用户名: 密码: 验证码:
基于聚(N,N-二乙基丙烯酰胺)的温度和pH值敏感性水凝胶的合成及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以N,N-二乙基丙烯酰胺(DEA)为温度敏感性单体,以亲水性的N-羟甲基丙烯酰胺(NHMAA)、甲基丙烯酸二甲氨基乙酯(DMAEMA)、高分子电解质聚二烯丙基二甲基氯化铵(PDADMAC)、天然高分子卡拉胶(KC)和甲基丙烯酸(MAA)为功能单体,分别采用自由基无规共聚、接枝、互穿网络聚合方法,先后制备了具有温度和温度/pH值双重敏感性水凝胶,系统地研究了水凝胶的相转变行为、溶胀和退溶胀速率以及对模型药物的控释行为。论文取得的主要结果有:
     1.通过改变单体的组成比、交联剂的量及单体的总浓度,制得了温度响应性和力学性能较好的聚(N,N-二乙基丙烯酰胺-co-N-羟甲基丙烯酰胺)(P(DEA-co-NHMAA))水凝胶。傅立叶变换红外光谱(FTIR)说明,P(DEA-co-NHMAA)凝胶被成功制备。扫描电子显微镜(SEM)结果表明,凝胶网络结构与凝胶组成和后处理有关。与PDEA相比,P(DEA-co-NHMAA)水凝胶的平衡溶胀比(ESR)和相转变温度(LCST)随NHMAA含量增加而增大。模型药物氨茶碱的释放实验结果表明,NHMAA的存在降低了氨茶碱的释放速率;同时这种释放速率受温度影响,温度越高,释放速率越慢。此外,用Peppa's势能方程分析了凝胶内药物的释放机理。
     2.用自由基聚合的方法,合成了组成不同的聚(N,N-二乙基丙烯酰胺-co-甲基丙烯酸二甲氨基乙酯)(P(DEA-co-DMAEMA))温度/pH值双重敏感性水凝胶。傅立叶变换红外光谱(FTIR)与元素分析说明,P(DEA-co-DMAEMA)水凝胶被成功制备。扫描电子显微镜(SEM)观察到了凝胶网络结构与凝胶组成有关,引入DMAEMA后,使凝胶网络具有相互连接的孔结构。在一定浓度范围内,P(DEA-co-DMAEMA)水凝胶的温度和pH值敏感性能力随DMAEMA含量增加而提高,且溶胀/退溶胀速率也增大。用Peppa's势能方程分析凝胶溶胀机理发现:随着凝胶中DMAEMA含量增加,溶胀机理从Fickian扩散向Non-Fickian扩散转变。通过MTT实验发现,P(DEA-co-DMAEMA)和PDEA凝胶对HeLa细胞基本没有毒性。以牛血清蛋白为模型药物,DMAEMA的存在提高了凝胶的装载效率,降低了释放速率。同时,这种释放速率受温度影响,温度越高,释放速率越慢。这种无毒的敏感性水凝胶在药物控释等领域有潜在的用途。
     3.利用大分子单体,采用自由基溶液聚合,合成了温度/pH值敏感性梳型接枝水凝胶,即在P(DEA-co-DMAEMA)凝胶的网络结构中引入一端可自由运动的P(DEA-co-DMAEMA)接枝链,且主链和支链的组分比相同。1H NMR, FTIR和GPC结果说明,大单体P(DEA-co-DMAEMA)被成功制备。扫描电子显微镜(SEM)观察到,由于接枝长链存在一定的刚性结构,凝胶网络具有相互连接的大孔结构。这种含有可自由运动接枝链的相互连接的大孔凝胶网络具有优异的温度和pH值敏感性,溶胀/退溶胀速率及可逆刺激响应行为得到很大的提高。
     4.在高分子电解质聚二烯丙基二甲基氯化铵(PDADMAC)水溶液中,用自由基聚合法引发DEA聚合,得到了具有温度/pH值双重敏感性的PDADMAC/PDEA Semi-IPN水凝胶。示差扫描量热(DSC)分析结果表明,随着凝胶中PDADMAC含量的增加,网络与水形成氢键的能力增加,非冻结水含量也增加。溶胀行为研究表明,Semi-IPN水凝胶具有优良的温度和pH值敏感性,扫描电子显微镜观察的结果也证实了这一结论。同时,该凝胶还具有快的去溶胀速率和优异的可逆刺激响应行为。用Peppa's势能方程分析凝胶溶胀机理发现,随着凝胶中PDADMAC含量增加,溶胀机理从Fickian扩散向Non-Fickian扩散转变。
     5.利用IPN技术,将天然多糖卡拉胶(KC)的衍生物KC-g-PMAA引入PDEA网络中,制得了KC-g-PMAA/PDEA Semi-IPN水凝胶。傅立叶变换红外光谱(FTIR)结果说明,KC-g-PMAA及Semi-IPN凝胶被成功制备。由于网络为Semi-IPN结构,所有凝胶的LCST相同。溶胀行为研究表明,Semi-IPN水凝胶具有优良的温度和pH值敏感性,且具有快的去溶胀速率,扫描电子显微镜观察的结果也证实了这一结论。用Peppa's势能方程分析凝胶溶胀机理发现,随凝胶中KC-g-PMAA含量增加,溶胀机理从Fickian扩散向Non-Fickian扩散转变。当KC-g-PMAA超过一定值,凝胶溶胀过程比较复杂,存在过溶胀现象。
In this thesis, five different kinds of hydrogel, P(N,N-diethylacrylamide-co-N-hydroxymethyl acrylamide) (P(DEA-co-NHMAA)) hydrogel, P(N,N-diethyl-acrylamide-co-(2-dimethylamino) ethyl methacrylate) (P(DEA-co-DMAEMA)) hydrogel, P(DEA-co-DMAEMA)-g-P(DEA-co-DMAEMA) hydrogel, poly(diallyldimethyl- ammonium chloride)/poly(N,N-diethylacrylamide) (PDADMAC/PDEA) semi-IPN hydrogel, carrageenan-g-poly(methacrylic acid)/poly(N,N-diethylacrylamide) (KC-g- PMAA/PDEA), were prepared using free radical solution polymerization, macro- monomer grafting polymerization and semi-interpenetrating polymerization. The effects of the feed components, temperature and pH on the swelling behavior of the hydrogels were studied, and the rapid response properties of the hydrogels were investigated in detail, and the results are summarized as following:
     1. P(N,N-diethylacrylamide-co-N-hydroxymethyl acrylamide) (P(DEA-co-NHMAA)) hydrogels were synthesized by changing the initial DEA/NHMAA mole ratio, N,N'-methylenebisacrylamide and total monomer concentration. At FTIR spectra, it can be concluded that the P(DEA-co-NHMAA) hydrogel was successfully prepared. The interior morphology of the hydrogels illustrates the dependence of the morphology on the hydrogel compositions. In comparison with the PDEA hydrogel, the equilibrium swelling ratio (ESR) and lower critical solution temperature (LCST) of the hydrogels increase with the increase of NHMAA content in the feed. The release behaviors of the model drug, aminophylline, are found dependent on hydrogel composition and environmental temperature. In addition, the drug release mechanism of the drug-loaded hydrogels was analyzed by Peppa's potential equation.
     2. P(N,N-diethylacrylamide-co-(2-dimethylamino) ethyl methacrylate) (P(DEA-co-DAMEMA)) hydrogels were synthesized by changing the initial DEA/DAMEMA mole ratio. The hydrogels were characterized using Fourier transform infrared (FTIR) spectroscope, elemental analysis method and scanning electron microscope (SEM). It can be concluded that the P(DEA-co-NHMAA) semi-IPN hydrogel was successfully prepared. The P(DEA-co-DMAEMA) hydrogels have porous structure with more interconnected channel-like pores surrounded with thin walls and presented a sponge-like morphology. The capability of the temperature and pH of stimulating hydrogels is enhanced when the content of DMAEMA in the hydrogels increases. In comparison with the PDEA hydrogel, the deswelling and reswelling rates of the hydrogels increase with the increase of DAMEMA content in the feed. PDEA and P(DEA-co-DMAEMA) have no apparent cytotoxicity. The absorb and release behaviors of the model drug, bovine serum albumin, were found dependent on hydrogel compositions and environmental temperature, which suggests that these materials have potential application as intelligent drug carriers.
     3. The dual sensitive comb-type grafted hydrogels were synthesized by grafting polymeric chains with freely mobile ends, which were composed of both N,N-diethylacrylamide (DEA) and (2-dimethylamino) ethyl methacrylate (DMAEMA), onto the backbone of crosslinked P(DEA-co-DMAEMA) networks. The structure of the poly(DEA-co-DMAEMA) macromonomer was characterized by Nuclear Magnetic Resonance (1H NMR) and Fourier transform infrared spectroscopy (FTIR). The experiment results show that the P(DEA-co-DMAEMA) macromonomer was successfully prepared. Due to the pendant poly(DEA-co-DMAEMA) grafts providing spatial hindrance, the G-PDD hydrogels have an interconnected and macroporous network structure. The G-PDD hydrogels exhibite improved thermo- and pH-sensitive characteristics, such as faster deswelling and reswelling rates and great oscillating deswelling/swelling behavior, and the level of improvement depends on the poly(DEA-co-DMAEMA) macromonomer content.
     4. A novel semi-interpenetrating polymer network (semi-IPN) hydrogel of poly(diallyldimethylammonium chloride)/poly(N,N-diethylacrylamide) (PDADMAC/ PDEA) was prepared at room temperature. Differential scanning calorimetry (DSC) studies show that the freezing water content is found to accumulate with the increasing concentration in PDADMAC, which means a raise in hydrogen bond formation between the hydrophilic chains and the water molecules. The semi-IPN hydrogels exhibite improved thermosensitive characteristics, such as faster deswelling and swelling rates and great oscillating deswelling-swelling behavior, and the level of improvement depends on the PDADMAC content. The swelling dynamic transport of the hydrogels was analyzed based on the Fickian equation. These results show that the swelling mechanism would be transformed from Fickian diffusion to non-Fickian transport.
     5. A novel semi-interpenetrating polymer network (semi-IPN) hydrogel of kappa-carrageenan-g-poly(methacrylic acid)/poly(N,N-diethylacrylamide) (KC-g-PMAA/PDEA) was prepared. At FTIR spectra, it can be concluded that the KC-g-PMAA and Semi-IPN hydrogel was successfully prepared. The results show that the introduction of KC-g-PMAA do not change the lower critical solution temperature of the semi-IPN hydrogels, which is the same to the PDEA hydrogel (at 31℃). With the increase of KC-g-PMAA content, the thermo- and pH-sensitivity of the hydrogel are improved, which the swelling rate increases with the increasing content of KC-g-PMAA. The semi-IPN hydrogels show a faster deswelling and swelling rate. The swelling dynamic transport of the hydrogels was analyzed based on the Fickian equation. These results show that the swelling mechanism would be transformed from Fickian diffusion to non-Fickian transport. As the KC-g-PMAA content increase to some extent, Semi-IPN hydrogel swelling process would be more complicated, since it exhibits an overshooting phenomenon.
