生物膜铜绿假单胞菌MexAB-OprM及MexR的表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的研究铜绿假单胞菌在浮游态、生物膜态及经亚胺培南、环丙沙星诱导下,外排泵MexAB-OprM及其负性阻遏蛋白MexR表达情况。
     方法用铜绿假单胞菌PA01在eppendorf管内建立生物膜,通过结晶紫快速染色法证实生物膜的形成。用1/2MIC的亚胺培南、环丙沙星对铜绿假单胞菌浮游菌诱导4小时;4MIC的亚胺培南、2MIC的环丙沙星对铜绿假单胞菌生物膜菌诱导12小时,分别于生物膜形成的第3天及第5天,用实时荧光定量PCR的方法,测定铜绿假单胞菌外排泵MexAB-OprM及MexR的基因表达。
     结果铜绿假单胞菌由浮游菌变为生物膜菌后(第3天和第5天),其外排泵MexAB-OprM的表达水平明显降低,其相对表达量最高相差近10倍,其差别存在统计学意义(P<0.05),而生物膜菌第3天和第5天相比,尽管MexAB-OprM相对表达量相差近3倍,但差别无统计学意义(P>0.05)。铜绿假单胞菌由浮游菌变为生物膜菌后(第3天和第5天),阻遏蛋白MexR表达差别无统计学意义(P>0.05)。生物膜菌第3天和第5天,其MexAB-OprM和MexR表达差别无统计学意义(P>0.05)。在亚胺培南及环丙沙星诱导后,浮游菌和生物膜菌其基因MexAB-OprM、MexR表达差别均无统计学意义(P>0.05)。
     结论铜绿假单胞菌由浮游菌转变为生物膜菌后,外排泵MexAB-OprM表达明显减少,MexR基因表达无影响。生物膜菌的第3天与第5天,其MexAB-OprM、MexR基因表达无差别。亚胺培南、环丙沙星对浮游菌及生物膜菌的MexAB-OprM、MexR均无诱导作用。
Objective To study the expression of MexAB-OprM and its repressor protein-MexR in planktonic and biofilm bacteria of Pseudomonas aeruginosa when exposed to imipenem and ciprofloxacin.
     Methods The P.aeruginosa strain PAO1 was used in this study.In vitro models of Pseudomonas aeruginosa bacterial biofilm were built up in eppendorf tube and a rapid staining procedure of crystal violet was used to verify them.The test was developed under two groups,planktonic and biofilm bacteria of Pseudomonas aeruginosa.The planktonic were exposed to 1/2MIC imipenem and ciprofloxacin for 4 hours;The biofilms were exposed to 4 MIC imipenem and 2 MIC ciprofloxacin for 12 hours,the expression of multiple drugs efflux pumps MexAB-OprM and its repressor protein MexR were detected by using the method of Real-time quantitative PCR at the days of 3 and 5 after biofilms forming.
     Results When the P.aeruginosa strain PAO1 transferred its growth mode from planktonic to biofilms(days of 3 and 5),the efflux pump MexAB-OprM gene expression level was significantly decreased(P<0.05),the highest relative quantity level was nearly 10 folds decreased compared to the lowest.The difference was significant between planktonic and biofilms.As the biofilms on the days of 3 and 5,though the relative quantity was 3 folds lower,but it was not different.The expression level of repressor protein MexR had no difference between planktonic and bioiflms(days of 3 and 5)(P>0.05).The expression of MexAB-OprM and MexR of biofilms on the days of 3 and 5 had no statistical significance(P>0.05).The expression level of MexAB-OprM and MexR,none was different after imipenem and ciprofloxacin induced both in planktonic and biofilms.
     Conclusion When pseudomonas aeruginosa PAO1 transferred its growth mode from planktonic to biofilms,the expression level of efflux pumps MexAB-OprM was greatly decreased,the MexR had no change.There had no difference of MexAB-OprM and MexR between 3days and 5days after biofilm forming.Imipenem and ciprofloxacin had no effect on the expression of MexAB-OprM and MexR both in planktonic and biofilms.
