侧嵌式管桩受力性能及桩土相互作用试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代科学技术的不断进步及建筑结构对结构基础要求的提高促进了预应力混凝土管桩的广泛应用。但在工程实践中,为满足管桩桩基更高的承载力及变形要求,通常需要增大单桩桩长和桩径,导致混凝土用量加大、施工效率降低、经济成本增高。已有研究表明,当桩长或桩径增大到一定程度后将不能有效提高单桩极限承载力。因此通过改进桩型及施工工艺以改善管桩桩–土工作性状、提高单桩承载力成为预应力管桩发展的必然趋势。
     本文结合吉林省教育厅“十一五”科研项目——侧嵌式管桩受力性能及桩土相互作用研究(吉教科合字2009第416号),在传统闭口型预应力混凝土管桩的基础上,采用一定工艺在其侧壁相应位置嵌入一定数量的预制短肢,形成异型管桩形式—侧嵌式管桩(CQPHC桩),旨在通过侧肢副端承力及增大侧摩阻力来达到提高单桩承载力、降低综合成本的目的。
     本文开展了侧嵌式管桩承载力与变形性能的室内模型试验研究,并根据桩身和桩周土相关物理性能参数,运用大型有限元软件ANSYS分别进行竖向与水平荷载作用下侧嵌式管桩的承载力、沉降变形及桩–土相互作用的数值分析,系统地模拟分析了不同桩身及桩周土参数对侧嵌式管桩竖向及水平承载性状的影响。同时,讨论确定了不同土质条件下侧肢的合理层间距、位置和数量,综合考察新桩型的经济性、施工可行性及侧肢张压设备的开发,并为其投入使用提供理论依据和技术支持。本文主要完成以下研究:
     1、侧嵌式管桩因侧肢在竖向承载过程中发挥了一定的副端承作用,其竖向承载力较普通管桩显著提高。桩顶沉降量随侧肢布置位置的下移、数量的增多及层间距的减小而减小。即桩身下部密布侧肢更有助于提高侧嵌式管桩竖向极限承载力,有效控制桩顶沉降;但侧肢层间距过小也会导致层间土体扰动过大,侧肢副端承力难以得到充分发挥,分析结果表明侧肢层间净距为1000mm时对提高单桩竖向承载力最为有利;
     2、桩周土体参数对侧嵌式管桩的承载与变形性能有显著影响,桩顶沉降量随桩周土体黏聚力、内摩擦角、桩–土摩擦系数、弹性模量的增大而减小。特别地,侧嵌式管桩竖向极限承载力并不随桩–土摩擦系数增大无限增长,当桩–土摩擦系数大于0.4以后,增大桩–土摩擦系数对提高单桩竖向极限承载力效果不再明显;
     3、就侧嵌式管桩水平承载性状而言,各级荷载作用下加载位置以下的桩身水平位移均随桩入土深度的增大而逐渐减小。当荷载持续增大,土体逐渐产生塑性变形,水平位移增长速率加快。在保障土质条件及最小侧肢层间距的前提下,侧肢越靠近桩身上部、数量越多、间距越小,对桩水平极限承载力的提高、最大弯矩的降低作用越明显。但侧肢数量过多对桩顶及桩身水平位移影响均不再明显,故在桩身上部密排3-5层侧肢有助于侧嵌式管桩水平极限承载力的提高,而且具有良好经济性;
     4、桩周土体参数对侧嵌式管桩桩顶水平位移亦有明显影响,桩顶水平位移随土体黏聚力、内摩擦角、弹性模量的增大而逐渐减小,其变化幅度也逐步减小。土体内摩擦角的变化能够有效改变桩身截面的最大弯矩,而土体弹性模量对侧嵌式管桩桩身水平位移作用相对最为显著;
     5、根据相似理论进行侧嵌式管桩与普通管桩竖向承载性状的室内模型试验对比分析,模拟桩–土相互作用机理,对侧嵌式管桩承载与变形性能开展定性研究。试验分别对具有不同侧肢层间距、数量的侧嵌式管桩模型桩进行了竖向承载性状的研究,得出的结论与有限元分析的变化趋势基本一致。但由于模拟条件的限制,包括桩–土接触界面性状、模型桩桩身参数与土体物理性能参数等方面的模拟均与实际存在差异,导致试验与理论分析结果存在一定差异。
     本文提出的侧嵌式管桩是一种新型预应力管桩,实现了桩身型式、承载机理、沉桩工艺的创新,文章系统地研究了侧嵌式管桩单桩竖向及水平承载性状的主要影响因素,为该桩的深入研究奠定了理论基础,且提供了一定的技术与经济参考,如果能够投入实际工程将实现良好的技术与经济效益。
With continuous progress of modern science and technology,andimprovement requirements of structure foundation, it is promoted to be widelyused of prestressed concrete pipe pile. But in order to meeting the requirementsof higher bearing capacity and less deformation of the single pipe pile inengineering practice, usually the pile body is longer and its diameter is larger, sothe dosage of concrete is increased, the construction efficiency is lower andeconomic cost is higher. Existing researches have shown that the single pileultimate bearing capacity can't be effectively improved after the pile length andpile diameter is increased to a certain extent. So it becomes the inevitable trendof development of prestressed pipe pile that it will be improved properties of pipepile-soil working together and the bearing capacity of single pile by improvingthe pile type and construction technology.