引文
[1]顾雪蓉,朱育平.凝胶化学.北京:化学工业出版社,2005
    [2]王标兵.药物缓释载体用温敏性水凝胶.高分子通报,2006,(11),85-91.
    [3]王斌.含三唑基团的刺激响应性高分子及其水凝胶的合成、表征与性能研究.兰州大学博士学位论文,2006.
    [4]D.Z. Liu, M.T. Sheu, C.H. Chen, Y.R. Yang, H.O. Ho. Release characteristics of lidocaine from local implant of polyanionic and polycationic hydrogels. J. Control. Release,2007,118:333-339.
    [5]马晓梅,赵喜安,唐小真.智能型水凝胶.化学通报,2004,(2):117-123.
    [6]房喻,胡道道,崔亚丽.智能型高分子水凝胶的应用研究现状.高技术通讯.2001,(11):107-110.
    [7]金淑萍,柳明珠,陈世兰,卞凤玲,陈勇,王斌,詹发禄,刘守信.智能高分子及水凝胶的响应性及其应用.物理化学学报,2007,(3):438-446.
    [8]李祖彬,霍东霞,王红英.分子印迹智能水凝胶的研究进展.高分子通报.2007,(12):24-28。
    [9]毕曼,郝红,李涛,赵亚玲.智能水凝胶研究最新进展.离子交换与吸附.2008,(2):188-192.
    [10]刘晓华,王晓工,刘德山.智能型水凝胶结构及响应机理的研究进展.化学通报.2000,(10):1-6.
    [11]F. Limain, T. Tanaka, E. Kokufuta. Volume transition in a gel driven by hydrogen bonding. Nature,1991,349:400-401.
    [12]陈莉.智能高分子材料.北京:化学工业出版社,2005.
    [13]J.S. Scarpa, D.D. Mueller, I.M. Klotz. Smart thermoresponsive coatings and surfaces for tissue engineering: switching cell-material boundaries. J. Am. Chem. Soc.,1967,89:6024-6030.
    [14]T. Tanaka. Collapse of gels and the critical endpoint. Phys. Rev. Lett.,1978,40: 820-823
    [15]董晓臣,贺继东,王存国,郭红革.温敏水凝胶的新进展.高分子通报.2003,(8):53-56
    [16]陈勇.极稀溶液中聚N,N-二乙基丙烯酰胺构象转变机理的研究.兰州大学博士学位论文。2006.
    [17]陈瑜,陈明清,刘晓亚,杨成。N-异丙基丙烯酰胺共聚物的温度敏感性研究.胶体与聚合物.2001,19:5-7.
    [18]A.Y.C. Koh, B.R. Saunders. Small-angle neutron scattering study of temperature-induced emulsion gelation: the role of sticky microgel particles. Langmuir,2005, 21:6734-6741.
    [19]卞凤玲,柳明珠.聚N,N-二乙基丙烯酰胺溶液粘度的温度依赖性.物理化学学报.2002,18:776-780.
    [20]卞凤玲,柳明珠,盛芬玲.PNIPA和PDEA在水-甲醇混合溶剂中性质的研究.物理化学学报.2004,20:337-343.
    [21]陈勇,柳明珠,金淑萍,陈世兰.PDEA和P(DEA-co-NHMAA)稀水溶液相分离行为研究.物理化学学报,2005,21:591-595.
    [22]L.H. Gan, Wensheng Cai, K. C. Tam. Studies of phase transition of aqueous solution of poly(N,N-diethylacrylamide-co-acrylic acid) by differential scanning calorimetry and spectrophotometry. Eur. Polym. J.,2001,37:1773-1778
    [23]W.S. Cai, L.H. Gan, K.C. Tam. Phase transition of aqueous solutions of poly(N,N-diethylacrylamide-co-acrylic acid) by differential scanning calorimetric and spectrophotometric methods. Colloid Polym. Sci.,2001,279:793-799
    [24]Y.G. Takei, T. Aoki, K. Sanui, N. Ogata, T. Okano, Y. Sakurai. Temperature-responsive bioconjugates 2 Molecular design for temperature-modulated bio-separations. Bioconjugate Chem.,1993,4:341-346.
    [25]马晓梅,唐小真.侧链含不同功能性羟基的温敏性N一异丙基丙烯酰胺共聚物微凝胶的制备及性能比较.高分子学报.2006,8:937-943
    [26]J. Hendri, A. Hiroki, Y. Maekawa, M. Yoshida, R. Katakai. The spatial effect of hydrophobic groups in pendant amino acid monomers on the thermal volume phase transition of hydrogels. Radiat. Phys. Chem.,2001,61:155-161.
    [27]X.M. Ma, J.Y. Xi, X.B. Huang, X. Zhao, X.Z. Tang. Novel hydrophobically modified temperature-sensitive microgels with tunable volume-phase transition temperature. Mater. Lett.,2004,58:3400-3404.
    [28]G. Bokias, D. Hourdet. Synthesis and characterization of positively charged amphiphilic water soluble polymers based on poly(N-isopropylacrylamide). Polymer,2001,42:6329-6337.
    [29]罗宣干,王坦.N-异丙基丙烯酰胺系温度敏感聚合物和水凝胶的研究进展.化 学通报.1996,(4):10-15.
    [30]张先正,卓仁禧.快速温度敏感(N-异丙基丙烯酰胺-co-丙烯酰胺)水凝胶的制备及性能研究.高等学校化学学报.2000,21:1309-1311.
    [31]刘郁扬,范晓东,邵颖慧.N-异丙基丙烯酰胺/N-乙烯基吡咯烷酮水凝胶的研究.功能高分子学报.2000,13:380-385.
    [32]N. Nagaoka, A. Safrani, M. Yoshida, H. Omichi, H. Kubota, R. Katakai. Synthesis of poly(N-isopropylacrylamide) hydrogels by radiation polymerization and crosslinking. Macromolecules,1993,26:7386-7388.
    [33]翟茂林,张九宏,伊敏,哈鸿飞.温度敏感性聚N-异丙基丙烯酰胺水凝胶的辐射合成及其性质研究.同位素.1994,(4):198-201.
    [34]Y. Hirokawa, T. Tanaka. Volume phase transition in a nonionic gel. J. Chem. Phys., 1984,81:6379-6382.
    [35]Q. Zhang, Y. Tang, L. Zha, J. Ma. Effects of hectorite content on the temperature-sensitivity of PNIPAM microgels. Eur. Polym. J.,2008,44:1358-1367.
    [36]L. Ma, M. Liu, H. Liu, J. Chen, D. Cui. In vitro cytotoxicity and drug release properties of pH- and temperature-sensitive core-shell hydrogel microspheres. Int. J. Pharm.,2010,385:86-91.
    [37]侯薇,杨晓英,张庆伟,刘培毅.温敏性高分子材料对药物释放的研究.中国药学杂志.2003,(11):857-860.
    [38]H. Inomata, S. Goto, S. Saito. Phase transition of N-substituted acrylamide gels. Macromolecules,1990,23:4887-4888.
    [39]M. Shibayama, S.Y. Mizutaini, S. Nomura. Thermal properties of copolymergels containing N-Isopropylacrylamide. Macromolecules,1996,29:2019-2024.
    [40]J. Chen, M. Liu, H. Liu, L. Ma. Synthesis, swelling and drug release behavior of poly(N,N-diethylacrylamide-co-N-hydroxymethyl acrylamide) hydrogel. Mat. Sci. Eng.C,2009,29:2116-2123.
    [41]L.M. Geever, D.M. Devine, M.J.D. Nugent, J.E. Kennedy, J.G Lyons, A. Hanley, C.L. Higginbotham. Lower critical solution temperature control and swelling behaviour of physically crosslinked thermosensitive copolymers based on N-isopropylacrylamide. Eur. Polym. J.,2006,42:2540-2548.
    [42]H. Yu, D.W. Grainger. Thermo-sensitive swelling behavior in crosslinked N-isopropylacylamide networks:cationic, anionic and ampholytic hydrogels. J. Appl. Polym. Sci.,1993,49:1553-1563.
    [43]J. Zhang, R. Xie, S.B. Zhang, C.J. Cheng, X.J. Ju, L.Y. Chu. Rapid pH/temperature-responsive cationic hydrogels with dual stimuli-sensitive grafted side chains. Polymer,2009,50:2516-2525.
    [44]T. Gotoh, Y. Nakatani, S. Sakohara. Novel synthesis of thermosensitive porous hydrogels. J. Appl. Polym. Sci.,1998,69:895-906.
    [45]X.Z. Zhang, R.X. Zhuo. Preparation of fast responsive, temperature-sensitive poly(N-isopropylacrylamide) hydrogel. Macromol. Chem. Phyls.,1999,200: 2602-2605.
    [46]R.X. Zhuo, W. Li. Preparation and characterization of macroporous poly(N-isopropylacrylamide) hydrogels for the controlled release of proteins. J. Polym. Sci. Part A: Polym. Chem.,2003,41:152-159.
    [47]Takeshi S, Kazuaki W, Mitsuru A. Rapid deswelling of porous poly(N-isopropyl acrylamide) hydrogels prepared by incorporation of silica Particles. Macromolecules, 2002,35:10-12.
    [48]J.T. Zhang, R.X. Zhuo. Synthesis and characteristics of Poly(N-isopropyl acrylamide)/Poly(N-isopropylacrylamide) interpenetrating polymer network as drug delivery system. J. Polym. Sci. Part A: Polym. Chem.,2004,42:1249-1254.
    [49]徐国刚,窦东友,徐荣南,严峻.几类甲基丙烯酸pH-敏感水凝胶的溶胀行为研究.离子交换与吸附.1999,15:487-495.
    [50]Q. Liu, Z. Yu, P. Ni. Micellization and applications of narrow-distribution poly[2-(dimethylamino)ethyl methacrylate]. Colloid Polym. Sci.,2004,282: 387-393.
    [51]S.X. Liu, Y. Fang, G.L.Gao, M.Z. Liu, D.D. Hu. Fluorescence probe studies on the complexation between poly(methacrylic acid) and poly(N,N-diethylacrylamide). Spectrochim. Acta Part A,2005,61:887-892.
    [52]王公正,房喻,尚志远,胡道道.超声衰减检测法研究大分子构象变化.化学学报.2001,59:665-669.
    [53]S. Dai, P. Ravi, K.C. Tam, B.W. Mao, L.H. Gan. Novel pH-responsive amphiphilic diblock copolymers with reversible micellization properties. Langmuir,2003,19: 5175-5177.
    [54]黄玉萍,张丽华.敏感性水凝胶的合成及响应原理.胶体与聚合物.2009,(1):32-35.
    [55]A. Katchalsky. Rapid swelling and deswelling of reversible gels of polymeric acids by ionization. Experientia,1949,5:319-320.