引文
[1]王辉,孙宏莉等。不动杆菌属多重耐药及泛耐药的分子机制研究[J]。中华医学杂志,2006,86:17-22
    [2]Murthy SK,Balch AL,Smith RP,et al.Oropharyngeal and fecal carriage of Pseudomonas aeruginosa in hospital patients[J].Clin Microbiol,1989,27(1):35-40.
    [3]Hoiby N.Prospects for the prevention and control of pseudomonal infection in children with cystic fibrosis[J].Paediatr Drugs,2000,2:451-463.
    [4]Frederiksen B,Lanng S,Koch C,et al.Improved survival in the Danish center treated cystic fibrosis patients:results of aggressive treatment[J].Pediatr Pulmonol.1996,21(3):153-158.
    [5]Birgit Giwercman,Elsebeth Tvenstrup Jensen,Nieshoiby,et al.Induction of β-Lactamase production in Pseudomonas aeruginosa biofilm[J].Antimicrobial agents and Chemotherapy,1991,35(5):1008-1010
    [6]Fux,C.A.,J.W.Costerton,P.S.Stewart,et al.Survival strategies of infectious biofilms[J].Trends Microbiol,2005,13(1):34-40.
    [7]Anwar H,JL Strap.JW Costerton.Establishment of aging biofilms:possible mechanism of bacterial resistance to antimicrobial therapy[J].Antimicrob Agents,1992,36(7):1347-1351.
    [8]Stover C.K,X.Q.Pham,A.L.Erwin,et al.Complete genome sequence of Pseudomonas aeruginosa PAO1,an opportunistic pathogen[J].Nature,2000,406:959-964
    [9]Li X-Z,Nikaido H,Poole K.Role of mexA-mexB-oprM in antibiotic effluxin Pseudomonas aeruginosa[J].Antimicrob Agents Chemother,1995,39(9):1948-1953.
    [10]Beinlich K.L,Chuanchuen R,Schweizer H.P.Contribution of multidrug efflux pumps to multiple antibiotic resistance in veterinary Clinical isolates of Pseudomonas aeruginosa[J].FEMS Microbiol Lett,2001,198(2):129-134.
    [11]Jennifer M.Andrews.Determination of minimum inhibitory concerntr ations[J].Journal of AntiMICrobial Chemotherapy,2001,48:(Suppl 5).S1 -S16.
    [12]Dong H.Kwon et al.Polyamines Increase Antibiotic Susceptibility in Pseudomonas aeruginosa[J].Antimicrobial Agents And Chemotherapy,2006,50(5):1623-1627
    [13]王强,蒋捍东,柴杰。生物膜铜绿假单胞菌产β-内酰胺酶的实验研究[J]。中华医院感染学杂志,2007,17(10):1-4
    [14]Joshua S Yuan,Ann Reed,Feng Chen,et al.Statistical analysis of real-time PCR data[J].BMC Bioinformatics,2006,22(7):85
    [15]Dong H,Kwon,Chung-Dar Lu,Polyamines Increase Antibiotic Susceptibility in Pseudomonas aeruginosa[J].Antimicrobial Agents and Chemotherapy,2006,(5),1623-1627.
    [16]Matthew A.Wikler,M.D,Performance standards for antimicrobial susceptibility testing[S].Fifteenth informational supplement.CLSI document M1002S15.2006,6(3):32
    [17]许宏涛,宣天芝,陶凤荣等。3种非发酵革兰阴性杆菌5年的分离率及耐药趋势回顾[J]。中国临床药理学杂志,2004,20:219-221。
    [18]Parsek,M.R.,P.K.Singh.Bacterial biofilms:an emerging link to disease pathogenesis[J].Annu.Rev.MICrobiol.2003,57:677-701.
    [19]Prince,A.S.Biofilms,antimicrobial resistance,and airway infection[J].N Engl.J.Med. 2002,347:1110-1111.
    [20] Singh, P. K., A. L. Schaefer, M. R. Parsek, et al. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms[J]. Nature, 2000,407:762-764.
    [21] Potera C. Forging a link between biofilm and disease [J]. Science, 1999, 283 (5409) : 1837-1839.
    [22] J.C. Nickel, I. Ruseska, J.B. Wright, et al. Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material Antimicrob [J]. Agents Chemother, 1985,27:619-624.
    [23] Bagge N, Schuster M, Hentzer M, et al. Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and beta-lactamase and alginate production[J]. Antimicrob Agents Chemother, 2004,48 (4): 1175-1187.