     Combining the "11th Five-year Plan" research project of Jilin provinceeducation department—"Research on Mechanical Performance and Pile-SoilInteraction of Prestressed Concrete Pipe Pile with Side Embedded Precast ShortLimb "(2009No.416), it is adopted specific construction technology to embeddedsome precast short limb in side of the traditional closed pipe pile, that is formed special pile type, that is prestressed concrete pipe pile with sideembedded precast short limb(CQPHC).The aim is to improve bearing capacityof single pile by the secondary end-bearing capacity from short limb andincreasing the capacity of side friction, and can reduce the comprehensive cost.
     It has been carried out indoor model test research on the bearing capacityand deformation performance of CQPHC, and been respectively carried on thenumerical analysis on the bearing capacity and settlement deformation of singlepile, and the pile-soil interaction under the vertical and horizontal loads with theANSYS software according to the related parameters of physical properties of thepile and soil. And it is simulated and analyzed systematically on the influence ofdifferent parameters of the pile and soil on the bearing properties of CQPHC.Then, it is confirmed that reasonable distance, position and number of short limbin the different soil conditions, and considered comprehensive economy, theconstruction feasibility of new pile type and the design of the push-extendequipment. It is provided the certain reference value and theoretical basis for theactual engineering. The following research are mainly completed:
     1.The vertical bearing capacity of CQPHC is significantly increased thanordinary pipe pile, due to the secondary end bearing effect of lateral limbs in theprocess of the vertical load. The settlement of pile top is decreased with themoving down of the location, the increasing of numbers and the decreasingdistance of lateral limbs, that is, it is more beneficial to the improvement of thevertical bearing of CQPHC and decreases of settlement of pile top that it is setclosely short limbs on the lower part of pile body. But, the too small distance canmake disturbance enlarged to the soil between the short limbs, so it is difficultthat the secondary end bearing effect of the short limb is given full play. Analysisresults have shown that, when the distance is1000mm, it is most favorable to improve the vertical bearing capacity of single pile;
     2.The parameters of soil around the pile have obvious influences on thebearing and deformation performance of CQPHC. The settlement of pile top isdecreased with the increase of cohesion and angle of internal friction and frictioncoefficient and modulus of elasticity of soil. Particularly, the vertical ultimatebearing capacity of CQPHC is not always increase infinite with the increase offriction coefficient. When the pile-soil friction coefficient is greater than0.4, it isno longer obvious to improve the effect of single pile vertical ultimate bearingcapacity by increasing the friction coefficient;
     3.In terms of horizontal load-bearing properties, under the various loads, thehorizontal displacement of pile top under the loaded position decreases graduallywith the increasing of depth. When the loads continue to increase, the plasticdeformation of soil gradually produces, the growth rate of the horizontaldisplacement speeds up. In the case of good soil conditions and spacing to beallowed, if short limbs are more close to the upper part of the body, their quantityare more and their distance are smaller, that the effects of improvement of thehorizontal bearing capacity and reducing the maximum bending moment aremore obvious. But their effects are not obvious on the horizontal displacement ofpile top and body while the number of short limbs are too many. So it isbeneficial to the improvement of the level ultimate bearing capacity that it is setclosely3to5layer short limbs on the upper department of pile body, and it has agood economy;
     4.The parameters of soil around the pile have obvious effect on thehorizontal displacement of pile of CQPHC top, too. With the increase of cohesion,angle of internal friction and modulus of elasticity of soil, The horizontaldisplacement of pile top is decreased gradually and the magnificence of changes also reduce gradually. Because of the change of the internal friction angle of soil,the maximum bending moment of the section of pile can effectively be changed,while the elastic modulus has the most significant effect to the levelsdisplacement of CQPHC;
     5.According to the similarity theory, the contrast analysis is to be carried outabout indoor model test between ordinary pipe pile and CQPHC. It is simulatedto the mechanism of pile-soil interaction, and carried out the qualitative researchpile on the bearing and deformation performance. The indoor model test iscarried on to the vertical bearing properties research by the model piles withdifferent spacing and number of short limbs, and its result is almost the samewith the changing trends of the finite element analysis. But there exist certaindifferences between experiment and theoretical analysis results because of thelimitation of simulation conditions, including the differences of properties ofcontact interface, model parameters of pile body and the physical propertiesparameters of soil.