    [56]T. Tanaka, D.J. Fillmore, S.T. Sun, I. Nishio, G Swislow, A. Shah.. Phase transitions in ionic gels. Phys. Rev. Lett.,1980,45:1636-1639.
    [57]陆大年,陈士安.丙烯酸水凝胶的pH敏感性研究.华东理工大学学报.1994,20:818-823.
    [58]邱奎,孙姣霞,彭辉,韩志伟,罗彦凤.基于乙二胺四乙酸酐和丁二胺的pH敏感水凝胶的合成与表征.高分子材料科学与工程.2009,8:19-25.
    [59]岳斌,吴承训.聚丙烯酰胺水凝胶的pH敏感性研究.合成技术及应用.2006,21:8-11.
    [60]D. Hariharan, N.A. Peppas. Characterization, dynamic swelling behaviour and solute transport in cationic networks with applications to the development of swelling-controlled release systems. Polymer,1996,37:149-161.
    [61]S. Brahim, D. Narinesingh, A. Guiseppi-Elie. Release characteristics of novel pH-sensitive P(HEMA-DMAEMA) hydrogels containing 3-(trimethoxy-silyl) propyl ethacrylate. Biomacromolecules,2003,4:1224-1231.
    [62]黄怡,范晓东,胡晖.甲基丙烯酸N,N-二甲氨基乙酯与丙烯酰β-环糊精共聚水凝胶的合成及其性能研究.高分子学报.2004,(2):177-183.
    [63]P.B. John, W.B. Harvery, M.P. John. Swelling properties of acrylamide-based ampholytic hydrogels:comparison of experiment with theory. Polymer,1995,36: 1061-1069.
    [64]S. Wen, W.T.K. Stevenson. Synthetic pH sensitive polyampholyte hydrogel:A preliminary study. Colloid Polym. Sci.,1993,271:38-49.
    [65]L. Shi, L. Yang, J. Chen, Y. Pei, M. Chen, B. Hui, J. Li. Preparation and characterization of pH-sensitive hydrogel of chitosan/poly(acrylic acid) copolymer. J. Biomat. Sci. Polym. Edition,2004,15:465-474.
    [66]陈万煜,赵彦兵,杨亚江.离子键交联聚两性电解质凝胶在电场作用下的溶蚀现象.高分子学报.2006,(7):860-865.
    [67]K. Xu, J.H. Wang, S. Xiang, Q. Chen, Y.M. Yue, X.F. Su, C.L. Song, P.X. Wang. Polyampholytes superabsorbent nanocomposites with excellent gel strength. Compos. Sci. Technol.,2007,67:3480-3486.
    [68]陈世兰.基于壳聚糖的pH值刺激响应性高分子及其水凝胶的合成与性能研究.兰州大学博士学位论文.2007.
    [69]张青松,查刘生,马敬红,梁伯润.pH和温度双重敏感高分子凝胶的最新研究进展.材料导报.2007,5:44-48.
    [70]L.H. Gan, Y.Y. Gan, C.R. Deen. Poly(N-acryloyl-N'-propylpiperazine):a new stimuli-responsive polymer. Macromolecules,2000,33:7893-7897.
    [71]N. Gonzalez, C. Elvira, J.S. Roman. Novel dual-stimulisensitive polymers derived from ethylpyrrolidine. Macromolecules,2005,38:9298-9303.
    [72]A.C. Couffin-Hoarau, J.C. Leroux. Report on the use of poly(organophos- phazenes) for the design of stimuli-responsive vesicles. Biomacromolecules,2004,5: 2082-2087.
    [73]S.X. Liu, M.Z. Liu. Synthesis and characterization of temperature- and pH-sensitive poly(N,N-diethylacrylamide-co-methacrylic acid). J. Appl. Polym. Sci., 2003,90:3563-3568.
    [74]M.S. Jones, Effect of pH on the lower critical solution temperatures of random copolymers of N-isopropylacrylamide and acrylic acid. Eur. Polym. J.,1999, 35: 795-801.
    [75]X. Andre, M. F. Zhang, A.H.E. Muller. Thermo- and pH-responsive micelles of poly(acrylic acid)-block-poly(N,N-diethylacrylamide). Macromol. Rapid Comm., 2005,26:558-563.
    [76]C.M. Schilli, M.F. Zhang, E. Rizzardo, S.H. Thang, Y.K. Chong, K. Edwards, G. Karlsson, A.H.E. Miiller. A new double-Responsive block copolymer synthesized via RAFT polymerization: Poly(N-isopropylacrylamide)-block-poly(acrylic acid). Macromolecules,2004,37:7861-7866.
    [77]W.Q. Zhang, L.Q. Shi, R.J. Ma, Y.L. An, Y.L. Xu, K. Wu. Micellization of thermo-and pH-responsive triblock copolymer of poly(ethylene glycol)-b-poly(4-vinylpyridine)-b-poly(N-isopropylacrylamide). Macromolecules,2005,38: 8850-8852.
    [78]M. Shibayama, T. Motonaga. Studies on pH and temperature dependence of the dynamics and heterogeneities in poly(N-isopropylacrylamide-co-sodium acrylate) gels. Polymer,2001,42:8925-8934.
    [79]I. Katime, J.R. Quintana, N.E. Valderruten, L.C. Cesteros. Synthesis and properties of pH- and temperature-sensitive poly[(N-isopropylacrylamide)-co-(2-methylenebutane-1,4-dioic acid)] hydrogels. Macromol. Chem. Phys.,2006,207: 2121-2127.
    [80]刘郁杨,范晓东,张双存.温度及pH敏感N一异丙基丙烯酰胺/p一环糊精水凝胶的合成与性能研究.高分子学报.2002,(5):618-622.
    [81]刘守信,张朝阳,房喻,王焕霞,陈奋强.温度/pH敏感性接枝共聚物水凝胶P(DMAEMA-g-NIPAM)的合成及性质研究.化学学报.2009,(6):1910一1916.
    [82]L. Dong, A.S. Hoffman. A novel approach for preparation of pH-sensitive hydrogels for enteric drug delivery. J. Control. Release,1991,15:141-152
    [83]卓仁禧,张先正.温度及pH敏感聚(丙烯酸)/聚(N一异丙基丙烯酰胺)互穿聚合物网络水凝胶的合成及性能研究.高分子学报.1998,(1):39-42.
    [84]X.Z. Zhang, D.Q. Wu, C.C. Chu. Synthesis and characterization of partially biodegradable, temperature and pH sensitive Dex-MA/PNIPAAm hydrogels. Biomaterials,2004,25:4719-4730.
    [85]R. Kishi, T. Miura, T. Asano, M. Shibata, R. Yosomiya. Fast pH/thermo- responsive copolymer hydrogels with micro-porous structures. J. Appl. Polym. Sci.,2003,89: 75-84.
    [86]F.L. Buchholz, In:Buchholz, F. L. and N.A. Peppass, eds, Superabsorbent polymers:science and technology, ACS Symposium series vol.573 Washington, DC (1994),27
    [87]H. Omidian, S. A. Hashemi, P.G. Sammes, I. Meldrum. A model for the swelling of superabsorbent polymers. Polymer,1998,39:6697-6704.
    [88]M. Hahn, E. Gornitz, H. Dautzenberg. Synthesis and properties of ionically modified polymers with LCST behavior. Macromolecules,1998,31:5616-5623.
    [89]陈松炜,江永波,孙建中,赵骞,周其云.聚甲基丙烯酸/丙烯酰胺pH敏感凝胶的合成与溶胀行为研究.高校化学工程学报.2009,(8):644-649.
    [90]T.G Park. Temperature modulated protein release from pH/temperature-sensitive hydrogels. Biomaterials,1999,20:517-521.
    [91]N. Acar. Radiation synthesis of poly(2-vinylpyridine) gels and their swelling characteristics. Radiat. Phys. Chem.,2002,63:185-191.
    [92]H.W. Jennifer, N.A. Peppas. Preparation of controlled release systems by free-radical UV polymerizations in the presence of a drug. J. Control. Release,2001, 71:183-192.
    [93]H. Liu, M. Liu, S. Jin, S. Chen. Synthesis and characterization of fast responsive thermo- and pH-sensitive poly[(N,N-diethylacrylamide)-co-(acrylic acid)] hydrogels. Polym. Int.,2008,57:1165-1173.
    [94]H. Liu, F. Bian, Mingzhu Liu, S. Chen. Synthesis of poly(N,N-diethylacryl-amide-co-acrylic acid) hydrogels with fast response rate in NaCl medium. J. Appl. Polym. Sci.,2008,109:3037-3043
    [95]X.S. Wu, A.S. Hoffman, P. Yagger. Synthesis and characterization of thermally reversible macroporous poly(N-isopropylacrylamide) hydrogels. J. Polym. Sci. Part A: Polym. Chem.,1992,30:2121-2129.
    [96]陈兆伟,陈明清.温敏性聚(N-异丙基丙烯酰胺)水凝胶的合成与表征.功能高分子学报.2004,(1):46-49.
    [97]J. Chen, H. Park, K. Park. Synthesis of superporous hydrogels:Hydrogels with fast swelling and superabsorbent properties. J. Biomed. Mater. Res.,1999,44:53-62.
    [98]X. Qi, M. Liu, Z. Chen, F. Zhang, L. Zhao. Preparation and properties of macroporous superabsorbent composite. Polym. Adv. Technol.,2010,21:196-204.
    [99]Q.Z. Yan, G.D. Lu, W.F. Zhang, X. H. Ma, C.C. Ge. Frontal polymerization synthesis of monolithic macroporous polymers. Adv. Funct. Mater.,2007,17: 3355-3362.
    [100]凌有道,吕满庚.温度和pH双重敏感性水凝胶的制备及表征.精细化工.2008,(6):545-557.
    [101]H. Liu, M. Liu, J. Huang, L. Ma, J. Chen. A novel method to prepare temperature/pH-sensitive poly(N,N-diethylacrylamide-co-acrylic acid) hydrogels with rapid swelling/deswelling behaviors. Polym. Adv. Technol.,2009, 20:1152-1156.
    [102]Y. Kaneko, K. Sakai, A. Kikuchi, R. Yoshida, Y Sakurai, T. Okano. Influence of freely mobile grafted chain length on dynamic properties of comb-type grafted poly(N-isopropylacrylamide) hydrogels. Macromolecules,1995,28:7717-7723.
    [103]R. Yoshida, K. Uchida, Y Kaneko, K. Sakai, A. Kikuchi, Y. Sakurai, T. Okano. Comb-type grafted hydrogels with rapid de-swelling response to temperature changes. Nature,1995,374:240-242.
    [104]Y Kaneko, S. Nakamura, K. Sakai, T. Aoyagi, A. Kikuchi, Y. Sakurai, T. Okano. Rapid deswelling response of poly(N-isopropylacrylamide) hydrogels by the formation of water release channels using poly(ethylene oxide) graft chains. Macromolecules,1998,31:6099-6105.