    [24] M.C. Walters III, F. Roe, A. Bugnicourt, et al.Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin, Antimicrob. Agents Chemother. 2003, 47: 317-323.
    [25] R.O.Darouiche, A. Dhir, A.J. Miller, et al. Vancomycin penetration into biofilm covering infected prostheses and effect on bacteria [J]. Infect. Dis, 1994, 170:720-723.
    [26] G. Stone, P. Wood, L. Dixon, et al. Tetracycline rapidly reaches all the constituent cells of uropathogenic Escherichia coli biofilms [J]. Antimicrob. Agents Chemother, 2002, 46: 2458-2461.
    [27] Gilbert, P, D. G. Allison, A. J. McBain. Biofilms in vitro and in vivo: do singular mechanisms imply cross-resistance? [J]. Appl. Microbiol. 2002, 92(Suppl.): 98 S-110S.
    [28] P.S. Stewart, Mechanisms of antibiotic resistance in bacterial biofilms [J]. Int. J. Med. Microbiol. 2002,292: 107-113.
    [29] G. Tanaka, M. Shigeta, H. Komatsuzawa, et al. Effect of the growth rate of Pseudomonas aeruginosa biofilms on the susceptibility to antimicrobial agents: betalactams and fluoroquinolones [J]. Chemotherapy, 1999,45: 28-36.
    [30] A. Brooun, S. Liu, K. Lewis, A dose-response study of antibiotic resistance in Pseudomonas aeruginosa biofilms [J]. Antimicrob. Agents Chemother. 2000,44: 640-646.
    [31] K.Saner, A.K.Camper, G.D. Davies et al. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofihn, J. Bacteriol. 184 (2002) 1140-1154.
    [32] Kohler T, Michea Hamaehpoar M, Henze U, et al. Characterization of MexE-MexF-OprN, apositively regulated multidrug efflux system of Pseudomonas aeruginosa [J]. Mol Microbiol, 1997 ,23 :345-354
    [33] De Kievit TR, Parkins MD, Gillis RJ, et al.Multidrug efflux pumps: expr ession patterns and contribution to antibiotic resistance in Pseudomonasaeruginosa biofilms [J]. Antimicrob Agents Chemother, 2001,45 (6):1761-1770.
    [34] Masuda N,Sakagawa E,Ohya S. Outer membrane proteins responsible for multiple drug resistance in Pseudomonas aeruginosa [J].Antimicrob Agents Chemother,1995,39:645-649.
    [35] Allison, D. G., P. Gilbert. Modification by surface association of antimicrobial susceptibility of bacterial populations [J]. Ind. Microbiol, 1995,15:311-317.
    [36] Evans, K, K. Poole. The MexA-MexB-OprM multidrug efflux system of Pseudomonas aeruginosa is growth-phase regulated [J]. FEMS Micro biol. Lett. 1999, 173:35-39.
    [37] M. Whiteley, M.G. Bangera, R.E. Bumgarner, et al. Gene expression in Pseudomonas aeruginosa biofilms[J].Nature,2001,413:860-864.
    [38]John Quale,Simona Bratu,et al.Interplay of efflux system,ampC and oprD expression in carbapenem resistance of pseudomonas aeruginosa clinical isolates[J].Antimicrobial Agents And Chemotherapy,2006,50(5):1633 -1641.
    [39]Fetiye Kolayli,Aynur Karadenizli et al.Effect of carbapenems on the transcriptional expression of the oprD,oprM and oprN genes in Pseudomonas aeruginosa[J].Journal of Medical Microbiology,2004,53:915-920.
    [40]Kumon H,Tomochika K,Matunaga T,et al.A sandwich cup method for the penetration assay of antimicrobial agents through Pseudomonas exopolysaccharides[J].Microbiol Immunol,1994,38(8):615-619.
    [41]谭艳,方治平。 抗菌药物的作用机制及细菌耐药性机制的研究进展。国外医药抗生素分册,2003,24(2):65。
    [42]Srikumar R,Paul CJ,Poole K.Influence of mutations in the mexR repressor geneon expression of the MexA-MexB-oprM multidrug efflux system of Pseudomonas aeruginosa [J].Bacteriol,2000,182(5):1410-1414.
