建立日期的确定与季风指数,北京:气象出版社,2001:83~95
    65.张艳霞,钱永甫,王谦谦,西北太平洋热带气旋的年际和年代际变化及其与南亚高压的关系,应用气象学报,2004,15(1):74~80
    66.赵平,周自江,东亚副热带季风指数及其与降水的关系,气象学报,2005,63(4):1~9
    67.赵平,陈军明,肖栋等,夏季亚洲—太平洋涛动与大气环流和季风降水,气象学报,2008,66(5):717~729
    68.赵溱,张家诚,高纬度冰雪覆盖对行星季风影响的数值试验/国家气象局气象科学研究院,气象科学技术集刊(10),北京:气象出版社,1987:8~17
    69.钟颖旻,徐明,大尺度环流系统对西北太平洋变性TC频数影响的气候诊断分析,成都信息工程学院学报,2007,22(3)
    70.周兵,何金海,吴国雄等,东亚副热带季风特征及其指数的建立,大气科学,2003,27(1):123~134
    71.周波涛,崔绚,赵平,亚洲—太平洋涛动与西北太平洋热带气旋频数的关系,中国科学(D辑),2008(38):118~123
    72.祝从文,何金海,吴国雄,东亚季风指数及其与大尺度热力环流年际变化关系,气象学报,2000,58 (4):391~401
    73.竺可桢,东南季风与中国之雨量,地理学报,1934,创刊号,1~27
    74.朱亁根,林锦瑞,寿绍文等,天气学原理和方法,北京:气象出版社,1992:565~577
    75.朱永禔,大尺度基流速度变化对热带气旋移动影响和数值研究,台风试验和理论研究(二),北京:气象出版社,1996,39~41
    76.朱瑞兆,应用气候手册[M],北京:气象出版社,1991
    77.邹燕,赵平,夏季亚洲—太平洋涛动与我国近海热带气旋活动的关系,气象学报,待发表
    78. Adem,J.,A series solution for the barotropic vorticity equation and its application in the study of atmospheric vortices. Tellus, 1956,8, 364~372
    79. Atkinson G D,Holliday C R.Tropical cyclone minimum sea level pressure/maximum sustained wind relationship for the Western North Pacific[J],Monthly Weather review,1977,105(4):421~427
    80. Bin Wang,Johnny C. L. Chan,How strong ENSO events affect tropical storm activity over the westernnorth Pacific,journal of climate,2002(15):1643~1658
    81. Camargo S J, Sobel A H. 2005.Western North Pacific tropical cyclone intensity and ENSO. J Climate, 18(15): 2996—3006
    82. Chan J C L. Tropical cyclone activity in the North west Pacific in relation to the ElNino/Southern Oscillation phenomenon .Mon Wea Rev,1985,113:599~606
    83. Chang C P,Lau K M. Short-term planetary-scale interactions over the Tropics and midladtitudes during northern winter. PartⅠ:Contrasts between active and inactive periods. Mon Wea Rev,1982,110:933~946
    84. Chang C.P.,G.T.Chen,Development of low-level southwesterlies over the South China Sea: A comparism between May and June Mon.Weather Review,1994
    85. Chen Lianshou, Luo Zhexian1A study on the energy dispersion of large scale vortices in the Tibetan Plateau region. The first session of international wo rk shop on TIPEX ( IWTE—I ) China Meteorological Administration,1995:11~31
    86. Chen L.S.,Luo H B, Duan Y H, et al. An overview of tropical cyclone and tropical meteorology research progress[J]. Adv Atmospheric Sci, 2004(21): 505~514
    87. Chen Lieting,W u Renguang.2000.ENSO Cycle Associated With Asian/Australian Monsoon And Southern /Northern Oscillation, Acta Meteorologica Sinica,58(2):168~179
    88. Chen L.X.,Y.Song,T.Murakami,The Characterastics of large scale convection system variation during the onset and prevailing periods of summer monsoon over the South China Sea and its relation to the air-sea interaction.From the Atmospheric circulation to Global Change,Meteorological press,1996,314~328
    89. Chen T. C.Weng S.P. .Interannual variation of the summer synoptic scale disturbance activity in the weste rntropical Pacific. MonWeaRev,1998,126:1725~1733
    90. Chen T C,Weng S P,Yamazaki N,etal. Interannual variation in the tropical cyclone formation over the western North Pacific.Mon Wea Rev,1998,126:1080~1090