     CQPHC is a new kind of prestressed pipe pile, they are realized that theinnovation of pile type, load-bearing mechanism and pile driving technology. Itis systematically studied the main influence factors on bearing characters ofCQPHC, which lay the theoretical foundation for the further study on CQPHCand provide a certain reference value for technology and economy. If it can beput into the practical engineering, the good technology and economic benefit willbe achieved.
引文
[1]桩基工程手册委员会.桩基工程手册[M].中国建筑工业出版社,1995.
    [2]刘金砺.桩基工程技术进展[M].北京:知识产权出版社,2005:38-47.
    [3]张晓建.现浇混凝土薄壁管桩负摩阻力特性试验研究与分析[D]河海大学,2006.
    [4]建筑桩基技术规范(JGJ94-2008)[S].北京:中国建筑工业出版社,2008.
    [5]匡红杰,朱群芳,徐祥源.先张法预应力混凝土异型桩的发展概况调研[J].混凝土与水泥制品.2012(12):27-31.
    [6]徐至钧,李智宇.预应力混凝土管桩基础设计与施工[M].北京:机械工业出版社,2005.
    [7]国家建筑标准设计图集.预应力混凝土管桩(10G409)[M].北京:中国计划出版社,2010.
    [8]聂荣君.浅析预应力管桩的优缺点[J].治淮.2003(7):33-33.
    [9]阮起楠.预应混凝土管桩[M].中国建筑工业出版社.2002.
    [10]先张法预应力混凝土管桩(GB13476-2009)[S].北京:中国标准出版社,2009.
    [11]混凝土制品用低碳冷拔钢丝(JC/T540-2006)[S].北京:中国建材工业出版社,2005.
    [12]预应力混凝土用钢棒(GB/T5223.3-2005)[S].北京:中国标准出版社,2005.
    [13]先张法预应力混凝土管桩钢模(JC/T605-2005)[S].北京:中国建材工业出版社,2005.
    [14]先张法预应力混凝土管桩用端板(JC/T947-2005)[S].北京:中国建材工业出版社,2005.
    [15]预应力高强混凝土管桩用硅砂粉(JC/T950-2005)[S].北京:中国建材工业出版社,2005.
    [16]吉林省地方标准.静压预应力混凝土管桩基础技术规程(DB22/497-2010)[S].2010.
    [17]广东省标准.锤击式预应力混凝土管桩基础技术规程(DBJ/T15-22-2008)[S]北京:中国建筑工业出版社,2009.
    [18]福建省建筑标准设计图集.先张法预应力高强混凝土管桩(DBJT13-95)[S].2012.
    [19]湖北省工程建设地方标准.预应力混凝土管桩基础技术规程(DB42/489-2008)[S].2008.
    [20]浙江省工程建设地方标准.先张法预应力混凝土管桩基础技术规程(DB33/1016-2004)[S].2004.
    [21]天津市地方标准.预应力混凝土管桩技术规程(DB29-110-2010)[S].2010.
    [22]王重,薛万银.中国预应力混凝土管桩的发展状况及同日本管桩的差距[J].混凝土与水泥制品.2012(10):3-10.
    [23]雷昆.中国管桩行业需求预测、需求分析[J].51报告在线.2012.
    [24]叶建良,汪国香,吴翔.桩基工程[M].武汉:中国地质大学出版社,2000.
    [25]Vesic A.S.Tests on instrumented piles,ogeechee river site[J].Journal ofSMFD,1970,96(2):561-584.