    [43]SaitoK,YoneyamaH,NakaeT.NalB-type mutations causing the overexpression of the MexAB-OprM efflux pump are located in the mexR gene of the Pseudomonas aeruginosa chromosome[J].FEMS Microbiol Lett,1999,179(l):67-72.
    [44]Hocquet D,Roussel-Delvallez M,Cavallo JD,et al.MexAB-OprM and MexXY-overproducing mutants are very prevalent among clinical strains of Pseudomonas aeruginosa with reduced susceptibility to ticarcillin[J].AntimicrobAgents Chemother 2007,51:1582-1583.
    [45]Hao Chen,Jie Hu,et al.The Pseudomonas aeruginosa multidrug efflux regulator MexR uses an oxidation-sensing mechanism[J].PNAS,2008,105(36):13586-13591.
    [46]Morita Y,Cao L et al.nalD encodes a second repressor of the mexAB-oprM multidrug efflux operon of Pseudomonas aeruginosa[J].Bacteriol.2006,188(24):8649-8654.
    [47]刘英等,铜绿假单胞菌对碳青霉烯类抗生素的耐药机制[J]。上海交通大学报,2008,28(1):92-96。
    [48]徐光凤等,喹诺酮类抗生素的研究进展与临床应用[J]。中国基层医药,2006,13(9):1571-1572。
    [1].Costerton J W,Stewart P S,Greenberg E P.Bacterial biofilm:A common cause of persistent infection[J].Science,1999,284(5418):1318-1322.
    [2].Potera C.Forging a link between biofilm and disease[J].Science,1999,283(5409):1837-1839.
    [3].李乃静,何平,李胜岐等。生物被膜菌产生超广谱β-内酰胺酶的检测[J]。中华医院感染学杂志,2006,16(10),1096-1098。
    [4].J.C.Nickel,I.Ruseska,J.B.Wright,et al.Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material[J].Antimicrob Agents Chemother,1985,27:619-624.
    [5].Thien-Fah C.Mah,George A.O'Toole,Mechanisms of biofilm resistance to antimicrobial agents[J].TRENDS in Microbiology,2001,9(1):34-39.
    [6].Xu X,Stewart P S,Huang C C.Transport limitation of chlorine disinfection of P.aeruginosa entrapped in alginate beads[J].Biotechnol Bioeng,1996,49(1):93-100.
    [7].Stewart P S,Grab L,Diemet J A.Analysis of biocide transport limitation in an artificial biofilm[J]J Appl Microbiol,1998,85(3):495-500.
    [8].Mark E.Roberts,Philip S.Stewart.Modelling protection from antimicrobial agents in biofilms through the formation of persister cells[J].Microbiology,2005,151:75-80.
    [9].De Beer,et al.Direct measurement of chlorine penetration into biofilms during disinfection [J].Appl.Environ.Microbiol,1994,60:4339-4344.
    [10].Suci,P.A.et al.Investigation of ciprofloxacin penetration into Pseudomonas aeruginosa biofilms[J].Antimicrob Agents Chemother,1994,38:2125-2133.
    [11].J.D.Vrany,P.S.Stewart,P.A.Suci.Comparison of recalcitrance to ciprofloxacin and levofloxacin exhibited by Pseudomonas aeruginosa biofilms displaying rapid transport characteristics[J].AntimicrobAgents Chemother.1997,41:1352-1358.
    [12].M.C.Walters HI et al,Contributions of antibiotic penetration,oxygen limitation,and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin[J].Antimicrob Agents Chemother.2003,47:317-323.
    [13].R.O.Darouiche,A.Dhir,et al,Vancomycin penetration into biofilm covering infected prostheses and effect on bacteria[J].Infect.Dis.1994,170:720-723.
    [14].G.Stone,P.Wood,L.Dixon,et al.Tetracycline rapidly reaches all the constituent cells of uropathogenic Escherichia coli biofilms[J].Antimicrob.Agents Chemother.2002,46: 2458-2461.
    [15]. P.S. Stewart, Mechanisms of antibiotic resistance in bacterial biofilms [J]. Int. Med. Microbiol. 2002,292: 107-113.
