磁流变半主动发动机悬置隔振性能与控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来由于道路条件的改善和大功率发动机、轻量化车身的应用,以及消费者对乘坐舒适性要求的提高,发动机振动引起的整车NVH问题愈发突出。因此,人们对发动机悬置元件隔振性能的要求不断提高。由于传统悬置元件很难在宽频段内满足复杂的理想隔振特性,半主动/主动发动机悬置应运而生,另一方面,智能材料的蓬勃发展也为发动机隔振技术提供了广阔的发展前景。
     本文研究的磁流变发动机悬置是磁流变液体与隔振技术的有机结合,属于典型半主动控制式液压悬置。磁流变悬置通过控制电流,改变悬置中外加磁场强度,进而改变磁流变液体的流动性来实现悬置动态特性的实时可控。本文分别对磁流变液体的磁流变效应、剪切屈服应力与流变性能进行介绍分析;设计一种磁流变发动机悬置结构,并建立其键合图模型、数学模型,对悬置动特性进行参数化研究;分别采用两种控制方法对二自由度发动机‐车架振动系统进行控制仿真,并对仿真数据进行对比研究。论文所做工作是针对磁流变悬置开发所进行的探索性研究,论文主要内容如下:
     首先论述发动机悬置理想隔振特性;回顾磁流变技术的发展历程与商业化应用,以及半主动控制策略的研究进展。分析磁流变液体的磁流变效应、剪切屈服应力与流变性能。
     随后,提出将磁流变液体应用到传统液压悬置隔振性能改进中的思想,分析磁流变悬置的工作原理与主要工作模式,推导流动工作模式下液体阻尼与电流变化的表达式,并且以某现有液压悬置为基础,在保持其橡胶主簧和金属支撑骨架不变的情况下,设计一种以磁流变液作为封入液体的液压悬置的结构。
     然后,在磁流变悬置液力模型的基础上运用键合图理论建立其键合图模型,推导其状态方程,并推导磁流变悬置动刚度和阻尼滞后角的频率变化特性表达式,应用Matlab编制程序对悬置低频动态特性进行仿真并进行参数化研究,着重分析电流强度对动态特性的影响。
     最后,考虑悬架等效刚度和等效阻尼,建立发动机‐车架的二自由度悬置系统模型,利用MATLAB/Simulink仿真模块建立仿真模型,分别运用模糊控制和模糊PID控制方法对悬置系统进行半主动控制仿真,得到各种工况下车架加速度和传递率的时域变化曲线,并与被动悬置系统进行对比分析,结果表明,采用适合的控制方法后磁流变悬置系统隔振性能得到较大的改进,且模糊PID控制方法控制效果较模糊控制方法更好。
In recent years as a result of the improvement of road conditions and the application of high-power engine, lightweight body and consumer’s high demand for comfortableness, the NVH problems caused by engine vibration are becoming more and more serious. Therefore, the demand for isolation performance of engine mount is on an increase. Because the traditional engine mount cannot satisfy the complex characteristics of ideal vibration isolation within the broadband section, the semi-active/active engine mount emerges. On the other hand, the vigorous development of intelligent materials provid broad prospects for the vibration isolation technology.
     The semi-active MRF (Magneto-rheological Fluid) engine mount studied in this thesis is a combination of the magneto-rheological fluid and vibration isolation technology and belongs to a typical semi-active control mount. Intelligent control MRF engine mount can change the strength of applied magnetic field through controlling the current and then change the fluidity of MRF and finally realize theinstant controls of dynamic chatacteristics. This thesis analyzes the MR effect principle, yield shearing stress and mechanical characteristics of MRF; designs structure of a MRF and builds bond graph model and mathematic model to study characteristics of MRF mount; I also compare the isolation characteristics of two degree MRF mount using two different intelligent methods. This thesis is aiming to do the exploratory research of MRF engine mount’s development.The main contents are as follows:
     The first part is discussing the ideal vibration isolation characteristics of engine mount, reviewing the development and commercial applications of magneto-rheological fluid technology, and the semi-active control strategy and then analyzing the MR effect principle, yield shearing stress and mechanical characteristics of MRF.
     Then I propose the idea toapply magneto-rheological fluid to the performance improvement of traditional hydraulic mount and analyze the structure and working principle of typical MRF mount. An expression of liquid damping with the current change under the valve mode model is derived. After that, I design a MRF engine mount on the basis of existing hydraulic mount.