    [26]张雁,刘金波.桩基手册[M].北京:中国建筑工业出版社,2010.
    [27]Seed H.B.,Reese L.C.The action of soft clay along friction piles[J].Transactions,ASCE,1957,(122):731-754.
    [28]Kezdi A.The bearing capacity of pile and pile groups[A].In:Proc CivEngrs Geotech Engng4th ICSMFE[C].London:1957(2):44-51.
    [29]佐腾悟.基桩承载机理[J].土木技术,1965,20(1):1-5.
    [30]Vijayvergiya V.N.Load-movement characteristics of piles[J].Proc.4thSymposium of Waterway,Port.Coastal and Ocean Division.ASCE,Long Beach.Calif.,1977(2)2168-2171.
    [31]Kraft L.M.,Ray R.P.,Kagawa T.Theoretical t-z curves[J].Journal of thegeotechnical engineering division,ASCE,1981,107(GT11):1543-1561.
    [32]Heydinger,O’Neill M.W.Analysis of axial pile-soil interaction inclay[J]. Int.J.Num.Anal.Meth.Geomech.,1986,(10):367-381.
    [33]潘时声.桩基础分层位移迭代法计算理论及应用[D].上海:同济大学,1993.
    [34]陈龙珠,粱国钱,朱金颖.桩轴向荷载-沉降曲线的一种解析算法[J].岩土工程学报,1994,16(6):30-38.
    [35]张永谋,杨敏.层状地基中单桩荷载与沉降的数值模拟[J].工程勘察,1999,(2):1-4.
    [36]刘杰,张可能,肖宏彬.考虑桩侧土体软化时单桩荷载-沉降关系的解析算法[J].中国公路学报,2003,16(2):61-64.
    [37]赵明华,何俊翘,曹文贵.基桩竖向荷载传递模型及承载力研究[J].湖南大学学报,2005,32(1):37-42.
    [38]D′Appolonia E.,Romualdi J.P.Load transfer in end-bearing steelh-piles[J].Journal of the Soil Mechanics and Foundations Division,ASCE,1963,89(2):1-25.
    [39]Poulos H.G.Analysis of the settlement of pile groups[J].Geotechnique,1968,18(4):449-471.
    [40]Poulos H.G.,Davis E.H.Pile foundation analysis and design[M].NewYork:John Wiley and Sons Inc,1980.
    [41]Mindlin R.D.Force at a point in the interior of a semi-infinite solid[J].Physics,1936,(7):195.
    [42]Huang Y H. Finite element analysis of nonlinear soil media[A].In:Proc.of the Symposium on Application of FEM in Civil Engineering[C].[s.l.]:[s.n.],1969,663-685.
    [43]Geddes J.D.Stresses in foundation soils due to vertical subsurfaceload[J].Geotechnique,1966,16(3):231-255.
    [44]R.Butterfield,P.K.Banerjee.The problem of pile group-pile cap inter-action[J].Geotechnique,1971,21(2):135-142.
    [45]费勤发.分层总和法在单桩分析中的应用[J].水利水运科学研究,1989,(4):53-64.
    [46]吕凡任,陈云敏,梅英宝.一种基于Mindlin解的直桩沉降弹塑性分析方法[J].岩石力学与工程学报,2004,23(17):2988-2991.
    [47]何思明,郭强,卢国胜.单桩沉降计算理论研究[J].岩石力学与工程学报,2004,23(4):688-694.
    [48]Cooke R.W.,Price G.,Tarr K.J.Jacked pile in London clay:A study ofload transfer and settlement under working conditions[J].Geotechnique,1973,29(2):356-359.
    [49]Randolph M.F.,Wroth P.C.Analysis on deformation of vertically loadedpiles[J].Journal of geotechnical engineering,Proceedings of the Americansociety of civil engineers,1978,104(GT12):1465-1488.
    [50]王启铜.柔性桩的沉降(位移)特性及荷载传递规律[D].杭州:浙江大学,1991.
    [51]宰金珉.群桩与土和承台非线性共同作用分析的半解析半数值方法[J].建筑结构学报,1996,17(1):63-74.
    [52]肖宏彬,钟辉虹,王永和.多层地基中桩的荷载传递分析[J].中南工业大学学报(自然科学版),2005,34(6):687-690.