    91. Chia H H, Ropelewski C F. The interannual variability in the genesis location of tropical cyclones in the Northwest Pacific. J Clim, 2002, 15(20): 2934~2944
    92. C.S.Ramage,Monsoonal influences on the annual variation of tropical cyclone development over the Indian and Pacific Oceans, Mon Wea. Rev.,1974, 102(11): 745~753
    93. DingY H, Reiter E R,Some conditions influencing the variability of typhoon formation over the West PacificOcean.Arch Met Geoph Biokl, Ser A,1981,30:327~342
    94. Dong K Q, Neumann C J. The relationship between tropical cyclone motion and environmental geostrophic flows. Mon Weather Rev, 1986, 114(1): 115~122
    95. Fletcher,R D. Computation of maximum surface winds in hurricanes.Bull.Amer. Meteorological Society, 1955,36:246~250
    96. Fortner,L E,JR .Typhoon Sarah[J],1956. Bull.Amer.Meteor.Soc.,1958,39,633~639
    97. Frank, W. M., 1987: Tropical cyclone formation. A Global View of Tropical Cyclones, Office of Naval Research. 53~90
    98. Fujita,T .Proposed characterization of tornadoes and hurricanes by area and intensity[J]. SMRP Research, The University of Chicago, 1971,91:41
    99. Gray W M. Global guide of the origin of tropical disturbances and storms. Mon Weather Rev, 1968, 96(10): 669~700
    100. Gray W M.Atlantic seasonal hurricane frequency:PartⅠ:El Nino and 30mb quasi—biennial oscillation influence.Mon Wea Rev,1984,112(9):1649~1668
    101. Guo Qiyun.1983.Analyses of East Asian Summer Monsoon Index and its Variability, Acta Geographica Sinica, 38 (3) :207~216
    102. He , H. , W. Mcginnis , Z. Song et al. , Onset of the Asian summer monsoon in 1979 and the effect of the Tibetan Plateau , Mon. Wea. Rev . , 1987 , 115 , 1966~1994
    103. Holland, Ed., 1993: Tropical cyclone motion. Global Guide to Tropical Cyclone Forecasting, World Meteorological Organization Tech. Document WMO/TD 560, Tropical Cyclone Programme Rep.TCP—31, Geneva, Switzerland.
    104. Holland, G. J., 1983: Tropical cyclone motion: Environmental interaction plus aβeffect. J. Atmos. Sci., 40, 328~342
    105. Isodoro Orlanski and Sheldon J Stages in the energetics of baroclinic systems. Tellus, 1995,47A:603~628
    106. Ji Liren, Sun Shuqing, Klaus Arpe, et al. Model study of the interannual variability of Asian winter monsoon and its influences. Advances in Atmospheric Science, 1977, 14(1): 1~22
    107. Jin Qihua,He Jinhai,Chen Longxun,et a.,Impact of ocean-continent distribution over Southern/Asia on the formation of summer monsoon.Acta Meteorologica Sinica,2006,20(1):95~108
    108. Joint Typhoon Warning Center. Annual Typhoon Report 1964. Fleet Weather Central/Joint Typhoon Warning Center,Guam M.I., 1965,26~27
    109. Joint Typhoon Warning Center. Annual Typhoon Report 1968. Fleet Weather Central/Joint Typhoon Warning Center,Guam M.I., 1969,3~40 to 3~50
    110. Jones C G,Thorncroft C D.The role of El Nino in Atlantic tropical cyclone activity. Weather,1998,53:324~336.
    111. K.Emanuel , Increasing destructiveness of tropical cyclone over the past 30 years, nature,2005,436,686~688
    112. Kiladis,G.N. and K.M. Weickmann,1992, Circulation anomalies associated with tropical convection during Northern winter,Mon.Wea.Rev.,9,1900~1923.
