根癌农杆菌介导FPF1基因转化菊花的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
据史料记载,早在三千年前,古埃及和叙利亚就已开始栽培蔷薇和铃兰,我国关于花卉栽培的文献记载最早的是吴王夫差曾在会稽营建梧桐园,广植花木。现在,花卉产业已成为世界上最具活力的产业之一。由于经济的发展和市场的刺激,花卉育种越来越受到植物育种工作者的重视,对新品种、高品质花卉的要求促进了花卉育种工作的不断发展。人们通过常规杂交育种、辐射育种、组织培养育种、多倍体育种、航天育种等手段培育了大量的花卉新品种。尤其是上个世纪90年代以来,随着分子生物学和基因工程技术的发展,利用转基因技术培育新品种成为育种工作者研究的热点。将目的基因定向导入植物细胞或组织中,培育成植株,则可获得人们预期的新材料(新品种),从而为花卉的定向育种提供了一条更有效的新途径。目前已有数十种花卉植物获得了转基因植株。
     菊花是我国原产的十大名花之一。关于菊花的文字记载最早见于《礼记》中,距今已有两千余年的历史。菊花不仅为我国人民所喜爱,而且早已传至国外,现为世界各国广泛栽培。虽然全世界菊花品种已有7000多个,我国也多达3000多个,但绝大多数品种自然花期集中在11月前后,仅少数花型较小、花色单调的品种能在夏季或早秋开花。因此,丰富的菊花品种资源并未得到充分的利用。菊花的花期问题在一定程度上制约了菊花生产的发展。在菊花的育种工作中,国内外育种者多集中在花色、花形及抗逆性等方面的研究,而改变花期则主要通过人为光照处理的方式来解决。人为光照处理不仅成本高,技术上要求严格,而且并不是所有品种都适合这种处理。这也是至今切花市场上菊花品种单一的原因之一。我国南京农业大学的李鸿渐为了攻克菊花花期局限的难题,在1986年开始利用常规杂交育种法进行切花菊新品种的选育工作,培育了上百个新品种。虽然花形、花色各异,但并为从根本上解决花期的问题。传统的杂交育种方法存在随意性大、杂交难度大、周期太长、难以打破基因连锁等不足。
     据研究,植物的开花期是由基因控制的,环境因子以及细胞自身的生长状况对这些基因的表达起着调控作用。环境因子对植物开花时间决定基因的调控是通过光周期和春化作用来实现的。有的植物对日照长度非常敏感,必须经历一定时间的长日照或短日照才能开花,因而相应地分为长日照植物和短日照植物;有的植物必须经过一定时间的低温诱导才能开花,低温对开花的促进作用被称为春化作用;还有的植物营养生长到一定阶段后,即使没有适宜的环境因子的诱导也会开花。菊花是典型的短日照植物,植株在营养生长到一定阶段后,必需经历一段时间的短日照诱导,才能进行
    
    西南农业人学硕士学位论文
    摘要
    花芽分化和开花。
     从拟南芥和金鱼草中,人们利用突变体己经克隆到了一系列与开花时间有关的基因,如:尸尸Fl、
    CO、卢t洲、LD、API、LFY等开花促进基因和五人勇Fl、乙HY、TFLI等开花抑制基因,并对这些基因
    的结构、功能以及表达调控进行了深入研究,有的己经进入了应用研究阶段。如:华志明通过控制
    月尸1基因的超表达导致转基因烟草的花期明显提前;杨树正常开花需要8一10年,couPland将拟南
    芥LFY基因转入杨树中,6一7个月就开花;安利忻将A尸l基因转入矮牵牛,转基因植株表现出持
    续不断开花的特性。
     FPFI基因是1990年Melze:等人从拟南芥cDNA文库中分离得到的序列长约33obP的促进开
    花基因,他们检测到该基因在光周期诱导后很快在拟南芥顶端分生组织中表达。后来,Kaniat,3l等
    将尸尸Fl基因连上CaMV35S启动子再导入拟南芥中,使转基因植株的花期明显提前。黄琼华(2002)
    将该基因转入油菜中,也获得了具有明显早花、早熟性状的转化植株。
     本研究旨在通过对菊花再生体系及农杆菌介导的遗传转化体系的研究,将FPFI基因导入到菊
    花中,以期获得花期提前的菊花新材料,并为利用转基因技术改良菊花品种的广泛运用打F基础。
     主要工作和结果如下:
     1.高频再生体系的研究
     通过对5个菊花品种幼叶再生的研究,获得了“黄秀芳”以幼叶为外植体的高频再生体系,在
    以Ms十1.om眺BA+0.!m叭NAA的分化培养基中再生率可高达94%。在l趁MS培养基中添加
    0.05m妙NAA可使再生芽出根快、整齐、根粗壮。
     2.建立了以“黄秀芳”幼叶为受体的转化体系
     通过对外植体的Cef脱菌浓度、KM筛选浓度以及影响转化频率因素的研究,获得了根癌农杆
    菌介导的“黄秀芳”幼叶转化体系:叶盘在00、=0.5的根癌农杆菌菌液中浸染3Omin、45min共培
    养2一4d、延迟筛选3d;以100m留LCef为脱菌浓度,!sm留LKM为几卜盘分化抗性筛选浓度,!om醉
    KM为生根抗性筛选浓度。
     3.根癌农杆菌介导F尸尸1基因转化菊花及转基因植株的田间鉴定
     获得了一批尸尸Fl基因的转基因植株,平均转化率为2.75%。通过转基因植株园艺性状的田间
    观察,与对照相比,部分植株开花期明显提前,且其它园艺性状也发生了很大改变。主要表现在:
    植株变矮、叶片变小、叶色加深、分枝节位降低等,初步证明外源FPFI基因己在转基因植株中进
    行了表达。
     4.转基因植株的PCR检测
     对转基因植株?
The rosebush and the lily of the valley were planted in ancient Egypt and Syria before three thousands years according to historical materials. The earliest recordation about flower planting in China is that the Wu Guo's king-fu chai had ever constructed the phoenix tree garden to planted a great deal of flowers and trees at hui ji, China.Flower industry has become the one of the livingest industry of the world. The flower breeding has been gotten more and more recognition by plant breeders because of the development of economy and the