手指随动式力/触觉融合再现装置研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当今世界,人机交互技术已经被广泛应用到遥操作、虚拟现实等领域。其中视觉和听觉的交互依然占据着主要地位,但是仅凭视觉和听觉的交互却无法满足人类日益提高的对人机交互沉浸感的要求。这种情况下,就需要发展其他通道的交互方式,比如力觉和触觉,力觉和触觉交互对提高人机交互的临场感有着非常重要的意义。
     本文分析了目前多种力觉和触觉的人机交互技术,在此基础上提出了一种利用压电陶瓷振子振动所产生的挤压气膜效应来改变摩擦力的手指随动式力/触觉融合主动触觉再现方法。在深入剖析了人类触觉产生机理的同时,陈述了基于挤压气膜效应的触觉再现平台的制造,并提出将其与一自由度力觉平台机器人结合形成空间范围的主动触觉再现平台,选择了圆盘状压电陶瓷片作为振子,并且设计装置结构、连接零件以及用于触觉输出和系统控制的各种电路。其次,根据流体力学的知识,对压电陶瓷片振动所产生的挤压气膜进行理论分析,计算圆盘状压电陶瓷薄片的挤压气膜承载力公式,对压电陶瓷片进行优化分析,最终选择合适的结构。
     再次,通过对压电陶瓷振子的摩擦系数标定实验,确定其对摩擦系数的改变能力,并得出摩擦系数和驱动电压信号的函数关系,根据函数关系设计了六种常见物体表面和九种较复杂物体表面的驱动电压信号。并且设计了装置的控制系统以及人机交互软件。
     最后,根据理论分析和设计,制造出装置,设计实验,通过对多名测试人员测试结果的统计分析,体现了本装置的功能。
Nowadays, the HCI(Human-computer Interaction Techniques) have been widely used in the field of teleopertion, virtual reality etc. The HCI includes many human senses, in which the visual sense and the sense of hearing are mostly studied, but only by using those two kinds of human senses can’t make a person feels real in the virtual reality. To solve this problem, scientists are trying to find some new ways, such as using the sense of force and the tactile sense, these two could impove the HCI strongly.
     By analyzing and referring to the existing haptic/tactile devices, a device is designed in this thesis. It is a device which can display virtual tactile sense in a broad range and also has the ability of changing its tactile sense display following the location of the operator’s finger. This thesis shows that how a human could has tactile sense biologically, then a method of tactile representation using squeeze film air bearings generated by piezoelectric bending elements is presented. By combining the bending element to a 1 DOF robot, a prototype of this device is made.
     Then the bearing capacity of the squeeze film air bearing is caculated. A fuction is given to caculate the bearing capacity of the squeeze film air bearing generated by a thin bender ring.
     A experiment is taken to define the relationship of the friction coefficient and the driving voltage of the power source. Several driving voltages is designed in order to display the tactile senses of six commen objects and nine complicated objects. After that the control system is built and the HCI programme is composed.
     Finally, a prototype of the device is constructed and several experiments are performed, by analyzing the results, the availability of the prototype is proved.
引文
1潘红艳,陶霖密,徐光祐.远程教学平台人机交互界面的人机学研究.中国远程教育, 2006(12): 61-63
    2吴兆卿,饶培伦.触觉交互——一种新兴的交互技术.人类工效学, 2006, 12 (1) : 57-59
    3 M. E. Hodges. It Just Feels Right. Computer Graphics World, 1998, 21 (5) : 1-5
    4 K. Salisbury. Haptics: The Technology of Touch. HPC wire Special, 1995-11-10 (2)
    5 P. Paul, P. Helen, P. Chetz, et al The Haptic Perception of Texture in Virtual Environment: an Investigation With Two Devices. Haptic Human-Computer Interaction, Glasgow, UK, Springer, 2000: 25-30
    6 C. S. Campbell, K. W. May, P. P. Maglio. What You Feel Must be What You See. Proc of Interact’1999. Edinburgh: IOS Press, 1999: 383-390
    7 I. Oakley, S. A. Brewster, P. D. Gray. Solving Multi-target Haptic Problems in Menu Interaction. Extended Abstracts of ACM CHI 2001 (Seattle, WA), 2001: 357-358
    8 Scilingo E. P., Bicchi. A, Rossi D D, et al A magneto rheological fluid as a haptic display to replicate perceived biological tissues compliance[A]. 1st Annual International Conference on Micro technologies in Medicine & Biology[C]. Lyon, France, 2000: 229-233
    9 Scilingo E P, Sgambelluri N, Rossi D D, et al Towards a haptic black box for free-hand softness and shape exploration[A]. Proceedings of the 2003 IEEE International Conference on Robotics & Automation [C]. 2003: 2412 -2417
    10 Bicchi A, Raugi M, Rizzo R, et al Analysis and design of an electromagnetic system for the characterization of magneto rheological fluids for haptic interfaces[ J]. IEEE Transactions on Magnetics, 2005, 41(5): 1876-1879