    [16]. P. Gilbert, D.G. Allison, A.J. McBain. Biofilms in vitro and in vivo: do singular mechanisms imply cross-resistance? [J]. Symp. Ser. So.Microbiol. 2002, 92 :( Appl) 98S-110S.
    [17]. P. Gilbert, T. Maira-Litran, A.J. McBain, A.H. Rickard, F.W. Whyte, The physiology and collective recalcitrance of microbial biofilm communities[J]. Adv. Microb. Physiol. 2002, 46 :202-256.
    [18] K. Lewis, Riddle of biofilm resistance [J]. Antimicrob. Agents Chemother. 2001, 45: 999-1007.
    [19]. Tuomanen, E. et al. The rate of killing of Escherichia coli by β-lactam antibiotics is strictly proportional to the rate of bacterial growth [J]. Gen. Microbiol. 1986,132: 1297-1304.
    [20]. Tuomanen, E. et al. Antibiotic tolerance among clinical isolates of bacteria [J]. AntimicrobAgents Chemother., 1986,30:521-527.
    [21]. Brown, M.R. et al. Resistance of bacterial biofilms to antibiotics: a growth-rate related effect? [J]. Antimicrob. Chemother, 1988, 22:777-780.
    [22]. Wentland, EJ. et al. Spatial variations in growth rate within Klebsiella pneumoniae colonies and biofilm [J]. Biotechnol. Prog. 1996, 12:316-321
    [23]. Evans, D.J. et al. Susceptibility of Pseudomonas aeruginosa and Escherichia coli biofilms towards ciprofloxacin: effect of specific growth rate. [J]. Antimicrob. Chemother. 1991, 27, 177-184.
    [24]. Duguid, I.G. et al. Growth-rate independent killing by ciprofloxacin of biofilm derived Staphylococcus epidermidis; evidence for cell-cycle dependency. [J]. Antimicrob. Chemother. 1992,30: 791-802
    [25]. Duguid, I.G. et al. Effect of biofilm culture upon the susceptibility of Staphylococcus epidermidis to tobramycin. [J]. Antimicrob. Chemother. 1992, 30:803-810.
    [26]. A.Brooun, S. Liu, K. Lewis, A dose-response study of antibiotic resistance in Pseudomonas aeruginosa biofilms [J] Antimicrob. Agents Chemother. 2000,44: 640-646.
    [27] R.A. Zabinski, K.J. Walker, A.J. Larsson, J.A. Moody, GW. Kaatz, J.C. Rotschafer, Effect of aerobic and anaerobic environments on antistaphylococcal activities of five fluoroquinolones[J] Antimicrob. Agents Chemother. 1995 ,39: 507-512.
    [28] KJ. Tack, L.D. Sabath, Increased minimum inhibitory concentrations with anaerobiasis for tobramycin, gentamicin, and amikacin, compared to latamoxef, piperacillin, chloramphenicol, and clindamycin [J], Chemotherapy 1985,31: 204-210.
    [29]. K.Sauer,A.K. Camper, G.D. Ehrlich, J.W. Costerton, D.G. Davies,Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm, [J]. Bacteriol. 2002, 184:1140-1154.
    [30]. S.S.Yoon, R.F. Hennigan, GM. Hilliard, U.A. Ochsner, K. Parvatiyar, et al Pseudomonas aeruginosa anaerobic respiration in biofilms: relationships to cystic fibrosis pathogenesis, Dev. Cell 2002,3:593-603.
    [31]. D.G Davies, G.G. Geesey, Regulation of the alginate biosynthesis gene algC in Pseudomonas aeruginosa during biofilm development in continuous culture[J]. Appl. Environ. Microbiol. 1995,61:860-867.
    [32] K. Sauer, A.K. Camper, Characterization of phenotypic changes in Pseudomonas putida in response to surface-associated growth, [J].Bacteriol. 2001, 183:6579-6589.
    [33]. M. Whiteley, M.G Bangera, R.E. Bumgarner, et al. Gene expression in Pseudomonasaeruginosa biofilms[J], Nature 2001,413: 860-864.
    [34]. Li XZ , Zhang L , Srikumar R et al. Betalactamase inhibitors are substrates for the multidrug efflux pumps of Pseudomonas aeruginosa[J]. Antimicrob Agents Chemother, 1998, 42: 399-403.