stimulation of market. It promotes the continued development of flower breeding that the people's request for new varieties and high character. Breeders have bred a great deal of new flower varieties by taking routine cross breeding, radiation breeding, tissue culture breeding, polyploidy breeding, and spaceflight breeding etc. . Especially since 1990s, with the development of molecular biology and genetic engineering technique, it has become a study hotspot using transgenic t
    echnique breed new varieties. We can get anticipatory new materials (new varieties) of plants cultivated after the target gene is inducted directly into plant cell or tissue. They provide a more effective new method for direct breeding of flower. There are several tens kinds of flowers have gotten transgenic plants at present.
    Chrysanthemum is one of the ten famous flower originated in China with two thousands years history. And the earliest words recordation about chrysanthemum was in Li Ji. Chrysanthemum is not only population in China, but also far and wide in many countries of world. There are 7000 varieties of chrysanthemum in the world and more than 3000varieties in China, but abundance resources of chrysanthemum haven't been made full use. One cause is that most of them bloom regularly about November; a few of them bloom at summer or early autumn. Another factor is that most of varieties blooming early have small flowers and a little kinds and colors. The flowering time is the key for the development of chrysanthemum on some aspects. Most of breeders in the world are engaged in researches of flower color, flower shape, adverse-resistance in breed of chrysanthemum. The treatment of illumination as a normally method for changing flowering time with high cost and ark for strict technique but does not fit all kinds of chrysanth
    emum. This is one of the reasons for cut chrysanthemum is lack of
    
    
    
    abundant kinds in the market of at present. In order to overcome the difficulties of flowering time, Li Hongjian in Nan Jing agricultural university began breed new varieties of cut chrysanthemum at 1986 with routine hybridization method, which varieties cover many flower shape and color with breeding more than hundred varieties of chrysanthemum, but the problem of chrysanthemum's flowering time is not been solved completely. There are several difficulties in the traditional breeding methods, such as the great uncertainty, the highly difficult hybridization, the longer breeding periods and the difficulty of breaking up gene linkage. The excellent target genes can be transferred directly if you adopt transgenic method and take the foreign gene into chrysanthemum and make the flowering time of it produce anticipate changes. Furthermore, the advantages of more stability and shorter breeding even enriched the hereditary resources by this method.