    113. Lander M A. An exploratory analysis of the relationship between tropical storm formation in the western North Pacific and ENSO. Mon Weather Rev, 1994, 122(4): 636~651
    114. Lau,Kl—M.,Kl—M.Kim,and S.Yang,Dynamical and boundary forcing characteristics of regional components of the Asian summer onsoon,J.Climate,2000,13,2461~2482.
    115. Liebmann,B.and D. L. Hartmann,1984,An observational study of tropical—midlatitude interactionon intraseasonal time scales during winter,J.Atmos.Sci.,41,3333~3350
    116. Liebmann,B.,1987,Observed relationships between large scale tropical convection and the tropical circulation on sub—seasonal time scales during Northern Hemisphere winter,J.Atmos.Sci.,44,2543~2561.
    117. Lighthill, J., G. Holland, W. Gray, C., Landsea, G. Craig, J. Evans,Y. Kurihara, and C. Guard, 1994: Global climate change and tropical cyclones. Bull. Amer. Meteor. Soc., 75, 2147~2157
    118. McBride, J. L., 1995: Tropical cyclone formation. Global Perspective on Tropical Cyclones, WMO/TD—No. 693,World Meteorological Organization, 63~105
    119. Mcknown,R and collaborators.Fifth annual report of the typhoon post analysis board. Andersen AFB,Guam M.I.,1952
    120. Parthasarathy. B. , K. R. Kumar , and d. R.Kothawaie. Indian summer monsoon rainfall indices.1871—1990. Meteor. Mag. , 1992 ,121 :174—186
    121. Patrick a. Harr and Russell L.Elsberry,Extratropical transition of tropical cyclone over the Western North Pacific.PartⅡthe impact of midlatitude circulation characteristics,Monthly Weather Review,2000,128:2634~2653
    122. Ping Zhao,Yani Zhu,Renhe Zhang,An Ssian—Pacific teleconnection in summer tropospheric temperature and associated Asian climate variability,Climate Dynamic,2007(29):293~303
    123. Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with Southern Oscillation/El Ni?o. Mon. Wea. Rev., 110, 354–384
    124. Ren Fumin, Gleason B, Easterling D. Typhoon impacts on China’s precipitation during 1957—1996[J].Advances in Atmospheric Science,2002,19(5):943~952
    125. Ren Fumin,Wang Yongmei, Wang Xiaoling,et al.An advanced technique for partitioning tropical cyclone precipitation for China[J].Advances in Atmospheric Science,2006,23
    126. Robert D.F.,Karl R J,Maximum hurricane surface—wind computation with typhoon—environment data measured by aircraft[J] .Journal of Applied Meteorology,1965,(4): 457~462
    127. Sadler, J. C.,On the origin of tropical vortices. Proc. Working Panel on tropical Dynamic Meteorology, Norfolk, VA, Naval Weather Research Facility, 1967,39~75
    128. Seay,D. N.,Annual Typhoon Report 1963.Fleet Weather Central/Joint Typhoon Warning Center,Guam M.I., 1964:6~7,10~11
    129. Tao Shiyan and Chen Longxun. A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology , Edited by C. P. Cheng and Y. N.Krishnamurti , Oxford university Press , 1987:60~92
    130. Takahshi,K.Distribution of pressure and wind in a typhoon[J].Journal of the Meteorological Society of Japan, 1939,17(2):417~421
    131. Takahashi,K.Techniques of the typhoon forecast[J].Geophysics Magazine,Tokyo,1952,24:1~8
    132. Tsing-Chang Chen and Shu-Ping Weng,Interannual Variation in the Tropical Cyclone Formation over theWestern North Pacific,Monthly Weather Review,1998, vol.126: 1080~1090
    133. Tsing-Chang Chen,SHIH-YU WANG,MING-CHENG YEN,Interannual Variation of the Tropical Cyclone Activity over the Western North Pacific,Journal of Climate,2006,19:5709~5720