    [53]聂更新,陈枫.单桩轴向荷载-沉降曲线广义剪切位移解析算法[J].中南大学学报(自然科学版),2005,36(1):163-168.
    [54]Ellison R.D.,D’Appolonia E.,Thiers G.R.Load-deformation mechanismfor bored piles[J].Journal of the soil mechanics and foundations division,ASCE,1971,97(SM4):661-678.
    [55]Desai C.S.Numerical Design-Analysis for piles in sands[J].Journal ofthe geotechnical engineering division,ASCE,1974,100(GT6):613-635.
    [56]Ottaviani M.Three-dimensional finite element analysis of verticalloaded pile groups[J].Geotechnique,1975,25(2):159-174.
    [57]Farqueand M.O.F., Desai C.S.3-D material and geometric nonlinearanalysis of piles[C].Proc.,2ndInt.Conf.on numerical methods for off-shorepilings,Austin,Texas,1982.
    [58]Muqtadir A.,Desai C.S.Three-dimensional analysis of a pile-groupfoundation[J].International journal for numerical and analytical methods ingeomechanics,1986,(10):41-58.
    [59]陈雨孙,周红.纯摩擦桩荷载-沉降曲线拟合方法及其工作机理[J].岩土工程学报,1987,9(2):49-61.
    [60]倪新华.无限元在桩土共同作用分析中的应用[C].首届全国岩土工程博士学术讨论会.上海:同济大学出版社,1990.
    [61]池跃君,敖立新,顾晓鲁.超长钻孔灌注桩荷载传递机理的计算分析[J].特种结构,2000(4):12-15.
    [62]唐世栋,李阳.基于ANSYS软件模拟桩的挤入过程[J].岩土力学,2006,27(6):973-976.
    [63]马晔,张学峰,张小江.超长钻孔灌注桩承载性能研究与试验[M].北京:人民交通出版社,2009.
    [64]陆昭球,高倚山,宋铭栋.关于开口管桩工作性状的几点认识[J].岩土工程学报,1999,21(1):111-114.
    [65]日本工业标准.先张法预应力高强度混凝土管桩(JISA5337-1993)[S].日本:1993.
    [66]王清,陈磊,匡红杰,于本英.预应力混凝土管桩轴心受压承载力计算[J].建筑结构,2011,41(2):113-115.
    [67]建筑地基基础设计规范(GB50007-2011)[S].北京:中国建筑工业出版社,2011.
    [68]徐牧在,刘兴满.桩的动测新技术[M].北京:中国建筑工业出版社,1989.
    [69]张忠苗.预应力管桩在浙江的应用研究[A].杭州市深基坑及基坑围护学术讨论会论文集[C].中国水利水电出版社,1999.
    [70]李连营,路清.预应力管桩单桩竖向极限承载力分析[J]岩土工程技术,2003,(4):220-223.
    [71]邵学富.PHC管桩单桩竖向承载力的确定方法[J].南通大学学报(自然科学版),2007,6(4):36-39.
    [72]邵晶晶.预应力管桩单桩极限承载力动静测试研究分析[J].山西建筑.2011,37(26):96-97.
    [73]Broms B.B.Lateral resistance of piles in cohesive soils[J].Journal ofthe Soil Mechanics and Foundation Division,ASCE,1964,90(2):27-63.
    [74]Broms B.B.Design of laterally loaded piles[J].Journal of the Soi1Mechanics and Foundation Division,ASCE,1965,91(3):77-99.
    [75]韩理安.水平承载桩的计算[M].长沙:湖南大学出版社,2004.
    [76]杨克己,韩理安.桩基工程[M].北京:人民交通出版社,1992.
    [77]赵明华.桥梁桩基计算与检测[M].北京:人民交通出版社,2000.
    [78]马志涛.水平荷载下桩基受力特性研究综述[J].河海大学学报,2006,34(5):546-551.
    [79]Chang Y.L.Discussion on′Lateral pile-loading tests′by Feagin L.B.[J].Transactions of the American Society of Civil Engineers,1937,(102):272-278.
    [80]吴恒立.计算推力桩的综合刚度原理和双参数法[M].北京:人民交通出版社,2000.
    [81]吴恒立.推力桩计算方法的研究[J].土木工程学报,1995,28(2):20-28.
    [82]Mc Clelland B.,Focht J.A.Soil modulus for laterally loaded piles[J].Transactions,ASCE,1958,(123):1049-1086.