    [105]M. Annaka, C. Tanaka, T. Nakahira, M. Sugiyama, T. Aoyagi, T. Okano. Fluorescence study on the swelling behavior of comb-type grafted poly(N-isopropylacrylamide) hydrogels. Macromolecules,2002,35:8173-8179.
    [106]H. Liu, M. Liu, L. Ma, J. Chen. Thermo- and pH-sensitive comb-type grafted poly(N,N-diethylacrylamide-co-acrylic acid) hydrogels with rapid response behaviors. Eur. Polym. J.,2009,45:2060-2067.
    [107]S. Jin, M. Liu, S. Chen, C. Gao. Synthesis, characterization and the rapid response property of the temperature responsive PVP-g-PNIPAM hydrogel. Eur. Polym. J., 2008,44:2162-2170.
    [108]H.K Ju, S.Y. Kim, Y.M. Lee. pH/temperature-responsive behaviors of semi-IPN and comb-type graft hydrogels composed of alginate and poly(N-isopropyl-acrylamide). Polymer,2001,42:6851-6857.
    [109]C. Gao, M. Liu, S. Chen, S. Jin, J. Chen. Preparation of oxidized sodium alginate-graft-poly((2-dimethylamino) ethyl methacrylate) gel beads and in vitro controlled release behavior of BSA. Int. J. Pharm.,2009,371:16-24.
    [110]Y.S. Lipatov. Polymer blends and interpenetrating polymer networks at the interface with solids. Prog. Polym. Sci.,2002,27:1721-1801
    [111]J. Zhang, N.A. Peppas. Synthesis and characterization of pH- and temperature-sensitive poly(methacrylic acid)/poly(N-isopropylacrylamide) interpenetrating polymeric networks. Macromolecules,2000,33:102-107.
    [112]X.Z. Zhang, D.Q. Wu, C.C. Chu, Synthesis, characterization and controlled drug release of the thermosensitive IPN PNIPAAm hydrogels. Biomaterials,2004,25: 3793-3805
    [113]S. Jin, F. Bian, M. Liu, S. Chen, H. Liu, Swelling mechanism of porous P(VP-co-MAA)/PNIPAM Semi-IPN hydrogels with various pore sizes prepared by freeze treatment. Polym. Int.,2009,58:142-148.
    [114]S. Jin, M. Liu, F. Zhang, S. Chen, A. Niu, Synthesis and characterization of pH-sensitivity Semi-IPN hydrogel based on hydrogen bond between poly(N-vinyl-pyrrolidone) and poly(acrylic acid). Polymer,2006,47:1526-1532.
    [115]J. Djonlagic, Z.S. Petrovic. Semi-interpenetrating polymer networks composed of poly(N-isopropyl acrylamiAde) and polyacrylamide hydrogels. J. Polym. Sci. Part B:Polym. Phys.,2004,42:3987-3999.
    [116]J. Chen, M. Liu, S. Chen. Synthesis and characterization of thermo- and pH-sensitive kappa-carrageenan-g-poly(methacrylic acid)/poly(N,N-diethylacryl- amide) semi-IPN hydrogel. Mater. Chem. Phys.,2009,115:339-346.
    [117]王雪珍,汪辉亮具有规整结构和高强度的水凝胶研究进展.高分子通报.2008,(3):1-6.
    [118]Y. Okumura, K. Ito. High mechanical strength hydrogels preparation using hydrophilic reactive microgels as crosslinking agents. Adv Mater.,2001,13: 485-487.
    [119]K. Haraguchi, T. Takehisa. Nanocomposite hydrogels:a ynique organic- inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv. Mater.,2002,14:1120-1124.
    [120]K. Haraguchi, H.J. Li. Control of the coil-to-globule transition and ultrahigh mechanical properties of PNIPA in nanocomposite hydrogels. Angew Chem. Int. Ed.,2005,44:6500-6504.
    [121]M. Zhu, Y. Liu, B. Sun, W. Zhang, X. Liu, H. Yu, Y. Zhang, D. Kuckling, H.J.P. Adler. A novel highly resilient nanocomposite hydrogel with low hysteresis and ultrahigh elongation. Macromol. Rapid Commun.,2006,27:1023-1028.
    [122]J.P. Gong, Y. Katsuyama, T. Kurokawa, Y. Osada. Double-network hydrogels with extremely high mechanical strength. Adv Mater,2003,15:1155-1158.
    [123]K. Yasuda, J.P. Gong, Y. Katsuyama, A. Nakayama, Y. Tanabe, E. Kondo, M. Ueno, Y. Osada. Biomechanical properties of high-toughness double network hydrogels. Biomaterials,2005,26:4468-4475.
    [124]T. Funaki, T. Kaneko, K. Yamaoka, Y. Ohsedo, J.P. Gong, Y. Osada, Y. Shibasaki, M. Ueda. Shear-induced mesophase organization of polyanionic rigid Rods in aqueous solution. Langmuir,2004,20:6518-6520.
    [125]Y. Tanaka, R. Kuwabara, Y.-H. Na, T. Kurokawa, J.P. Gong, Y. Osada. Determination of fracture energy of high strength double network hydrogels. J Phys. Chem. B,2005,109:11559-11562.
    [126]M. Malkoch, R. Vestberg, N. Gupta, L. Mespouille, P. Dubois, A.F. Mason, J.L. Hedrick, Q. Liao, C.W. Frank, K. Kingsbury, C.J. Hawker. Synthesis of well-defined hydrogel networks using Click chemistry. Chem. Comm.,2006,26:2774-2776.
    [127]T. Tanaka, D.J. Fillmore. Kinetics of swelling of gels. J. Chem. Phys.,1979,70: 1214-1218.
    [128]J. D. Debord, L.A. Lyon. Synthesis and Characterization of pH-responsive copolymer microgels with tunable volume phase transition temperatures. Langmuir, 2003,19:7662-7664.
    [129]C.D. Jones, L.A. Lyon. Shell-restricted swelling and core compression in Poly(N-isopropylacrylamide) core-shell microgels. Macromolecules,2003,36: 1988-1993.
    [130]P. Bouillot, B. Vincent. A comparison of the swelling behaviour of copolymer and interpenetrating network microgel particles. Colloid Polym. Sci.,2000,278:74-79
    [131]X. Xia, Z. Hu. Synthesis and light scattering study of microgels with interpenetrating polymer networks. Langmuir,2004,20:2094-2098.
    [132]唐青,胡艾希,谭英.聚N-异丙基丙烯酰胺类温敏凝胶的制备及其对萘普生钠的缓释作用.药学进展.2006,4:171-174.
    [133]M.V Risbud, A.A Hardikar, S.V. Bhat, R.R. Bhonde. pH-sensitive freeze-dried chitosan-polyvinyl pyrrolidone hydrogels as controlled release system for antibiotic delivery. J. Control. Release,2000,68:23-30
    [134]C. Ramkissoon-Ganorkar, F. Liu, M. Baudy, S.W. Kim. Modulating insulin release profile from pH/thermosensitive polymeric beads through polymer molecular weight. J. Control. Release,1999,59:287-298.
    [135]A.S. Huffman, A. Afrassiabi, L.C. Dong. Thermally reversible hydrogels:II. Delivery and selective removal of substances from aqueous solutions. J. Control. Release,1986,4:213-222
    [136]L. Dong, Q. Yan, A.S. Hoffman. Controlled release of amylase from a thermal and pH-sensitive, macroporous hydrogel. J. Control. Release,1992,19:171-177.
    [137]K. Zhang, X.Y. Xiao, Y. Wu. Temperature and pH-responsive polymeric composite membranes for controlled delivery of proteins and peptides. Biomaterials,2004,25:5281-5291.
    [138]L.C. Dong, A.S. Hoffman. A novel approach for preparation of pH-sensitive hydrogels for enteric drug delivery. J. Control. Release,1991,15:141-152.
    [139]W. Xue, S. Champ, M.B. Huglin. New superabsorbent thermoreversible hydrogels. Polymer,2001,42:2247-2250.
    [140]冯霞,陈莉,董晶.快速响应温敏凝胶及其在生物分离中的应用研究。南开大学学报:自然科学版.2005,(6):34-40.
    [141]A.S. Hoffman. "Intelligent" polymers in medicine and biotechnology. Macromol. Symp.,1995,98:645-664.
    [142]GE. Morris, B. Vincent, M.J. Snowden. Adsorption of lead ions onto N-Isopropylacrylamide and acrylic acid copolymer microgels. J. Colliod Inter. Sci., 1997,190:198-205.
    [143]李伟,孙建中,周其云。适用于酶包埋的高分子载体材料研究进展.功能高分子学报.2001,(3):365-369.
    [144]张传梅,付建伟,庄银凤.温敏性水凝胶作为固定化酶载体的研究.河南科学.2006,(5):683-686.
    [145]E. Kokufuta, T. Tanaka. Biochemically controlled thermal phase transition of gels. Macromolecules,1991,24:1605-1607.
    [146]K. Hoshino, M. Taniguchi, M. Katagiri, M. Fugii. Properties of amylase immobilized on a new reversibly soluble-insoluble polymer and its spplication to repeated hydrolysis of soluble starch. J. Chem. Eng. Jpn.,1992,25:569-574.
    [147]李万超,赵义平,陈莉,冯霞,李冬美,李媛媛.温度响应性聚合物膜的研究进展.材料导报.2008,(10):108-111.
    [148]W.Y. Wang, L. Chen, X. Yu. Preparation of temperature sensitive poly (vinylidene fluoride) hollow fiber membranes grafted with N-isopropyl acrylamide by a novel approach. J. Appl. Polym. Sci.,2006,101:833-837.
    [149]Y. Okahata, H. Noguchi, T. Seki. Thermoselective permeation from a polymer grafted capsule membrane. Macromolecules,1986,19:493-494
    [150]N. Yamada, T. Okano, H. Sakai, F. Karikusa, Y. Sawasaki, Y Sakurai. Thermo-responsive polymeric surfaces; control of attachment and detachment of cultured cells. Makromol. Chem. Rapid Commun.,1990,11:571-576
    [151]M. Yamazaki, M. Tsuchida, K. Kobayashi, T. Takezawa, Y. Mori. A novel method to prepare size-regulated spheroids composed of human dermal fibroblasts. Biotech. Bioeng.,1994,44:38-44.
    [152]M. Yoshida, N. Nagaoka, M. Asano, H. Omichi, H. Kubota, K. Reversible on- off switch function of ion-track pores for thermo-responsive films based on copolymers consisting of diethyleneglycol-bis-allylcarbonate and acryloyl-L-proline methyl ester. Nuclear Instrument and Methods in Physics Research, Section B,1997,122:39-44
    [153]Z. Hu. CO2 laser-cont rolled transmission of visible light in N-isopropyl-acrylamide gel. Polymer Gels Networks,1995,3:267.
    [154]A. Suzuki, T. Tanaka. Phase transition in polymer gels induced by visible light. Nature,1990,34:345-347.