    11 Sgambelluri N, Rizzo R, Raugi M, et al Free hand haptic interfaces based on magneto rheological fluids[A]. Proceedings of the Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems[C].Washington,DC, USA: IEEE Computer Society, 2006: 367-371
    12 Matthew R R. Development of an improved dissipative passive haptic display[D]. Georgia Institute of Technology, 2003
    13 Li W H, Du H, Ding L S. et al Haptic interfacing system using magneto rheological fluids[A]. Proceedings of SPIE Conference on Smart Structures, Devices and Systems[C]. Melbourne, 2002, 4935: 94-100
    14 Li W H, Liu B, Kosasih P B. et al A 2-dof MR actuator joystick for virtual reality applications[J]. Sensors and Actuators (A), 2007, 137(2): 308-320
    15丁俊香,葛运建,徐菲,郝传光,黄英.基于导电橡胶的一种新型类皮肤触觉传感器阵列.传感技术学报. 2010, 23(3): 315-321
    16崔建伟,宋爱国,李会军,王雁刚,刘莹.一种具有快速响应能力的指端力触觉再现装置的研制.科技信息, 2008, 25: 341-353
    17 Kinya Fujita, Yoshiaki Ikeda. Remote haptic sharing of elastic soft objects [EB/OL]. http: //reality. eituatac. jp/papers/haptic05. Pdf
    18 Kuroda Y, Nakao M, Kuroda T. et al Interaction model between elastic objects for haptic feedback considering collisions of soft tissue[ J]. Computer Methods and Programs in Biomedicine, 2005, 80(3): 216-224
    19 Moy G, Wagner C, Fearing R S. A compliant tactile display for teletaction[J]. Proceedings of IEEE International Conference on Robotics and Automation, 2000, 04: 3409-3415
    20 Y. Ikei, K. Wakamatsu, S. Fukuda. Vibratory Tactile Display of Image-based Textures. Virtual Environment and Teleoperator Systems. 2003: 53– 61
    21 Y. Park, M. Uchida. A Miniature Tactor Design for Upper Extremity Prosthesis. ICROS-SICE International Joint Conference 2009, Fukuoka International Center, Japan, 2009: 2139-2143
    22陈旭,宋爱国,李建清.一种新的虚拟纹理触觉再现方法及其装置实现.测控技术, 2006, 8 : 72-75
    23刘佳,宋爱国.人手柔性触觉感知特性.东南大学学报. 2007, 37(5): 55 - 57
    24陈旭,宋爱国,林国余.纹理触觉信息检测系统研究.传感器与仪器仪表. 2009, 25(5): 132-133
    25佐藤方彦.皮肤触觉与生理人类学.饰. 1993, 01(01): 30-33
    26帅立国,况迎辉,王雪梅,许艳芳.时空二维机器人电触觉临场感模型研究.机器人. 2005, 27(5) : 441-444
    27 R. Romo, E. Salinas. Sensing and Deciding in the Somatosensory System. Current Opinion in Neurobioliogy, 1999, 9(4): 487– 493
    28 ASMS E253 04. Standard Terminology Relating to Sensory Evaluation of Materials and Products, 2004, 06(01)
    29 Hu Jiyong, Ding Xin, Wang Rubin. Biomechannical Mechanism of Fabric Softness Discrimination. Fiber and Polymers, 2007, 8(4): 372-376
    30 K. O. Johnson, T. Yoshioka, F. vega-Bermudez. Tactile Functions of Mechanoreceptive Afferents Innervating the Hand. J Clinical Neurophysiology, 2000, 17(6): 539-558
    31 K. O. Johnson, S. S. Hsiao. Neural Mechanisms of Tactual Form and Tecture Perception. Annual Review of Neuroscience, 1992, 15: 227-250
    32乐国安.“心理物理学”的发展和现状评述.心理学报. 1983, 1: 1-8
    33赫保源.谈谈心理物理学方法.心理科学通信. 1965, 2: 45-56
    34刘凯龙,孙向军,赵志勇,王世鑫.基于心理物理学的图像评价技术研究.系统仿真学报. 2005, 17(2): 417-420
    35 M. Weisendanger. Squeeze film air bearings using piezoelectric bending elements. Ph.D. dissertation, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland, 2001.
    36 (美)贾菲.压电陶瓷.科学出版社, 1979: 14-25
    37 (英)范兰德拉特, (英)塞德林顿.压电陶瓷,科学出版社, 1981: 19-31
    38徐峰琳.导纳型力觉接口研制及人机交互稳定性研究[D].哈尔滨:哈尔滨工业大学, 2008: 9-10
    39刘胜,张兰勇,章佳荣,刘刚. Labview 2009程序设计.电子工业出版社, 2010: 182-197
    40 Pan C.H.T. , Broussard P.H. Squeeze film lubrication. Gas Bearing Symbosium. Southampton, 1967
    41 G. Robles, V. Hayward. Force can Overcome Object Geometry in the Perception of Shape through Active Touch. Nature 412, 2001: 445-448
    42 G. Robles, V. Hayward. Virtual Surfaces and Haptic Shape Perception. In Proc. ASME Dynamics Systems and Control Division. The American Society of Mechanical Engineers, 2000(2): 1081-1085
    43 G. Robles. Comparing the Role of Lateral Force During Active and Passive Touch: Lateral Force and its Correlates are Inherently Ambiguous Cues for Shape Perception under Passive Touch Conditions. Proceedings of Eurohaptics2002 University of Edinburgh United Kingdom: 159-164

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700