    [83]Douglas D.J.,Davis E.H.The movement of buried footings due tomoment and horizontal load and the movement of anchor plates[J].Geotech-nique,1964,(14):115-132.
    [84]Spillers W.R.,Stoll R.D.Lateral response of piles[J].Journal of the SoilMechanics and Foundations Division,ASCE,1964,90(SM6):l-9.
    [85]Poulos H.G.Behavior of laterally loaded piles:I-Single piles[J]Journalof the Soil Mechanics and Foundations Division,ASCE,1971,97(5):711-731.
    [86]Poulos H.G.Analysis of piles in soil undergoing lateral movement[J].Joumal of Soil Mechanics and Foundation Engineering,ASCE,1973,99(4):391-406.
    [87]Verruijt A.,Kooijman A.P.Laterally loaded piles in a layered elasticmedium[J].Geotechnique,1989,39(1):39-46.
    [88]Sun K.Laterally loaded Piles in elastic media[J].Journal of Geotech-nical Engineering,ASCE,1994,120(8):1324-1340.
    [89]宋东辉,徐晶.半无限弹性体地基上水平荷载桩的静力分析[J].土木工程学报,2004,37(11):89-91.
    [90]赵明华,邹新军,罗松南,邹银生.横向受荷桩桩侧土体位移应力分布弹性解[J].岩土工程学报,2004,26(6):767-771.
    [91]Chien-Yuan Chen.Numarical analysis of slope stabilization conceptsusing pile[D]American:University of Southern California,2001.
    [92]Brown D.A.,Shie C.F.Three-dimensional finite element model oflaterally loaded piles[J].Computers and Geotechnics,1990,10(1):59-79.
    [93]Yang Z.,Jeremic B.Study of soil layering effects on lateral loadingbehavior of piles[J].Journal of Geotechnical and Geoenvironmental Engineering,ASCE,2005,131(6):762-770.
    [94]Fan C.C.,Long J.H.Assessment of existing methods for predicting soilresponse of laterally Ioaded piles in sand[J].Computers and Geotechnics,2005,32(4):274-289.
    [95]赵明华,李微哲,单远铭,杨明辉.成层地基中倾斜荷载桩改进有限杆单元法研究[J].工程力学,2008,25(5):79-84.
    [96]郑刚,王丽.成层土中倾斜荷载作用下桩承载力有限元分析[J].岩土力学,2009,30(3):680-687.
    [97]Davisson M.T.,Sally J.R.Model study of laterally loaded pi1e[J].Journal of the Soil Mechanics and Foundations Division,ASCE,1970,96(5):1605-1627.
    [98]Ruesta P.F.,Townsend F.C.Evaluation of laterally loaded pile group atRoosevelt bridge[J].Journal of Geotechnical and Geoenvironmental Engineering,ASCE,1997,123(12):1153-1161.
    [99]王珏,林军,陈锦剑.软土地基中PHC管桩水平受荷性状的试验研究[J].岩土力学,2005,26(增):39-42.
    [100]刘汉龙,张建伟,彭劼.PCC桩水平承载特性足尺模型试验研究.岩土工程学报,2009,31(2):161-165.
    [101]刘宁.预应力混凝土管桩水平承载力现场试验及数值模拟[D].太原:太原理工大学,2011.
    [102]陆阳.预应力混凝土管桩承载机理及影响因素研究[D].西安:西安建筑科技大学,2011.
    [103]日本工业标准.先张法预应力高强度混凝土管桩(JISA5337-2010)[S].日本:2010.
    [104]Ogura H.,Yamageta K., Kishida H.Study on bearing capacity ofnodular cylinder pile by scaled model test[J].Journal of Structural and Construc-tion Engineering(Transactions of AIJ),1987,(374):87-97.
    [105]Ogura H.,Yamageta K.A theoretical analysis on load settlementbehavior of nodular piles[J]. Journal of Structural and Construction Engineering(Transactions of AIJ),1988,(393):152-164.
    [106]史玉良.预制节桩的荷载试验及荷载传递性能分析[J].工业建筑,1993,(7):3-9.
    [107]Yabuuchi S.Bearing mechanisms of muti-node piles[J].TheProceedings of the International Offshore and Polar Engineering Conference,1994,(1):504-507.
    [108]Madan B.,Karkee,Horiguchi T.,Kishida H.Limit state formulation forthe vertical resistance of bored PHC nodular piles based on field load testresults[J].Eleventh Asian Regional Conference on Soil Mechanics andGeotechnical Engineering,1999:237-240.