    [35]. Zhao Q , Li XZ , Srikumar R , et al. Contribution of outer membrane efflux protein OprM to antibiotic resistance in Pseudomonas aeruginosa independent of MexAB [J] . Antimicrob Agents Chemother, 1998 ,42 :1682-1688.
    [36]. Zhao Q , Li XZ , Anita Mistry, et al. Influence of the TonB energy coupling protein on efflux mediated multidrug resistance in Pseudomonas aeruginosa[J]. Antimicrob Agents Chemother ,1998 ,42 : 2225-2231.
    [37]. H.I. Zgurskaya, H. Nikaido, Multidrug resistance mechanisms: drug efflux across two membranes [J], Mol. Microbiol. 2000, 37:219-225.
    [38]. R. Chuanchuen, C.T. Narasaki, H.P. Schweizer, The MexJK efflux pump of Pseudomonas aeruginosa requires OprM for antibiotic efflux but not for efflux of triclosan [J]. Bacteriol. 2002:184: 5036-5044.
    [39]. S. Aendekerk, B. Ghysels, P. Cornells, C. Baysse, Characterization of a new efflux pump, MexGHI-OpmD, from Pseudomonas aeruginosa that confers resistance to vanadium [J], Microbiology 2002, 148:2371-2381.
    [40]. K. Poole, R. Srikumar, Multidrug efflux in Pseudomonas aeruginosa: components, mechanisms and clinical significance [J]. Curr Top Med. Chem, 2001, 1: 59-71.
    [41]. Li XZ, Zhang L, Poole K. Interplay between the MexA-MexB-OprM multidrug efflux system and the outer membrane barrier in the multiple antibiotic resistance of Pseudomonas aeruginosa [J]. J Antimicrob Chemot her, 2000,45 (4):433-436.
    [42]. Saito K, Yoneyama H, Nakae T. nalB-type mutations causing the overexpression of the MexAB-OprM efflux pump is located in the mexR gene of Pseudomonas aeruginosa chromosome [J]. FEMS Microbiol Lett, 1999, 179 (1):67-72.
    [43]. Ziha-Zarifi I, Llanes C, Kohler T. In vivo emergence of multidrug-resistant mutants of Pseudomonas aeruginosa overexpressing the active efflux system MexA-MexB-OprM [J] .Antimicrob agents chemother, 1999,43 (2):287-291.
    [44]. Carmeli Y, Troillet N, Eliopoulos GM, et al. Emergence of antibiotic resistant Pseudomonas aeruginosa: comparison of risks associated with different antipseudomonal agents [J].Antimicrob agents chemother, 1999 ,43 (6) :1379-1382.
    [45]. Kohler T, Michea Hamzehpour M, Henze U, et al. Chracterization of MexE-MexF-OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa [J]. Mol microbiol, 1997, 23 (2):345-354.
    [46]. Poole K, Gotoh N, Tsujimoto H, et al. Overexpression of the mexC-mexD-oprJ efflux operon in nfxB-type multidrug resistant strains of Pseudomonas aeruginosa [J]. Mol microbiol, 1996, 21 (4):713-724.
    [47]. Aires J R, Kohler T , Nikaido H , et al. Involvement of an active efflux system in the natural resistance of Pseudomonas aeruginosa to aminoglycosides [ J ]. Antimicrob agents chemother, 1999,43 (11) :2624-2628.
    [48]. Lister PD , Wolter DJ . Levofloxacin-imipenem combination prevents the emergence of resistance among clinical isolates of Pseudomonas aeruginosa [J ].Clin Infect Dis , 2005 , 40 (Suppl 2):105-114.
    [49]. Benz R, Hancock REW. Properties of the large ion permeable pores formed from protein F of Pseudomonas aeruginosa in lipid bilayer membranes [J]. Biochem Biophys Acta, 1981, 646:298- 308.
    [50]. Ochs M M, McCusker M P, Bains M, et al. Negative regulation of the Pseudomonas aeruginos aouter membrane porin OprD selective for imipenem and basic amino acids [J]. Antimicrob Agents Chemother, 1999,43: 1085- 1090.