    [155]J.D. Debord, L.A. Lyon. Thermoresponsive photonic crystals. J. Phys. Chem. B, 2000,104:6327-6331.
    [156]D. Bernfeld, J. Won. Antigen and Enzymes made in soluble by entrapping them into lattices of synthetic polymers. Science,1963,142:678-679.
    [157]D.W. Urry, R.D. Harris, K.U. Prasad. Chemical potential driven contraction and relaxation by ionic strength modulation of an inverse temperature transition. J. Am. Chem. Soc.,1988,110:3303-3305.
    [158]L.H. Lyu. Dewaterring fine coal slurries by gel extraction, M.S. Thesis, University of Cincinnati,1994.
    [159]Y. Maeda, M. Yamabe. Unique phase behavior of random copolymer of N-isopropylacrylamide and N,N-diethylacrylamide in water. Polymer,2009,50: 519-523.
    [160]J. Plestil, M. Ilavsky, H. Pospisil, D. Hlavata, Yu.M. Ostanevich, G Degovics, M. Kriechbaum, P. Laggner. SAXS, SANS and photoelasticity of poly(N,N-di- ethyl acrylamide) networks:1. Structure changes after temperature jumps. Polymer, 1993,34:4846-4851.
    [161]M. Panayiotou, R. Freitag. Synthesis and characterisation of stimuli-responsive poly(N,N-diethylacrylamide) hydrogels. Polymer,2005,46:615-621.
    [1]I. Dimitrov, B. Trzebicka, A.H.E. Mullerc, A. Dworak, C.B. Tsvetanova. Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities. Prog. Polym. Sci.,2007,32:1275-1343.
    [2]E.C. Cho, H.J. Lim, H.J. Kim, E.D. Son, H.J. Choi, J.H. Park, J.-W. Kim, J. Kim. Role of pH-sensitive polymer-liposome complex in enhancing cellular uptake of biologically active drugs. Mat. Sci. Eng. C,2009,29:774-778.
    [3]A. Suzuki, T. Tanaka. Phase transition in polymer gels induced by visible light. Nature,1990,34:345-347.
    [4]Y. Lam, H. Li, T.Y. Ng, R. Luo. Modeling and simulation of the deformation of multi-state hydrogels subjected to electrical stimuli. Eng. Anal. Bound. Elem.,2006, 30:1011-1017.
    [5]R.S. Zhang, M.G. Tang, A. Bowyer, R. Eisenthal, J. Hubble. A novel pH- and ionic-strength-sensitive carboxy methyl dextran hydrogel. Biomaterials,2005,26: 4677-4683.
    [6]W.F. Lee, R.J. Chiu. Investigation of charge effects on drug release behavior for ionic thermosensitive hydrogels. Mat. Sci. Eng. C,2002,20:161-166.
    [7]Y.J. Choi, T. Yamaguchi, S.I. Nakao. A Novel separation system using porous thermosensitive membranes. Ind. Eng. Chem. Res.,2000,39:2491-2495.
    [8]B. Vernon, S.W. Kim, Y.H. Bae. Thermoreversible copolymer gels for extracellular matrix4. J. Biomed. Mater. Res.,2000,51:69-79.
    [9]F. Liu, G.L. Tao, R.X. Zhuo. Synthesis of thermal phase separating reactive polymers and their applications in immobilized enzymes. Polym. J.,1993,25: 561-567.
    [10]I. Idziak, D. Avoce, D. Lessard, D. Gravel, X.X. Zhu. Thermosensitivity of aqueous solutions of poly(N,N-diethylacrylamide). Macromolecules,1999,32: 1260-1263.
    [11]M. Panayiotou, R. Freitag. Influence of the synthesis conditions and ionic additives on the swelling behaviour of thermo-responsive polyalkylacrylamide hydrogels. Polymer,2005,46:6777-6785.
    [12]H.L. Liu, M.Z. Liu, S.P. Jin, S.L. Chen. Synthesis and characterization of fast responsive thermo- and pH-sensitive Poly[(N,N-diethylacrylamide)-co-(acrylic acid)] hydrogels. Polym. Int.,2008,57:1165-1173.
    [13]S.X. Liu, M.Z. Liu. Synthesis and characterization of temperature- and pH-sensitive poly(N,N-diethylacrylamide-co-methacrylic acid). J. Appl. Polym. Sci., 2003,90:3563-3568.
    [14]戈进杰.生物降解高分子材料及其应用.北京:化学工业出版社.2002.262-325.
    [15]X.M. Liu, L.S. Wang, L. Wang, J.C. Huang, C.B. He. The effect of salt and pH on the phase-transition behaviors of temperature-sensitive copolymers based on N-isopropylacrylamide. Biomaterials,2004,25:5659-5666.
    [16]B. Yildiz, B. Is(?)k, M. K(?)s. Synthesis of thermoresponsive N-isopropylacrylamide-N-hydroxymethyl acrylamide hydrogels by redox polymerization. Polymer,2001, 42:2521-2529.
    [17]C.S. Brazel, N.A. Peppas. Mechanisms of solute and drug transport in relaxing, swellable, hydrophilic glassy polymers. Polymer,1999,40:3383-3398.
    [18]E. Turan, S. Demirci, T. Caykara. Thermo- and pH-induced phase transitions and network parameters of poly(N-isopropylacrylamide-co-2-acrylamido-2-methyl-propanosulfonic acid) hydrogels. J. Polym. Sci. Part B:Polym. Phys.,2008,46: 1713-1724.
    [19]G. Gurdag, S. Cavus. Synthesis and swelling behavior of poly(2-dimethyl-aminoethyl methacrylate-co-N-hydroxymethyl acrylamide) hydrogels. Polym. Adv. Technol.,2006,17:878-883.
    [20]Y. Suzuki, K. Nozaki, T. Yamamoto, K. Itoh, J. Nishio. Quasi-elastic light-scattering study of the formation of inhomogeneities gels. J. Chem. Phys., 1997,97:3808-3812.
    [21]M.-H. Han, J.-W. Kim, J.W. Kim, J.Y. Ko, J.J. Magda, I.S. Han. Temperature-dependent transparency of poly(HPMA-co-DMA) hydrogels:effect of synthesis parameters. Polymer,2003,44:4541-4546.
    [22]B. Wang, X.D. Xu, Z.C. Wang, S.X. Cheng, X.Z. Zhang, R.X. Zhuo. Synthesis and properties of pH and temperature sensitive P(NIPAAm-co-DMAEMA) hydrogels. Colloids Surf. B.,2008,64:34-41.
    [23]Z.S. Liu, G.L. Rempel. Preparation of superabsorbent polymers by crosslinking acrylic acid and acrylamide copolymers. J. Appl. Polym. Sci.,1997,64:1345-1353.
    [24]J.E. Elliotta, M. Macdonalda, J. Niea, C.N. Bowmana. Structure and swelling of poly(acrylic acid) hydrogels:effect of pH, ionic strength, and dilution on the crosslinked polymer structure. Polymer,2004,45:1503-1510.
    [25]D.C. Coughlan,0.1. Corrigan. Release kinetics of benzoic acid and its sodium salt from a series of poly(N-isopropylacrylamide) matrices with various percentage crosslinking. J. Pharm. Sci.,2008,97:318-330.
    [26]G. Iyer, L.M.V. Tillekeratne, M.R. Coleman, A. Nadarajah. Equilibrium swelling behavior of thermally responsive metal affinity hydrogels, Part Ⅰ: Compositional effects. Polymer,2008,49:3737-3743.
    [27]F.L. Buchholz, N.A. Peppas, Superabsorbent Polymers Science and Technology, ACS Symposium Series, vol.573, ACS, Washington, DC,1994.
    [28]G. Odian, Principles of Polymerization,2nd ed.Wiley-Interscience, New York, 1981.
    [29]R. Yoshida, Y. Kaneko, K. Sakai, T. Okano, Y. Sakurai, Y.H. Bae, S.W. Kim. Positive thermosensitive pulsatile drug release using negative thermosensitive hydrogels. J. Control. Release,1994,32:97-102.
    [30]X.D. Wang, W. Feng, H.Q. Li, E. Ruckenstein. Optimum toughening via a bicontinuous blending: toughening of PPO with SEBS and SEBS-g-maleic anhydride. Polymer,2002,43:37-43.
    [31]J. Kost, R. Langer. Responsive polymeric delivery systems. Adv. Drug Deliver. Rev.,2001,46:125-148.
    [32]P. Gupta, K. Vermani, S. Garg. Hydrogels:from controlled release to pH-responsive drug delivery. Drug Discov. Today,2002,7:569-579.
    [33]Y.L. Luo, K.P. Zhang, Q.B. Wei, Z.Q. Liu, Y.S. Chen. Poly(MAA-co-AN) hydrogels with improved mechanical properties for theophylline controlled delivery. Acta Biomater.,2009,5:316-327.
    [34]X.Z. Zhang, D.Q. Wu, C.C. Chu. Synthesis, characterization and controlled drug release of thermosensitive IPN-PNIPAAm hydrogels. Biomaterials,2004,25: 3793-3805.
    [35]P.L. Ritger, N.A. Peppas. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J. Control. Release,1987,5: 37-42.
    [36]C.S. Brazel, N.A. Peppas. Modeling of drug release from swellable polymers. Eur. J. Pharm. Biopharm.,2000,49:47-58.
    [1]E.S. Gil, S.M. Hudson. Stimuli-reponsive polymers and their bioconjugates. Prog. Polym. Sci.,2004,29:1173-1180.
    [2]A. Srivastava, A. Kumar. Synthesis and Characterization of a temperature-responsive biocompatible poly(N-vinylcaprolactam) cryogel:a step towards designing a novel cell scaffold. J. Biomater. Sci. Polymer Edn.,2009,20:1393-1415.
    [3]D. Schmaljohann. Thermo- and pH-responsive polymers in drug delivery. Adv. Drug Deliver. Rev.,2006,58:1655-1660.
    [4]J.-Y. Wu, S.-Q. Liu, P.W.-S. Heng, Y.-Y. Yang. Evaluating proteins release from, and their interactions with, thermosensitive poly (N-isopropylacrylamide) hydrogels. J. Control. Release,2005,102:361-372.
    [5]I. Idziak, D. Avoce, D. Lessard, D. Gravel, X.X. Zhu. Thermosensitivity of aqueous solutions of poly(N,N-diethylacrylamide). Macromolecules,1999,32:1260-1263.
    [6]J. Chen, M.Z. Liu, H.L. Liu, L.W. Ma. Synthesis, swelling and drug release behavior of poly(N,N-diethylacrylamide-co-N-hydroxymethyl acrylamide) hydrogel. Mat. Sci. Eng.C,2009,29:2116-2123.
    [7]Y. Zhang, L. Xu, M. Yi, M. Zhai, J. Wang, H. Ha. Radiation synthesis of poly[(dimethylaminoethyl methacrylate)-co-(diallyl dimethyl ammonium chloride)] hydrogels and its application as a carrier for notoginsenoside delivery. Eur. Polym. J., 2006,42:2959-2967.