    The flowering time of plants is controlled by genes according to other researches. The expression of the genes is modulated by environmental factors and the growth status of cell itself. Environmental factor modulate the grnes of flowering time depend on photoperiod and jarovization. Some plants are sensitive to the length of illumination, and they are divided into the long-day plant and the short-day plant depend on flowering must undergo a certain long-day or a certain short-day. Some plants' flowering must under go a certain time induction of lower temperature, and the promotive effect of lower temperature is named jarovization. The other plants can flower without
引文
1 章守玉,陈有民,王缺.花卉园艺[M].辽宁科学技术出版社,1982
    2 高健,卢惠萍.花卉辐射诱变育种研究进展[J].安徽农业大学学报,2000,27(3):228~230
    3 曹方萍.我国花卉产业发展研究[J].中国农垦经济,2003,7,40~42
    4 刘飞虎,熊丽.简述我国花卉育种现状[J].中国花卉园艺,2002,(3):24~25
    5 黄振国.黄色荷花新品种-友谊牡丹莲的选育[J].园艺学报,1987,14(2):129~131
    6 程金水,陈俊愉,赵世伟,等.金花茶杂交育种研究[J].北京林业大学报,1994,16(4):55~59
    7 白金龙.君子兰“短叶”品种的由来[J].中国花卉盆景,1986,(7):21
    8 谭广文.介绍花卉育种新葩-秋香鹤顶红[J].广东园林,1987,(2):41
    9 邱新军,陈孝泉,王淑芬.冬杜鹃新品种“雪中笑”与双亲关系的探讨[J].园艺学报,1990,17(2):145~148.
    10 唐舜庆.玫瑰新品种的选育[J].北京林业大学学报,1994,16(4):60~64
    11 张惠君,罗凤霞.花卉常规杂交育种的研究进展[J].沈阳农业大学学报,2001-08,32(4):317~320
    12 Umiel N, Dehan K, Kapan S. Genetic variation in carnation:color patterns of petals, number of buds and the arrangement of flower buds on the stems. Act Hort. [J]. 1987, 216:355~358
    13 Griesbach R J. Creation of new flower colors in Ornithogalum via interspecific hybridization[J]. J Amer Soci Hort Sci., 1993, 118 (3): 409~414
    14 Uosukainen M J. Breeding of frosthardy rhododendrons[J]. Journal of Agriculture Science in Finland, 1988,60(4): 235~254
    15 Arisumi K J. Breeding for the heat resistant rhodoendrons V. cross-compatibility and evaluation of breeding materials in section[J]. Rhododendron of subgenus Memorrs of the faculty of Kagoshima University, 1992, 28:61~73
    16 Singh K P. In vitro induction of mutation in carnation through gamma irradiation[J]. Jourmal of Ornamental Horticulture New Series, 1999, (2): 107~110
    17 Przybyla A A. Mutagenesis in creation of new Alstroemeria genotypes[J]. Acta Horticulture, 2000, 508:351~353
    18 刘小莉,刘飞虎.花卉育种技术研究进展[J].亚热带植物科学,2003,32(2):64~68
    19 李惠芬,李倩中.我国花卉育种研究进展[J].西南园艺,1999,27(1):36~39