    [109]冯忠居.大直径钻埋预应力混凝土空心桩承载性能的研究[D].西安:长安大学,2002.
    [110]黄敏,龚晓南.带翼板预应力管桩承载性能的模拟分析[J].土木工程学报,2005,(38):102-105.
    [111]熊厚仁,牛志荣,蒋元海,杨建永,周兆弟.新型带肋预应力管桩承载特性试验研究[J].混凝土与水泥制品,2009,(2):32-35.
    [112]吴策.带肋填砂预应力管桩承载性能的研究[D].上海:同济大学,2008.
    [113]乔燕燕.新型带肋预应力管桩沉降影响的数值分析[D].太原:太原理工大学,2010.
    [114]董全杨,丁光亚,孙宏磊,蔡袁强,张清华.新型带肋预应力管桩承载性能研究[J].岩土力学,2012,33(6):1809-1815.
    [115]付贵海,魏丽敏,郭志广.增强型管桩和普通管桩受力性能试验对比研究[J].水文地质工程地质,2012,39(3):60-64.
    [116]刘永超.预应力混凝土管桩结构性能研究及新桩型开发[D].天津:天津大学,2009.
    [117]龚峰,丁翠红,应义淼.静压扩底管桩模型试验研究[J].浙江工业大学学报,2007,35(5):559-562.
    [118]黄建华,张玉淡.后压浆技术在PHC管桩工程中的应用[J].福建工程学院学报,2006,4(1):16-19.
    [119]孔清华,吴才德,李锋利,孔超.桩底注浆高承载力预应力砼管桩研究与实践[J].岩土工程界,2006,9(11):43-45.
    [120]游兆源.桩侧注浆技术在预应力混凝土管桩中的应用[J].山西建筑,2007,33(11),120-121.
    [121]宋志慧.管桩桩底注浆前后桩土应力应变特性研究[D].太原:太原理工大学,2007.
    [122]Das B.M. A Procedure for estimation of uplift capacity of roughpiles[J].Soils and Foundations,1983,23(3):122-126.
    [123]曾友金,章为民,王年香,郑澄锋.桩基模型试验研究现状[J].岩土力学,2003,24(增刊):674-680.
    [124]陈小强,赵春风,甘爱明.成层土中抗拔桩与抗压桩的模型试验研究[J].地下空间与工程学报,2009,5(2):1537-1541.
    [125]杨俊杰.相似理论与结构模型试验[M].武汉:武汉理工大学出版社,2005.
    [126]宰金珉.高层建筑与群桩基础非线性共同作用—复合桩基理论与应用研究[M].上海:同济大学出版社,2007.
    [127]罗照.变截面桩的竖向承载性状模型试验研究[D].南昌:华东交通大学,2012.
    [128]史佩栋.桩基工程手册[M].北京:人民交通出版社,2008.
    [129]宰金珉,宰金璋.高层建筑基础分析与设计[M].北京:中国建筑工业出版社,1994.
    [130]Gardner W.S. Consideration in the design of drilled piers[C].DesignConstruction and Performance of Deep Foundation, San Francisco:[s.n.],1975:1-32.
    [131]肖宏彬,钟辉虹,张亦静等.单桩荷载-沉降关系的数值模拟方法[J].岩土力学,2002,23(5):592-596.
    [132]赖琼华.桩的PS曲线计算方法[J].岩石力学与工程学报,2003,22(3):509-513.
    [133]房卫民,赵明华,苏检来.由沉降量控制桩竖向极限承载力的分析[J].中南公路工程,1999,24(2):23-25.
    [134]潘时声.桩的静力荷载传递计算新方法简介[J].力学与实践,1990,(6):34-35.
    [135]徐至钧,张国栋.新型桩挤扩支盘灌注桩设计与工程应用[M].北京:机械工业出版社,2003.
    [136]薛守义.有限单元法[M].北京:中国建材工业出版社,2005.
    [137]俞炯奇.非挤土长桩性状数值分析[D].杭州:浙江大学,2000.
    [138]王靖涛,丁美英,李国成.桩基础设计与检测[M].武汉:华中科技大学出版社,2005.
    [139]胡立万,周建国.单桩水平承载力计算方法的比较分析[J].辽宁交通科技,2003,(4):19-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700