    [8]P. van de Wetering, N.M.E. Schuurmans-Nieuwenbroek, M.J. van Steenbergen, D.J.A. Crommelin, W.E. Hennink. Copolymers of 2-(dimethylamino)ethyl methacrylate with ethoxytriethylene glycol methacrylate or N-vinyl-pyrrolidone as gene transfer agents. J. Control. Release,2000,64:193-203.
    [9]E. Perakslis, A. Tuesca, A. Lowman. Complexation hydrogels for oral protein delivery: an in vitro assessment of the insulin transport-enhancing effects following dissolution in simulated digestive fluids. J. Biomater. Sci. Polymer Edn.,2007,18: 1475-1490.
    [10]A.K. Bajpai, S.K. Shukla, S. Bhanu, S. Kankane. Responsive polymers in controlled drug delivery. Prog. Polym. Sci.,2008,33:1088-1118.
    [11]M.A. Cole, N.H. Voelcker, H. Thissen, H.J. Griesser. Stimuli-responsive interfaces and systems for the control of protein-surface and cell-surface interactions. Biomaterials,2009,30:1827-1850.
    [12]H. He, X. Cao, L.J. Lee. Design of a novel hydrogel-based intelligent system for controlled drug release. J. Control. Release,2004,95:391-402.
    [13]M.R. de Moura, F.A. Aouada, S.L. Favaro, E. Radovanovic, A.F. Rubira, E.C. Muniz. Release of BSA from porous matrices constituted of alginate-Ca2+ and PNIPAAm-interpenetrated networks. Mat. Sci. Eng. C,2009,29:2319-2325.
    [14]C.S. Brazel, N.A. Peppas. Mechanisms of solute and drug transport in relaxing, swellable, hydrophilic glassy polymers. Polymer,1999,40:3383-3398.
    [15]Z.-C. Wang, X.-D. Xu, C.-S. Chen, G.-R. Wang, B. Wang, X.-Z. Zhang, R.-X. Zhuo. Study on novel hydrogels based on thermosensitive PNIPAAm with pH sensitive PDMAEMA grafts. Colloid. Surface. B,2008,67:245-252.
    [16]F.N. Chearuil, O.I. Corrigan. Thermosensitivity and release from poly N-isopropylacrylamide-polylactide copolymers. Int. J. Pharm.,2009,366:21-30.
    [17]C. Zhao, X. Zhuang, P. He, C. Xiao, C. He, J. Sun, X. Chen, X. Jing. Synthesis of biodegradable thermo- and pH-responsive hydrogels for controlled drug release. Polymer,2009,50:4308-4316.
    [18]Z.M.O. Rzaev, S. Dincer, E. Piskin. Functional copolymers of N-isopropylacryl-amide for bioengineering applications. Prog. Polym. Sci.,2007,32:534-595.
    [19]H.L. Liu, M.Z. Liu, S.P. Jin, S.L. Chen. Synthesis and characterization of fast responsive thermo- and pH-sensitive Poly[(N,N-diethylacrylamide)-co-(acrylic acid)] hydrogels. Polym. Int.,2008,57:1165-1173.
    [20]L.E. Smith, S. Rimmer, S. MacNeil. Examination of the effects of poly(N-vinyl-pyrrolidinone) hydrogels in direct and indirect contact with cells. Biomaterials,2006, 27:2806-2812.
    [21]J.-T. Zhang, R. Bhat, K.D. Jandt. Temperature-sensitive PVA/PNIPAAm semi- IPN hydrogels with enhanced responsive properties. Acta Biomaterialia,2009,5: 488-497.
    [22]J. Chen, M.Z. Liu, S.L. Chen. Synthesis and characterization of thermo- and pH-sensitive kappa-carrageenan-g-poly(methacrylic acid)/poly(N,N-diethylacryl-amide) semi-IPN hydrogel. Mater. Chem. Phys.,2009,115:339-346.
    [23]Y. Kaneko, R. Yoshida, K. Sakai, Y. Sakurai, T. Okano. Temperature-responsive shrinking kinetics of poly (N-isopropylacrylamide) copolymer gels with hydrophilic and hydrophobic comonomers. J. Membrane Sci.,1995,101:13-22.
    [24]R. Yoshida, Y. Kaneko, K. Sakai, T. Okano, Y. Sakurai, YH. Bae, S.W. Kim. Positive thermosensitive pulsatile drug release using negative thermosensitive hydrogels. J. Control. Release,1994,32:97-102.
    [25]D. Hariharan, N.A. Peppas, Characterization, dynamic swelling behaviour and solute transport in cationic networks with applications to the development of swelling-controlled release systems. Polymer,1996,37:149-161.
    [26]T. Alfrey, E.F. Gurnee, W.G Lloyd. Diffusion in glassy polymers. J. Polym. Sci. Part C.,1966,12:249-261.
    [27]N.A. Mazied, S.A. Ismail, M.F.A. Taleb. Radiation synthesis of poly[(dimethyl-aminoethyl methacrylate)-co-(ethyleneglycol dimethacrylate)] hydrogels and its application as a carrier for anticancer delivery. Radiat. Phys. Chem.,2009,78: 899-905.
    [28]J.M. Gonzalez-Saiz, M.A. Fernandez-Torroba, C. Pizarro. Application of weakly basic copolymer polyacrylamide (acrylamide-CO-N,N'-dimethylaminoethyl methacrylate) gels in the recovery of citric acid. Eur. Polym. J.,1997,33:475-485.
    [29]L. Yin, X. Zhao, L. Cui, J. Ding, M. He, C. Tang, C. Yin. Cytotoxicity and genotoxicity of superporous hydrogel containing interpenetrating polymer networks. Food Chem. Toxicol.,2009,47:1139-1145.
    [30]R. Tantipolphan, T. Rades, A.J. McQuillan, N.J. Medlicott. Adsorption of bovine serum albumin (BSA) onto lecithin studied by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. Int. J. Pharm.,2007,337:40-47.
    [31]S.J. McClellan, E.I. Franses. Adsorption of bovine serum albumin at solid/aqueous interfaces. Colloid. Surface A,2005,260:265-275.
    [32]T. Xu, R. Fu. Determination of effective diffusion coefficient and interfacial mass transfer coefficient of bovine serum albumin (BSA) adsorption into porous polyethylene membrane by microscope FTIR-mapping study. Chem. Eng. Sci., 2004,59:4569-4574.
    [33]X.-Z. Zhang, D.-Q. Wu, C.-C. Chu. Synthesis, characterization and controlled drug release of thermosensitive IPN-PNIPAAm hydrogels. Biomaterials,2004,25: 3793-3805.
    [34]B. Li, Y. Jiang, Y. Liu, Y. Wu, H. Yu, M. Zhu. Novel poly(N-isopropylacryl-amide)/clay/poly(acrylamide) IPN hydrogels with the response rate and drug release controlled by clay content. J. Polym. Sci. Part B:Polym Phys.,2009,47: 96-106.
    [35]Z. S. Akdemir, N. Kayaman-Apohan. Investigation of swelling, drug release and diffusion behaviors of poly(N-isopropylacrylamide)/poly(N-vinylpyrrolidone) full-IPN hydrogels. Polym. Adv. Technol.,2007,18:932-937.
    [36]N. Wang, L. Ye, F. Yan, R. Xu. Spectroscopic studies on the interaction of azelnidipine with bovine serum albumin. Int. J. Pharm.,2008,351:55-60.
    [1]K.Y. Lee, D.J. Mooney. Hydrogels for tissue engineering. Chem. Rev.,2001,101: 1869-1879.
    [2]C.C. Lin, A.T. Metters. Hydrogels in controlled release formulations:Network design and mathematical modeling. Adv. Drug Deliver Rev.,2006,58:1379-1408.
    [3]J.D. Thomas, F.S.G. Sarkar, A.M. Lowman, M. Marcolongo. Synthesis and recovery characteristics of branched and grafted PNIPAAm-PEG hydrogels for the development of an injectable load-bearing nucleus pulposus replacement. Acta Biomaterialia,2009,6:1319-1328.
    [4]A.K. Bajpai, S.K. Shukla, S. Bhanu, S. Kankane. Responsive polymers in controlled drug delivery. Prog. Polym. Sci.,2008,33:1088-1118.
    [5]J.T. Zhang, R. Bhat, K.D. Jandt. Temperature-sensitive PVA/PNIPAAm semi-IPN hydrogels with enhanced responsive properties. Acta Biomaterialia 2009,5: 488-497.
    [6]R. Luo, H. Li. A modeling study of the effect of environmental ionic valence on the mechanical characteristics of pH-electrosensitive hydrogel. Acta Biomaterialia, 2009,5:2920-2928.
    [7]I. Idziak, D. Avoce, D. Lessard, D. Gravel, X.X. Zhu. Thermosensitivity of aqueous solutions of poly(N,N-diethylacrylamide). Macromolecules,1999,32:1260-1263.
    [8]J. Chen, M.Z. Liu, S.L. Chen. Synthesis and characterization of thermo- and pH-sensitive kappa-carrageenan-g-poly(methacrylic acid)/poly(N,N-diethylacrylamide) semi-IPN hydrogel. Mater. Chem. Phys.2009,115:339-346.
    [9]Y. Zhang, L. Xu, M. Yi, M. Zhai, J. Wang, H. Ha. Radiation synthesis of poly[(dimethylaminoethyl methacrylate)-co-(diallyl dimethyl ammonium chloride)] hydrogels and its application as a carrier for notoginsenoside delivery. Eur. Polym. J., 2006,42:2959-2967.
    [10]P. Wetering, N.M.E. Schuurmans-Nieuwenbroek, M.J. Steenbergen, D.J.A. Crommelin, W.E. Hennink. Copolymers of 2-(dimethylamino)ethyl methacrylate with ethoxytriethylene glycol methacrylate or N-vinyl-pyrrolidone as gene transfer agents. J. Control. Release,2000,64:193-203.
    [11]H.L. Liu, M.Z. Liu, S.P. Jin, S.L. Chen. Synthesis and characterization of fast responsive thermo- and pH-sensitive poly[(N,N-diethylacrylamide)-co-(acrylicacid)] hydrogels. Polym. Int.,2008,57:1165-1173.
    [12]S.X. Liu, M.Z. Liu. Synthesis and characterization of temperature- and pH-Sensitive poly(N,N-diethylacrylamide-co-methacrylic acid). J. Appl. Polym. Sci.,2003,90:3563-3568.
    [13]W. Xue, S. Champ, M.B. Huglin. Thermoreversible swelling behaviour of hydrogels based on N-isopropylacrylamide with a zwitterionic comonomer. Eur. Polym.J.,2001,37:869-875.
    [14]W.F. Lee, C.H. Shieh. pH-thermoreversible hydrogels. I. synthesis and swelling behaviors of the (N-isopropylacrylamide-co-acrylamide-co-2-hydroxyethyl methacrylate) copolymeric hydrogels. J. Appl. Polym. Sci.,1999,71:221-231.