    20 Antonyuk N M. Use of mutagens in breeding ornamental plants[J]. Intro duktsiyai Akklimatizat Siya Rastenii, 1991, 13:97~99
    21 谢兆辉,牟春红,王彬,等.植物多倍化及在育种上的应用[J].中国农学通报,2002,18(3):70~76
    22 何启谦,何基娜,俞洋.园林植物育种学[M],中国林业出版社,北京,1992
    
    
    23 王鸿鹤,葛欣,徐启江,等.秋水仙碱诱导重瓣大岩桐多倍体的研究[J].热带亚热带植物学报,1999,7(3):237~242
    24 张学方,岳桦,王秀云,等.矮牵牛多倍体诱导初探[J].北方园艺,1992,(1):37~38
    25 郭英,梁国鲁.小叶绿萝同源多倍体诱导研究初报[J].西南园艺,2002,30(4):1~3
    26 张兴翠,周昌华,殷家明,等.药用百合的多倍体诱导及快速繁殖[J].西南农业大学学报,2003,25(1):14~17
    27 岳桦.诱导金鱼草多倍体的初步研究[J].园艺学报,1990,17(1):76~80
    28 张永春,包满珠.生物技术与观赏植物种质资源的创新[J].北京林业大学学报,1998,20(2):95~99
    29 马宏,李振山,隋克臣.花卉试管繁殖及基因工程研究进展[J].牡丹江师范学院学报,1998,2:55~57
    30 孙志栋,王学德,毛根富,等.作物单倍体研究和应用进展[J].种子,2000(6):37~39
    31 裘文达,李曙轩.利用菊花花瓣组织培养获得新类型(初报)[J].浙江农业大学学报,1983,9(3):243~246
    32 赵成章.再论植物体细胞无性系变异及作物改良[J].生物工程进展,1993,13(4):32~36
    33 黄济明.组织培养在花卉研究中的应用[J].上海农业科技,1983(1):23~24
    34 刘青林,田砚亭,吴涤新.花卉的体细胞无性系变异及其在育种上的应用[J].北京林业大学学报,1992,14(2):90~97
    35 Johnson RT. Gamma irradiation in separation of chimeral genotypes in carnstion[J]. Hort Science, 1980, 15(5): 605~606
    36 简玉瑜.作物原生质体培养研究进展[J].华南农业大学学报,1993,14(1):65~67
    37 彭爱红,何永睿,邹修平,等.观赏植物组织培养与基因工程研究进展[J].亚热带植物科学,2002,31(2):58~63
    38 王文静,袁道强,高松洁.植物组织培养的应用现状[J].河南师范大学学报,2000,28(3):137~139
    39 王雁,李潞滨,韩蕾.空间诱变技术极其在我国花卉育种上的应用[J].林业科学研究,2002,15(2):229~234
    40 李金国,刘敏,王培生,等.空间条件对番茄诱变作用及遗传转化的影响[J].航天医学与医学工程,2000,13(2):114~118
    41 李源祥,蒋兴村,李金国,等.水稻空间诱变育种的研究[J].航天医学与医学工程,1998,11(1):21~25
    42 Zabotina O. Influence of microgravity conditions on the protoplasts' cell wall regeneration[J]. Physiologia Plantarum, 1991, 8(2): 41~43
    43 樊秋铃,刘敏.空间育种研究进展[J].航天医学与医学工程,2002,15(3):231~234
    44 Kordyum EL. Plant cell in the process of the adaptation to simulated microgravity[J]. Physiologist, 1984, 27(1): 33~36
    45 刘敏,王亚林,薛淮.模拟微重力条件下植物细胞亚显微结构的研究[J].航天医学与医学工程,1999,12
    
    (5):360~363
    46 蒋兴村.“8885”返地卫星搭载水稻种子获得的遗传变异[J].科学通报,1991,37(23):1819~1822
    47 密士军.航天诱变育种研究的新进展[J].黑龙江农业科学,2002,(4):31~33
    48 苏焕然,张丹,汪清胤,等.花卉基因工程研究进展[J].北方园艺,1996,4:26~28
    49 李美茹,陈金婷,孙梓健,等.花卉分子育种的研究进展[J].热带亚热带植物学报,2003,41(1):87~92
    50 Tanaka Y, Tsuda S, Kusumi T. Metabolic engineering to modify flowers color[J]. Plant Cell Physiology, 1998, (11): 1119~1126
    51 于晓南,张启翔.观赏植物的花色素与花色[J].林业科学,2002,38(3):147~153
    52 郭兆武,萧浪涛.观赏花卉分子育种及育种中的基因工程[J].长沙电力学院学报(自然科学版),2003,18(1):84~88
    53 徐昌杰.张上隆.植物类胡萝卜素的生物合成及其调空[J].植物生理学通讯,2000,34(6):64~70