     In part three, bond graph modeling of MRF mount is built up based on its physical model. Frequency changing expression of MRF mount’s dynamic stiffness and damping lagging angle is deduced. Then I simulate the dynamic characteristics within low frequency using MATLAB and do the parametric research. Especially, the influence of current intensity upon dynamic characteristics is analyzed.
     At last, considering stiffness and damping of MRF mount and suspension, the two degree system mechanical model of engine and body is built, whose simulated model is constructed using Simulink module of MATLAB software. Then applying Fuzzy control and Fuzzy-PID control separately to control the MRF mount system and develops the force and acceleration time domain curves of body in different working conditions. After comparing with the passive engine mount, we find that the isolation effects are improved a lot under applicable methods, in which the Fuzzy-PID control method is better.
引文
[1]梁天也.主动控制式发动机悬置研究[D].长春:吉林大学汽车工程学院,2008.
    [2]姚金光,晏华.高性能磁流变液研究的进展[J].材料开发与应用.2009(4):62-67.
    [3]于礼艳.半主动式磁流变发动机悬置结构设计及隔振性能研究[D].长春:吉林大学汽车工程学院,2007.
    [4]魏付俊.汽车动力总成磁流变悬置的设计和半主动控制研究[D].南京:南京航空航天大学能源与动力学院,2007.
    [5]胡勇.汽车发动机磁流变悬置研究[D].重庆:重庆大学机械工程学院,2008.
    [6]刘会兵.基于磁流变液隔振器的发动机振动控制研究[D].重庆:重庆大学光电工程学院,2009.
    [7]李锐,陈伟民,廖昌荣,等.发动机磁流变悬置隔振模糊控制与仿真[J].系统仿真学报.2009(2):944-953.
    [8]胡海岩,郭大蕾,翁建生.振动半主动控制技术的进展[J].振动、测试与诊断.2001(12):235-244.
    [9]司鹄.磁流变体的力学机理研究[D].重庆:重庆大学资源与环境科学学院,2003.
    [10]冯雪梅.磁流阻尼可控理论及应用关键技术研究[D].武汉:武汉理工大学机电工程学院,2004.
    [11]张正勇,张耀华,等.磁流变液的特性研究[J].功能材料与器件学报.2001(12):340-344.
    [12]姜波.电流变液半主动发动机悬置隔振性能与控制方法研究[D].长春:吉林大学汽车工程学院,2009.
    [13]姜波,史文库.电流变液发动机悬置动特性分析及控制方法研究[J].机械设计与制造.2009(1):97-99.
    [14] Mark O. Bodie, et al. MR-Fluid Hydraulic Mount: US, 7510061B2[P/OL]. 2009-03-31.http://www.google.com/patents?id=chq_AAAAEBAJ&printsec=abstract&zoom=4&source=gbs_overview_r&cad=0#v=onepage&q&f=false
    [15] Mark O. Bodie, et al. Apparatus Including An MR-Fluid Hydraulic Mount: US, 2009/0273128A1[P/OL].2009-11-5.http://www.freepatentsonline.com/20090273128.pdf
    [16] Mark W. Long, Mark O. Bodie. Reversed Decoupler Assembly for MR Mount: US, 7063191 B2[P/OL].2006-06-20. http://www.freepatentsonline.com/7063191.pdf
    [17] Thomas A Baudendistel, et al. Hybrid Hydraulic Mount with Magnetorheological FluidChamber:US,6412761B1[P/OL].2002-07-02.http://www.freepatentsonline.com/6412761.pdf
    [18] J. David Carlson, Michael J. Chrzan, et al. Magnetorheological Fluid Devices: US, 5398917[P/OL].1995-03-21. http://www.freepatentsonline.com/5398917.pdf
    [19] Seung-Bok Choi, Sung-Ryong Hong, et al. Optimal control of structural vibration using a mixed-mode magnetorheological fluid mount [J]. Journal of Mechanical Sciences.2008(1):559-568.
    [20]闵海涛.汽车动力总成悬置系统的动特性仿真与主动控制理论研究[D].长春:吉林大学汽车工程学院,2004.
    [21]裘熙定.键合图理论在汽车系统分析与控制中的应用[J].汽车工程.1996年(第18卷)第5期:277-284.
    [22]姜明,侯硕,等.基于键合图理论的汽车发动机液压悬置动特性的仿真研究[J].机械设计与制造.2008(4):70-72.
    [23]黄洪钟,祖旭,等.基于Matlab/Simulink的键合图仿真[J].大连理工大学学报.2003(9):632-635.