    [15]Q. Zhao, J. Sun, H. Ren, Q. Zhou, Q. Lin. Horseradish peroxidase immobilized in macroporous hydrogel for acrylamide polymerization. J. Polym. Sci. Part A: Polym. Chem.,2008,46:2222-2232.
    [16]G. Pan, R. Kesavamoorthy, S.A. Asher. Nanosecond switchable polymerized crystalline colloidal array bragg diffracting materials. J. Am. Chem. Soc.,1998, 120:6525-6530.
    [17]J. Hoffmann, M. Plotner, D. Kuckling, W.J. Fischer. Photopatterning of thermally sensitive hydrogels useful for microactuators. Sensor. Actuat. A: Phys.1999,77: 139-144
    [18]R. Yoshida, K. Uchida, Y. Kaneko, K. Sakai, A. Kikuchi, Y. Sakurai, T. Okano. Comb-type grafted hydrogels with rapid deswelling response to temperature changes. Nature,1995,374:240-242.
    [19]Y. Kaneko, S. Nakamura, K. Sakai, T. Aoyagi, A. Kikuchi, Y. Sakurai, T. Okano. Rapid deswelling response of poly(N-isopropylacrylamide) hydrogels by the formation of water release channels using poly(ethylene oxide) graft chains. Macromolecules,1998,31:6099-6105.
    [20]J. Zhang, R. Xie, S.B. Zhang, C.J. Cheng, X.J. Ju, L.Y. Chu. Rapid pH/temperature- responsive cationic hydrogels with dual stimuli-sensitive grafted side chains. Polymer,2009,50:2516-2525.
    [21]F. Yi, S. Zheng. Effect of hydrophobic polystyrene microphases on temperature-responsive behavior of poly(N-isopropylacrylamide) hydrogels. Polymer,2009,50: 670-678.
    [22]K. Okeyoshi, T. Abe, Y. Noguchi, H. Furukawa, R. Yoshida. Shrinking behavior of surfactant-grafted thermosensitive gels and the mechanism of rapid shrinking. Macromol. Rapid Comm.,2008,29:897-903.
    [23]Z.C. Wang, X.D. Xu, C.S. Chen, G.R. Wang, B. Wang, X.Z. Zhang, R.X. Zhuo. Study on novel hydrogels based on thermosensitive PNIPAAm with pH sensitive PDMAEMA grafts. Colloid. Surface B,2008,67:245-252.
    [24]S.X. Cheng, J.T. Zhang, R.X. Zhuo. Macroporous poly(N-isopropylacrylamide) hydrogels with fast response rates and improved protein release properties. J. Biomed. Mater. Res.,2003,67A:96-103.
    [25]S.B. Teli, G.S. Gokavi. Novel sodium alginate- poly(N-isopropylacrylamide) semi-interpenetrating polymer network membranes for pervaporation separation of water + ethanol mixtures. Sep. Purif. Technol.,2007,56:150-157.
    [26]N.A. Mazied, S.A. Ismail. Radiation synthesis of poly[(dimethylaminoethyl methacrylate)-co-(ethyleneglycol dimethacrylate)] hydrogels and its application as a carrier for anticancer delivery. Radiat. Phys. Chem.,2009,78:899-905.
    [27]J.M. Gonzalez-Saiz, M.A. Fernandez-Torroba, C. Pizarro. Application of weakly basic copolymer polyacrylamide (acrylamide-co-N,N'-dimethylaminoethyl methacrylate) gels in the recovery of citric acid. Eur. Polym. J.,1997,33:475-485.
    [28]G. David, B.C. Simionescu, A.C. Albertsson. Rapid deswelling response of poly(N-isopropylacrylamide)/poly(2-alkyl-2-oxazoline)/Poly(2-hydroxyethyl methacrylate) hydrogels. Biomacromolecules,2008,9:1678-1683.
    [29]H.L. Liu, M.Z. Liu, L.W. Ma, J. Chen. Thermo- and pH-sensitive comb-type grafted poly(N,N-diethylacrylamideco-acrylic acid) hydrogels with rapid response behaviors. Eur. Polym. J.,2009,45:2060-2067.
    [30]Y. Kaneko, K. Sakai, A. Kikuchi, R. Yoshida, Y. Sakurai, T. Okano. Influence of freely mobile grafted chain length on dynamic properties of comb-type grafted poly(N-isopropylacrylamide) hydrogels. Macromolecules,1995,28:7717-7723.
    [31]J.E. Elliott, M. Macdonald, J. Nie, C.N. Bowman. Structure and swelling of poly(acrylic acid) hydrogels:effect of pH, ionic strength, and dilution on the crosslinked polymer structure. Polymer,2004,45:1503-1510.
    [32]A.K. Bajpai, A. Mishra. Ionizable interpenetrating polymer networks of carboxy-methyl cellulose and polyacrylic acid:evaluation of water uptake. J. Appl. Polym. Sci.,2004,93:2054-2065.
    [33]C.S. Brazel, N.A. Peppas. Mechanisms of solute and drug transport in relaxing, swellable, hydrophilic glassy polymers. Polymer,1999,40:3383-3398.
    [34]T. Alfrey, E.F. Gurnee, W.G. Lloyd. Diffusion in glassy polymers. J. Polym. Sci. Part C.,1966,12:249-261.
    [35]X.Z. Zhang, C.C. Chu. Fabrication and characterization of microgel-impregnated, thermosensitive PNIPAAm hydrogels. Polymer,2005,46:9664-9673.
    [36]D.C. Coughlan, F.P. Quilty, O.I. Corrigan. Effect of drug physicochemical properties on swelling/deswelling kinetics and pulsatile drug release from thermoresponsive poly(N-isopropylacrylamide) hydrogels. J. Control. Release, 2004,98:97-114.
    [1]Z.X. Zhao, Z. Li, Q.B. Xia, E. Bajalis, H.X. Xi, Y.S. Lin. Swelling/deswelling kinetics of PNIPAAm hydrogels synthesized by microwave irradiation. Chem. Eng. J.,2008,142:263-270.
    [2]J.E. Elliott, M. Macdonald, J. Nie, C.N. Bowman. Structure and swelling of poly(acrylic acid) hydrogels:effect of pH, ionic strength, and dilution on the crosslinked polymer structure. Polymer,2004,45:1503-1510.
    [3]S. Juodkazis, N. Mukai, R. Wakaki, A. Yamaguchi, S. Matsuo, H. Misawa. Reversible phase transitions in polymer gels induced by radiation forces. Nature, 2000,408:178-181.
    [4]J.P. Magnusson, A. Khan, G. Pasparakis, A.O. Saeed, W. Wang, C. Alexander. Ion-sensitive "isothermal" responsive polymers prepared in water. J. Am. Chem. Soc.,2008,130:10852-10853.
    [5]H. Li, J. Chen, K.Y. Lam. A transient simulation to predict the kinetic behavior of hydrogels responsive to electric stimulus. Biomacromelecules,2006,7:1951-1959.
    [6]D. Schmaljohann. Thermo- and pH-responsive polymers in drug delivery. Adv. Drug Deliv. Rev.,2006,58:1655-1670.
    [7]J.L. Li, R.B. Bai, B.H. Chen. Preconcentration of phenanthrene from aqueous solution by a slightly hydrophobic nonionic surfactant. Langmuir,2004,20: 6068-6070.
    [8]K.Y. Lee, D.J. Mooney. Hydrogels for tissue engineering. Chem. Rev.,2001,101: 1869-1880.
    [9]T. Shibanuma, T. Aoki, K. Sanui, N. Ogata, A. Kikuchi, V. Sakurai, T. Okano. Thermosensitive phase-separation behavior of poly(acrylic acid)-graft-poly(N,N-dimethylacrylamide) aqueous solution. Macromolecules,2000,33:444-450.
    [10]J. Chen, M.Z. Liu, S.L. Chen. Synthesis and characterization of thermo- and pH-sensitive kappa-carrageenan-g-poly(methacrylic acid)/poly(N,N-diethyl-acrylamide) semi-IPN hydrogel. Mater. Chem. Phy.,2009,115:339-346.
    [11]Y.S. Lipatov. Polymer blends and interpenetrating polymer networks at the interface with solids. Prog. Polym. Sci.,2002,27:1721-1801.
    [12]J.T. Zhang, R. Bhat, K.D. Jandt. Temperature-sensitive PVA/PNIPAAm semi-IPN hydrogels with enhanced responsive properties. Acta Biomater.,2009,5:488-497.
    [13]E.C. Muniz, G. Geuskens. Polyacrylamide hydrogels and semi-interpenetrating networks (IPNs) with poly(N-isopropylacrylamide):mechanical properties by measure of compressive elastic modulus. J. Mater. Sci. Mater. Med.,2001,12: 879-881.
    [14]X.Z. Zhang, R.X. Zhou. Synthesis of temperature-sensitive poly(N-isopropyl-acrylamide) hydrogel with improved surface property. J. Colloid Interface Sci., 2000,223:311-313.
    [15]J. Zhang, N.A. Peppas. Synthesis and characterization of pH and temperature-sensitive poly(methacrylic acid)/poly(N-isopropylacrylamide) interpenetrating polymeric networks. Macromolecules,2000,33:102-107.
    [16]B. Li, Y.M. Jiang, Y. Liu, Y.T. Wu, H. Yu, M.F. Zhu. Novel poly(N-iso-propylacrylamide)/clay/poly(acrylamide) IPN hydrogels with the response rate and drug release controlled by clay content. J. Polym. Sci. Part B:Polym. Phys.,2009, 47:96-106.
    [17]J.M. Varghese, Y.A. Ismail, C.K. Lee, K.M. Shin, M.K. Shin, S.I. Kim, I. So, S.J. Kim. Thermoresponsive hydrogels based on poly(N-isopropylacrylamide) /chondroitin sulfate. Sens. Actuators B:Chem.,2008,135:336-341.
    [18]K. Ariga, Y. Lvov, T. Kunitake. Assembling alternate dye-polyion molecular films by electrostatic layer-by-layer adsorption. J. Am. Chem. Soc.,1997,119: 2224-2231.
    [19]J. Lu, X.D. Wang, C.B. Xiao. Preparation and characterization of konjac glucomannan/poly(diallydimethylammonium chloride) antibacterial blend films. Carbohydr. Polym.,2008,73:427-437.
    [20]C. Wandrey, J. Hernandez-Barajas, D. Hunkeler. Diallyldimethylammonium chloride and its polymers. Adv. Polym. Sci.,1999,45:123-183.
    [21]M. Panayiotou, R. Freitag. Synthesis and characterisation of stimuli-responsive poly(N,N-diethylacrylamide) hydrogels. Polymer,2005,46:615-621.
    [22]J. Chen, M.Z. Liu, S.P. Jin, H.L. Liu. Synthesis and characterization of k-carrageenan/poly(N,N-diethylacrylamide) semi-interpenetrating polymer network hydrogels with rapid response to temperature. Polym. Adv. Technol.,2008,19: 1656-1663.