    54 郑志亮.花卉作物的花色基因工程[J].福建农业科技,1996,1:23~24
    55 宋丽莉.基因工程在花卉品质改良中的应用[J].晋东南师范专科学校学报,2002,19(5);9~11
    56 Meyer P, Heidmann I, Forkmann G, et al. A new petunia flower color generated by transformation of a mutant with a maize gene[J]. Nature, 1987, 332: 677~678
    57 张石宝,胡虹,李树云.花卉基因工程研究进展Ⅰ:花色[J].云南植物研究,2001,23(4):479~487
    58 张石宝,胡虹,李树云.花卉基因工程研究进展Ⅱ:花型、花期、货架期[J].云南植物研究,2002,24(1):94~102
    59 华志明.花发育的基因调控与花性状的改造[J].生物技术通报,1998,1:16~20
    60 吴乃虎,刁丰秋.植物转录因子与发育调控[J].科学通报,1998,43(20):2133~2138
    61 Coen ES, Meyerowitz EM. The war of the whirls:genetic interactions controlling flower development[J]. Nature, 1991, 353:31~37
    62 于静娟,国凤利,赵德刚,等.矮牵牛花同源异型基因fbp2的克隆及其对烟草花形态的影响[J].植物学报,1999,41(1):45~50
    63 任祝三,张慧玲.转基因技术在切花育种中的应用[J].细胞生物学杂志,2000,22(2):67~71
    64 薛淮,刘敏,张纯花,等.花卉分子育种研究进展[J].生物工程进展,2002,22(2):81~84
    65 高俊平,姜伟贤,孙世菊.中国花卉科技信息全书[M].大连出版社,1998,28~36
    66 潘会堂,张启翔.花卉种质资源与遗传育种研究进展[J].北京林业大学学报,2000,22(1):81~86
    67 周音,张智奇,殷丽青,等.观赏植物基因工程研究进展及存在问题[J].上海农业学报,2000,(1):90~93
    68 Van Altvorst A C, Bovy A G. The role If ethylene in the senescence of carnation flowers[J]. Plant Regul, 1995, 16:43~53
    69 Gan S, Amasino R M. Inhibition of leaf senesceace by autoregulated production of cytokinin[J]. Science, 1995,
    
    270:1986~1988
    70 李鸿渐,邵键文.中国菊花品种资源的调查收集与分类[J].南京农业大学学报,1990,13(1):30~36
    71 李鸿渐.中国菊花[M].江苏科学技术出版社,1993,7
    72 李倩中,李蕙芬.我国花卉育种途径及进展[J].安徽农业科学,2002,30(5):797~798
    73 郭安熙,陈树国.菊花花色辐射诱变研究[J].核农学报,1997,11(2):65~73
    74 张学芳,杨利平,丁冰.卫星搭载对露地菊后代遗传性的影响[J].空间科学报,1996,16:166
    75 洪波,何淼,丁兵,等.空间诱变对露地栽培菊矮化性状的影响[J].植物研究,2000,20(2):212~214
    76 Ledger SE, Deroles SC, Given NK. Regeneration and Agrobatcrium-mcdiated transformation of Chrysanthemum [J]. Plant Cell Report, 1991, 10:195~199
    77 王春能,张启翔,高亦柯.菊花转基因研究进展[J].河南林业科技,2002,22(2):18~20
    78 Neal C G, Carolyn N, Christine L, et al. Modification of flower color in florist' s chrysanthemum :Production of a white-flowering variety through molecular genetics[J]. BIO/Technology, 1994, 12:268~271
    79 Levy Y Y, Dean C. Control of flowering time[J]. Curr Opin Plant Biol, 1998, 14 (1): 49~54
    80 Chory J, Nagpal P, Peto C A. Phenotypic and genetic analysis of det2, a new mutant that affects light-regulated seedling development in Arabidopsis[J]. Plant Cell, 1991, 3:445~459