    134. TYPHOON COMMITTEE OPERATIONAL MANUA, WMO/TD—NO.196 Appendix 3—c,1992:5~6.
    135. Wang and Li 1995,1995: Propagation of a tropical cyclone in meridionally varying zonal flows: An energetic analysis. J. Atmos. Sci.,52, 1421~1433
    136. Wang Bin, Lin Ho, Rainy season of the Asian_Pacific summer monsoon,journal of climate,2002,15:386~398
    137. Wang B,Chan J C L. How strong ENSO events affect tropical storm activity over the western north Pacific.J Climate,2002,15:1643~1657
    138. Wang H J,Fan Ke.2007.Relationshipbetweenthe Antarctic Oscillation and the western North Pacific typhoon frequency,vChinese Science Bulletin, 52(4),561~565
    139. Wang H J,Sun J Q,Fan K.,Relationships between the North Pacific Oscillation and the typhoon/hurricane frequencies.Science in China(Series D), 2007, 50(9): 1409~1416
    140. WANG Y, HOLLAND G J. Tropical cyclone motion and evolution in vertical shear [J ]. J Atmos Sci, 1996, 53:3313~3332
    141. Wang Yuqing,The impact of sea spray evaporation on tropical cyclone I ntensification,Paper presented at the 23rd Conference on Huvvicanes and Tropical Meteorology,Vol.1,10~15 Jan.,Dallas,Texas,USA,1999,26~29
    142. Webster,P.J. and S. Yang. Monsoon and ENSO: selectively interactive systems. Q. J. R. Meteor. Soc.,1992,118:877~926
    143. Williams,R.T.,,J.C.—L.Chan,1994: Numerical studies of the beta effect in tropical cyclone motion.Part II: Zonal mean flow.J. Atmos. Sci., 51,1065~1076
    144. Wu Aiming,Ni Yunqi,The influence of Tibetan Plateau on the interannual variability of Asian Monsoon[J].Advances in Atmospheric Sciences,1991,14:491~504
    145. Wu, L.,and B. Wang,2001: Effects of convective heating on movement and vertical coupling of tropical cyclones: A numerical study. J. Atmos. Sci., 58, 3639–3649
    146. Wu Liguang,Wang Bin,Assessing Impacts of Global Warming on Tropical Cyclone Tracks, J. Climate,17,1686~1698
    147. Wu M C, Chang W L, Leung W M. Impacts of El Ni?o—Southern Oscillation events on tropical cyclone landfalling activity in the western North Pacific. J Clim, 2004, 17(6): 1419~1428
    148. Yanai M.,A detailed analysis of typhoon formation,J. Meteor. Soc. Japan,1961,39:187~214
    149. Yanai , M. , C. Li , and Z. Song , Seasonal heating of the Tibetan Plateau and its effects on the evolutions of the Asian summer monsoon , J . Meteor. Soc. Japan,1992,70,319~351
    150. Yu H,Kwon H.J.,Effect of TC trough interaction on the intensity change of two typhoons[J].Wea Forecasting,2005,20,199~211
    151. Yumoto M, Matsuura T.. Interdecadal variability of tropical clone activity in the western North Pacific[J],Journal ofM eteorological Society of Japan,2001,79:23~35
    152. Zhu Qiangen, He JH and Wang PX. A study of the circulation differences between East Asian and Indian summer monsoons with their interaction. Adv. Atmos. Sci.,1986,(3):466~477

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700