    [23]S.J. Kim, C.K. Lee, S.I. Kim. Characterization of thewater state of hyaluronic acid and poly(vinyl alcohol) interpenetrating polymer networks. J. Appl. Polym. Sci., 2004,92:1467-1472.
    [24]Y.L. Guan, L. Shao, K.D. Yao. A study on correlation between water state and swelling kinetics of chitosan-based hydrogels. J. Appl. Polym. Sci.,1996,61: 2325-2335.
    [25]T. Goda, J. Watanabe, M. Takai, K. Ishihara. Water structure and improved mechanical properties of phospholipid polymer hydrogel with phosphorylcholine centered intermolecular cross-linker. Polymer,2006,47:1390-1396.
    [26]Y.L. Luo, K.P. Zhang, Q.B. Wei, Z.Q. Liu, Y.S. Chen. Poly(MAA-co-AN) hydrogels with improved mechanical properties for theophylline controlled delivery. Acta Biomater.,2009,5:316-327.
    [27]C. Peniche, M.E. Cohen. Water sorption of flexible networks based on 2-hydroxyethyl methacrylate-triethylenglycol dimethacrylate copolymers. Polymer, 1997,38:5977-5982.
    [28]D. Kim, K. Park. Swelling and mechanical properties of superporous hydrogels of poly(acrylamide-co-acrylic acid)/polyethylenimine interpenetrating polymer networks. Polymer,2004,45:189-196.
    [29]R. Yoshida, Y. Kaneko, K. Sakai, T. Okano, Y. Sakurai, Y.H. Bae, S.W. Kim. Positive thermosensitive pulsatile drug release using negative thermosensitive hydrogels. J. Control. Release,1994,32:97-102.
    [30]T. Alfrey, E.F. Gurnee, W.G. Lloyd. Diffusion in glassy polymers. J. Polym. Sci. Polym. Symp.,1966,12:249-261.
    [31]X.Z. Zhang, C.C. Chu. Fabrication and characterization of microgel-impregnated, thermosensitive PNIPAAm hydrogels. Polymer,2005,46:9664-9673.
    [32]R. Zangi, J.B.F.N. Engberts. Physisorption of hydroxide ions from aqueous solution to a hydrophobic surface. J. Am. Chem. Soc.,2005,127:2272-2276.
    [33]L. Xu, M.L. Zhai, L. Huang, J. Peng, J.Q. Li, G.S. Wei. Specific stimuli-responsive antipolyelectrolyte swelling of amphiphilic gel based on methacryloxyethyl dimethyloctane ammonium bromide. J. Polym. Sci. Part A: Polym. Chem.,2008,46:473-480.
    [1]I. Dimitrov, B. Trzebicka, A.H.E. Mullerc, A.Dworak, C.B. Tsvetanova. Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities. Prog. Polym. Sci.,2007,32:1275-1343.
    [2]K.S. Chen, Y.A. Ku, H.R. Lin, T.R. Yan, D.C. Sheu, T.M. Chen, F.H. Lin. Preparation and characterization of pH sensitive poly(N-vinyl-2-pyrrolidone/ itaconic acid) copolymer hydrogels. Mater. Chem. Phys.,2005,91:484-489.
    [3]T.M. Don, M.L. Huang, A.C. Chiu, K.H. Kuo, W.Y. Chiu, L.H. Chiu. Preparation of thermo-responsive acrylic hydrogels useful for the application in transdermal drug delivery systems. Mater. Chem. Phys.,2008,107:266-273.
    [4]K.S. Soppimath, L.H. Liu, W.Y. Seow, S.Q. Liu, R. Powell, P. Chan, Y.Y. Yang. Multifunctional core/shell nanoparticles self-assembled from pH-induced thermosensitive polymers for targeted intracellular anticancer drug delivery. Adv. Funct. Mater.,2007,17:355-362.
    [5]S.B. Teli, G.S. Gokavi, T.M. Aminabhavi. Novel sodium alginate-poly(N-isopropylacrylamide) semi-interpenetrating polymer network membranes for pervaporation separation of water + ethanol mixtures. Sep. Purif. Technol.,2007,56: 150-157.
    [6]K.Y. Lee, D.J. Mooney. Hydrogels for tissue engineering. Chem. Rev.,2001,101: 1869-1880.
    [7]Y.S. Lipatov. Polymer blends and interpenetrating polymer networks at the interface with solids. Prog. Polym. Sci.,2002,27:1721-1801.
    [8]J.T. Zhang, S.X. Cheng, R.X. Zhuo. Poly(vinyl alcohol)/poly(N-isopro-pylacrylamide) semi-interpenetrating polymer network hydrogels with rapid response to temperature changes. Colloid. Polym. Sci.,2003,281:580-583.
    [9]W.F. Lee, Y.J. Chen. Studies on preparation and swelling properties of the N-isopropylacrylamide/chitosan semi-IPN and IPN hydrogels. J. Appl. Polym. Sci., 2001,82:2487-2496.
    [10]G.Q. Zhang, L.S. Zha, M.H. Zhou, J.H. Ma, B.R. Liang. Preparation and characterization of pH- and temperature-responsive semi-interpenetrating polymer network hydrogels based on linear sodium alginate and crosslinked poly(N-isopropylacrylamide). J. Appl. Polym. Sci.,2005,97:1931-1940.
    [11]M.Z. Wang, Y. Fang, D.D. Hu. Preparation and properties of chitosan- poly(N-isopropylacrylamide) full-IPN hydrogels. React. Funct. Polym.,2001,48: 215-221.
    [12]M.L. Zhai, Y.Q. Zhang, J. Ren, M. Yi, H.F. Ha, J.F. Kennedy. Intelligent hydrogels based on radiation induced copolymerization of N-isopropylacrylamide and Kappa carrageenan. Carbohydr. Polym.,2004,58:35-39.
    [13]L. Klouda, A.G. Mikos. Thermoresponsive hydrogels in biomedical applications. Eur. J. Pharm. Biopharm.,2008,68:34-45.
    [14]K.B. Guiseley, N.F. Stanley, P.A. Whitehouse, Carageenan, in: R.L. Davidson (Ed.), Handbook ofWater Soluble Gums and Resins, McGraw-Hill, New York,1980.
    [15]V.L. Campo, D.F. Kawano, D.B. da Silva Jr., I. Carvalho. Carrageenans: Biological properties, chemical modifications and structural analysis-A review. Carbohydr. Polym.,2009,77:167-180.
    [16]H. Sjoberga, S. Perssona, N. Caram-Lelhama. How interactions between drugs and agarose-carrageenan hydrogels influence the simultaneous transport of drugs. J. Control. Release,1999,59:391-400.
    [17]M.G. Sankalia, R.C. Mashru, J.M. Sankalia, V.B. Sutariya. Stability improvement of alpha-amylase entrapped in kappa-carrageenan beads:Physicochemical characterization and optimization using composite index. Int. J. Pharm.,2006,312: 1-14.
    [18]A.M. Garcia, E.S. Ghaly. Preliminary spherical agglomerates of water soluble drug using natural polymer and cross-linking technique. J. Control. Release,1996,40: 179-186.
    [19]I. Idziak, D. Avoce, D. Lessard, D. Gravel, X.X. Zhu. Thermosensitivity of aqueous solutions of poly(N,N-diethylacrylamide). Macromolecules,1999,32:1260-1263.
    [20]S.L. Chen, M.Z. Liu, S.P. Jin, Y. Chen. Structure and properties of the polyelectrolyte complex of chitosan with Poly(methacrylic acid). Polym. Int.,2007, 56:1305-1312.
    [21]A. Pourjavadi, A.M. Harzandi, H. Hosseinzadeh. Modified carrageenan 3. Synthesis of a novel polysaccharide-based superabsorbent hydrogel via graft copolymerization of acrylic acid onto kappa-carrageenan in air. Eur. Polym. J.,2004, 40:1363-1370.
    [22]A. Pourjavadi, M.S. Amini-Fazl, S. Barzegar. Optimization of synthesis conditions of a novel carrageenan-based superabsorbent hydrogel by Taguchi method and investigation of its metal ions adsorption. J. Appl. Polym. Sci.,2008,107: 2970-2976.
    [23]S.X. Cheng, J.T. Zhang, R.X. Zhuo. Macroporous poly(N-isopropylacrylamide) hydrogels with fast response rates and improved protein release properties. J. Biomed. Mater. Res.,2003,67A:96-103.
    [24]D. Kim, K. Park. Swelling and mechanical properties of superporous hydrogels of poly(acrylamide-co-acrylic acid)/polyethylenimine interpenetrating polymer networks. Polymer,2004,45:189-196.
    [25]M. Shibayama, K. Nagai. Shrinking kinetics of Poly(N-isopropylacrylamide) gels T-jumped across their volume phase transition temperatures. Macromolecules, 1999,32:7461-7468.
    [26]J.T. Zhang, S.W. Huang, F.Z. Guo, R.X. Zhuo. Novel temperature-sensitive, β-cyclodextrin-incorporated poly(N-isopropylacrylamide) hydrogels for slow release of drug. Colloid Polym. Sci.,2005,283:461-464.
    [27]T. Kaneko, T. Asoh, M. Akashi. Ultrarapid molecular release from Poly(N-isopropylacrylamide) hydrogels perforated using silica nanoparticle networks. Macromol. Chem. Phys.,2005,206:566-574.
    [28]L.C. Yin, L.K. Fei, F.Y. Cui, C. Tang, C.H. Yin. Superporous hydrogels containing poly(acrylic acid-co-acrylamide)/O-carboxymethyl chitosan interpenetrating polymer networks. Biomaterials,2007,28:1258-1266.
    [29]R. Yoshida, Y. Kaneko, K. Sakai, T. Okano, Y. Sakurai, Y.H. Bae, S.W. Kim. Positive thermosensitive pulsatile drug release using negative thermosensitive hydrogels. J. Control. Release,1994,32:97-102.
    [30]T. Alfrey, E.F. Gurnee, W.G Lloyd. Diffusion in glassy polymers. J. Polym. Sci. Part C.,1966,12:249-261.
    [31]E. Diez-Pena, I. Quijada-Garrido, J. M. Barrales-Rienda. Analysis of the swelling dynamics of cross-linked P(N-iPAAm-co-MAA) copolymers and their homopolymers under acidic medium. a kinetics interpretation of the overshooting effect. Macromolecules,2003,36:2475-2483.
    [32]Y.H. Yin, X.M. Ji, H. Dong, Y. Ying, H. Zheng. Study of the swelling dynamics with overshooting effect of hydrogels based on sodium alginate-g-acrylic acid. Carbohydr. Polym.,2008,71:682-689.
    [33]X.Z. Zhang, D.Q. Wu, C.C. Chu. Synthesis, characterization and controlled drug release of thermosensitive IPN-PNIPAAm hydrogels. Biomaterials,2004,25: 3793-3805.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700