    81 Koornneef M, Alonso-Blanco C, Peeters A J M. Genetic control of flowing time in Arabidopsis[J]. Annu Rev Plant Physiol Plant Mol Biol, 1998, 49:345~370
    82 Zagotta M T, Shannon S, Jacobs C, et al. Early-flowering mutants of Arabidopsis thaliana[J]. Aust J Plant Physiol, 1998, 19:411~418
    83 Schaffer R, Ramsay N, Samach A. Late Elongated Hypocotyl, an Arabidopsis gene encoding a Myb transcription factor, regulates circadian rhythmicity and photopcriodic responses[J]. Cell, 1998, 93:1219~1229
    84 Melzer S, Kampmann G, Chandler J, et al. FPFI modulates the competence to flowering in Arabidopsis[J]. The Plant Journal, 1999, 18 (4) : 395~405
    85 雍伟东,种康,许智宏,等.高等植物开花时间决定的基因调空研究[J].科学通报,2000,45(5):455~466
    86 Chandler J, Wilson A, Dean C. Arabidopsis mutants showing an altered response to vemalization[J]. Plant, 1996, 10 (4) : 637~644
    87 许智宏.植物发育与生殖的研究:进展与展望[J].植物学报,1999,7:909~920
    88 Wang Z Y, Tobing E M. Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression[J]. Cell, 1998, 93:1207~1217
    89 韩玉珍,李睿,孟繁静.拟南芥开花的光周期调节[J].植物生理学通讯,1998,34(5):401~406
    90 种康,谭克辉.植物生理与分子生物学[M].北京:科学出版社,1998,563~578
    91 Finnegan EJ, Peacock WJ, Dennis ES. Reduced DNA methylation in Arabidopsis thaliana results in plant
    
    development[J]. Proc Nat Acad Sci. USA, 1996, 93:8449~8454
    92 Weigel D, Alvarez J, Smith D R, et al. LEAFY controls floral meristem identity in Arabidopsis[J]. Cell, 1992, 69:843~854
    93 Coupland G. Leafy blooms in aspen[J]. Nature, 1995, 377:482~483
    94 Mandel M A, Guatafson-Bown C, Savidge B, et al. Molecular characterization of the Arabidopsis floral. homeotic gene APETALAI[J]. Nature, 1992, 360:273~277
    95 An LX, Liu RW, Chen ZL. Studies on petunia hybrida transformed with flower-meristem-identity gene API[J]. Aeta Botanica Sinica, 2001, 43 (1) : 63~66
    96 华志明.花发育的基因调控与花性状的改造[J].生物技术通报,1998,1:16~20
    97 Kania T, Russenberger D, Peng S, et al. FPFI promotes flowering in Arabidopsis[J]. Plant Cell, 1997, 9:1327~1338
    98 傅荣昭,刘敏,梁红键,等.通过根癌农杆菌介导法获得菊花转基因植株[J],植物生理学报,1998,24(1):72~76
    99 王关林,方宏筠.植物基因工程(第二版)[M].北京,科学出版社,2002:744
    100 吴晓霞,陈刚,张彪,等.植物组织培养中褐变的研究进展[J].河北林果研究,2002,17(3):284~288
    101 Dan-hua Yu, Carole P Meredith. The influence of explant origin on tissue browning and shoot production in shoottip culture of grapevine[J]. J Amer Soc Hort Sci., 1986, 111(6):972~975

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700