    [51]. Yoneyama H, N akae T. Mechanism of efficient elimination of protein D2 in outer membrane of imipenem-resistant Pseudomonas aeruginosa [J]. Antimicrob Agents Chemother, 1993, 37 (11):2385-2390.
    [52]. Suzuki Y, Matsumoto Y, Nishinari C, et al. Antimicrobial activities of meropenem against clinically isolated strains in 1997[J ]. Jpn J Antibiot, 1999,52(12): 695-720.
    [53]. D. Ma, M. Alberti, C. Lynch, H. Nikaido, et al. The local repressor AcrR plays a modulating role in the regulation of acrAB genes of Escherichia coli by global stress signals[J].Mol.Microbiol.1996;19:101-112.
    [54].T.R.De Kievit,M.D.parkins,R.J.Gillis,et al.Multidrug efflux pumps:expression patterns and contribution to antibiotic resistance in Pseudomonas aeruginosa biofilms[J].Antimicrob.Agents Chemother.2001,45:1761-1770.
    [55].Brown,M.R.Barker,J.Unexplored reservoirs of pathogenic bacteria:protozoa and biofihns.[J].Trends Microbiol.1999,7:46-50.
    [56].Hengge-Aronis,R.Regulation of gene expression during entry into stationary phase.In Escherichia coli and Salmonella:[J].Cellular and Molecular Biology.ASM Press.1996,1497-1512,
    [57].Liu,X.et al.Global adaptations resulting from high population densities in Escherichia coli cultures.[J].Bacteriol.2000,182,4158-4164.
    [58].Foley,I.et al.General stress response master regulator rpoS is expressed in human infection:a possible role in chronicity.[J].Antimicrob.Chemother.1999,43,164-165
    [59].Cochran,W.L.et al.Role of RpoS and AlgT in Pseudomonas aeruginosa biofilm resistance to hydrogen peroxide and monochloramine.J.Appl.Microbiol.2000,88:546-553
    [60].A.L.Spoering,K.Lewis,Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials[J].Bacteriol.2001,183:6746-6751.
    [61].Lewis,Programmed death in bacteria[J].Microbiol.Mol.Biol.Rev.2000,64:503-514.
    [62].E.Drenkard,KM.Ausubel,Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation[J].Nature,2002,416:740-743.
    [63].Kirisits MJ,Prost L,Starkey M,Parsek MR.Characterization of colony morphology variants isolated from Pseudomonas aeruginosa biofilms[J].Appl Environ Microbiol.2005,71(8):4809-4821.
    [64].R.C.Massey,A.Buckling,SJ.Peacock,Phenotypic switching of antibiotic resistance circumvents permanent costs in Staphylococcus aureus[J].Curr.Biol.2001,11:1810-1814.
    [65].Y.A.Anriany,R.M.Weiner,J.A.Johnson,et al.Salmonella enterica serovar Typhimurium DT104 displays a rugose phenotype,[J].Appl.Environ.Microbiol.2001,67:4048-4056.
    [66].蒋小飞,洪秀华,孙景勇,等.多重耐药铜绿假单胞菌超广谱β内酰胺酶分析[J]。中华微生物学和免疫学杂志,2002,22:443-446。
    [67].Naas T,Philippon L,Poirel L.An SHV- derived extended spectrum Beta-lactamase in Pseudomonas Aeruginosa[J].Antimicrob Agents Chemother,1999,43:1281- 1284.
    [68].Firoved AM,Bouchenr JC,Deretic V.Global genomic analysis of AlgU(sigma(E)- dependent promoters(sigmulon) in Pseudomonas aeruginosa and implications for inflammatory processes in cystic fibrosis. [J]. Bacteriol. 2002, 184 (4): 1057-1064.
    [69]. Sanders CC, Bradford PA, Ehrhardt AF, et al . Penicillin-binding proteins and induction of AmpC beta-lactamase [J] . Antimicrob Agents Chemother, 1997, 41(9) : 2013-2015.
    [70]. Davies D G, parsekM R, Pearson J P, et al. The involvement of cell-to-cell signals in the development of a bacterial biofilm[J]. Science, 1998,280:295 - 298.
    [71]. Hall-Stoodley L, Stoodley P. Biofilm formation and dispersal and the transmission of hiunan pathogens [J ]. Trends microbial,2005,13 (1) :7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700