    [24]刘金琨.先进PID控制MATLAB仿真[M].北京:电子工业出版社.2004(9)
    [25]郭阳宽,王正林.过程控制工程及仿真——基于MATLAB/Simulink[M].北京:电子工业出版社.2009(4)
    [26]丁世稳.发动机主动悬置的控制方法的研究[D].长春:吉林大学汽车工程学院,2009.
    [27]王中双.键合图及其系统动力学应用[M].哈尔滨:哈尔滨工程大学出版社,2000.
    [28] Aaron A. Geisberger. Hydraulic Engine Mount ModelingParameter Identification andExperimental Validation[D].Ontario: University of Waterloo,2000.
    [29]王一帆,石中锁.自适应模糊PID控制器及其MATLAB仿真[J].冶金自动化增刊.2007(S1):499-502.
    [30]苏明,陈伦军,等.模糊PID控制及其MATLAB仿真[J].现代机械.2004(4):51-55.
    [31]郑冬黎.键合图理论在汽车动力总成液力悬置系统建模与仿真中的应用[J].湖北汽车工业学院学报.1999(12):9-14.
    [32] Arndt Graeve.New Product Development for Anti-Vibration Systems[C].SAE Paper No.2005-26-047.
    [33] Chiharu Togashi, Ken Ichiryu. Study on Hydraulic Active Engine Mount[C].SAE Paper No.2003-01-1418.
    [34] Jun Hwa Lee, et al. Critical analysis of analogous mechanical models used to describe hydraulic engine mounts[J]. Journal of Sound and Vibration(2007), doi:10.1016 /j.jsv.2007.10.021.
    [35] J.Christopherson,G.N.Jazar . Journal of Sound and Vibration 290 (2006) :1040–1070.
    [36]鲍宁.动力总成液压悬置的参数化设计[D].长春:吉林大学汽车工程学院,2007.
    [37]范让林,吕振华,等.惯性通道-解耦膜式液压悬置动特性分析[J].汽车工程.1997(Vol.19)No4:226-239.
    [38]张云侠,等.发动机被动液阻悬置动态特性比较研究[J].应用力学学报.2008(Vol.19)No1:137-141.
    [39] Mark R. Jolly, et al. Properties and Applications of Commercial Magnetorheological Fluids[C] Proceedings of the 6th International Conference on New Actuators, Bremen, Germany,17-19 June 1998:411-416.
    [40] Anne-Marie Albanese Lerner. The Design and Implementation of a Magnetorheological Silicone Composite State-Switched Absorber [D]. School of Mechanical Engineering Georgia Institute of Technology, 2005.
    [41]廖昌荣,余淼,等.汽车磁流变液减振器阻尼力计算方法[J].汽车工程.1997(Vol.19)No4:226-239.
    [42]蒙延佩,等.汽车磁流变阻尼器磁路设计及相关问题研究[J].功能材料.2006(Vol.37)No5:768-770.
    [43] James C. Poynor. Innovative Designs for Magneto-Rheological Dampers[D].Virginia Polytechnic Institute and State University,2001.
    [44] J.D. Carlson, B.F. Spencer Jr. Magneto-Rheological Fluid Dampers for Semi-Active Seismic Control[C].The 3rd International Conference on Motion and Vibration Control,Chiba,Japen,1996(Vol.III):35-40.
    [45]翁建生,胡海岩,等.基于磁流变阻尼器的车辆悬架系统模糊半主动控制[J].南京工业大学学报.2002(Vol.24)No.1:9-14.
    [46]赵成章.磁流变阻尼器建模方法研究[D].南京:南京理工大学,2006
    [47]张也影.流体力学[M].北京:高等教育出版社,2002.
    [48]严济宽.机械振动隔离技术[M].上海:上海科技技术技术文献出版社.1985
    [49]飞思科技产品研发中心. MATLAB7基础与提高[M].北京:电子工业出版社,2005.4
    [50]孙国春.汽车动力总成振动主动控制关键技术研究[D].长春:吉林大学交通学院,2007
    [51] Daniel E. Barber, J. David Carlson. Performance characteristics of prototype MR engine mounts containing LORD glycol MR Fluid [J]. Journal of Physics,2009(Vol.149): doi:10.1088/1742-6596/149/1/012035.
    [52]金奇,邓志杰.PID控制原理及参数整定方法[J].重庆工学院学报学报.2008(Vol.22)No.5:91-94.
    [53]简晓春,盛鹏程,等.汽车发动机磁流变悬置隔振效果试验评估[J].车用发动机.2009(Serial No.181)No.2:67-71.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700