基于脂肪酸指纹分析的牛肉产地溯源研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
食品产地溯源技术是食品产业链风险管理的有效措施。生物体中脂肪酸组成和含量与其生长地域密切相关,为食品产地溯源研究与应用提供了可能。目前利用脂肪酸指纹分析进行食品产地溯源的研究主要集中在植物源性食品如橄榄油、咖啡豆等方面,不同地域来源动物组织中脂肪酸指纹信息有何差异,以及它们受地域、饲料、季节等因素的影响还不清楚。
     牛肉营养品质好、价值高,是人们主要的肉食品之一。但受“疯牛病”、“口蹄疫”等人畜共患病的影响,牛肉质量安全问题备受关注,牛肉产地溯源技术体系亟待建立和完善。本研究系统分析脂肪酸指纹分析在牛肉产地溯源中的可行性,以及各项脂肪酸指标受地域、饲料、季节因素的影响,旨在建立牛肉产地脂肪酸指纹溯源指标体系和判别模型,为牛肉产地溯源技术研究与应用提供技术支撑。
     本研究首先从代表我国四大肉牛产区的吉林、宁夏、贵州、河北地域随机采集牛肉样品,利用方差分析、多重比较分析和判别分析,比较四大区牛肉样品中脂肪酸组成及含量特征,各项指标对牛肉产地来源的判别情况,初步分析脂肪酸指纹分析技术对牛肉产地溯源的可行性,并初步筛选用于牛肉产地溯源的脂肪酸指标体系。然后通过在吉林长春控制饲料的牛模型试验,研究牛肌肉组织中脂肪酸组成及含量受喂养饲料变化的影响情况;通过在内蒙太仆寺旗、陕西杨凌、河南南阳三个地域的牛迁徙模型试验,分析地域、季节及其交互作用对牛肌肉中脂肪酸含量组成特征的影响,最后对初步建立的牛肉产地溯源脂肪酸指标体系和判别模型进行验证和确认,筛选有效脂肪酸指标体系并建立判别模型。通过分析得到以下结论:
     (1)吉林、宁夏、贵州和河北四大牛肉产区的牛肉中脂肪酸组成和含量有显著差异。吉林和河北地区牛肉中的SFA含量显著高于贵州和宁夏地区;宁夏地区牛肉中C16:1和C18:1单不饱和脂肪酸含量均显著高于其他地区;贵州与河北地区牛肉中a-C18:3、C20:5和PUFA-n3极显著高于吉林和宁夏地区。通过判别分析,初步筛选出a-C18:3、C14:0、C17:0、SFA和MUFA五项可用于牛肉产地溯源的潜在指标,它们对四大牛肉产区的整体判别率为82.0%。
     (2)吉林长春牛模型试验中,除了SFA和C16:1两种脂肪酸在不同饲料组之间有显著差异外,其余脂肪酸a-C18:3、C14:0、C16:0、C17:0、C18:0、C18:2、C20:5、MUFA和n-3PUFA均无显著差异。
     (3)内蒙古太仆寺旗、陕西杨凌和河南南阳三个地域喂养的肉牛脂肪酸指纹特征不同,存在显著差异的脂肪酸为C14:0、C16:0、SFA、C16:1、C18:1、MUFA、C17:0、C18:0、a-C18:3、C20:5和PUFA-n3。C15:0、C17:0、a-C18:3和C18:1在内蒙古太仆寺旗不同饲养期之间存在显著差异;陕西杨凌在不同饲养期之间脂肪酸含量组成无显著差异。通过一般线性模型分析,筛选出C18:1、C20:5、PUFA-n3、a-C18:3、C14:0、C17:0和MUFA七项可用于牛肉产地溯源的参考指标,它们对各饲养期样品之间区分效果较好,而且地域特征明显。
     (4)a-C18:3、C14:0、C17:0和MUFA是用于牛肉产地溯源的比较稳定的指标体系,它们对四大肉牛产区样品的整体判别率83.6%,判别效果较好。
     (5)牛肉脂肪酸指纹分析是鉴别牛肉产地来源的一项潜在技术。
Food traceability techonology is an effective measure of the food chain risk management. Fattyacid composition and content of organisms closely related to the geographical environment of its growth,which provides the possibility of food traceability research and application. Fatty acid fingerprintanalysis of food traceability mainly focused on the plant-derived food such as olive oil, coffee. It’s notclear aboat the difference of fatty acid fingerprint information of animal-derived food tissues fromdifferent geographical sources, and the impact subject to region, feed, season and other factors is alsounclear.
     Beef is of nutritional quality and high value, which is one of the main meat of the people. But bythe effect of “mad cow disease”,“foot and mouth disease” of zoonoses, beef quality and safety issuesare on concern, beef provenance system is urgent to be established and improved. In this study, thefeasibility of the fatty acid fingerprint analysis used for the origin tracing of the beef is systematicalyanalyzed, as well as the fatty acid indicators effected by region, feed, and seasonal factors. The studyaims at establishing beef faty acid fingerprint tracing indicator system and discriminant model, andsupplying technology supports for the research and application of beef tracing.
     Firstly, this beef samples were collected randomly from the representative of China's four majorbeef producing areas of Jilin, Ningxia, Guizhou, Hebei. According to the analysis of variance, multiplecomparisons and discriminant analysis, the fatty acid composition and content characteristics of the beefsamples were compared among four major regions, the indicators of beef origin discrimination wereanalyzed, the feasibility of the fatty acid fingerprint analysis for beef tracing were preliminary analyzed,the potential traceability index of fatty acid were preliminary choosed. And then according to controlingthe feed of cattle model test in Changchun city, Jilin province, the influence on the fatty acidcomposition and content in bovine muscle tissue by changing feed were studied; According to the cattlemigration model test of Taipusiqi in the three regions of Inner Mongolia, Yangling city, Shaanxiprovince and Nanyang city, Henan province, the effect of region, season and their interactions on thecomposition of the fatty acid content of bovine muscle tissue were analyzed. Finally, the initialestablished fatty acid index system and the discriminant model of beef traceability were verified andvalidated, the effective fatty acid index system was screened, and the discriminant model wasestablished. According to the analysis,the following conclusions were obtained:
     (1)The content and composition characteristics of fatty acid in beef samples from Jilin, Guizhou,Ningxia and Hebei are significantly different. The content of SFA are significantly higher in Jilin andHebei than that in Ningxia and Guizhou; the content of C16:1and C18:1in Ningxia are significantlyhigher than other areas; Guizhou and hebei obtain the extremely higher content of a-C18:3, C20:5andPUFA-n3than in Jilin and Ningxia. According to discriminant analysis, five potential indicators of a-C18:3, C14:0, C17:0, SFA and MUFA used for beef are preliminary screened. The overall classificationrate of four regions by the five indicators is82.0%.
     (2)In controling the feed of cattle model test in Changchun city, Jilin province, the content of SFAand C16:1are significantly different among different feeding groups,the other fatty acids a-C18:3,C14:0, C16:0, C17:0, C18:0, C18:2, C20:5, MUFA and n-3PUFA show no difference.
     (3)The beef samples from TP, YL and NY contain various content and composition characteristicsof fatty acid. There are significant difference of fatty acids C14:0, C16:0, SFA, C16:1, C18:1, MUFA,C17:0, C18:0, a-C18:3, C20:5and PUFA-n3. The contents of C15:0, C17:0, a-C18:3and C18:1differsignificantly among different breeding periods in TP; The fatty acid content show no significantdifference among different raising periods in YL. By the general linear model analysis, the sevenreference index of C18:1, C20:5, n-3PUFA, a-C18:3, C14:0, C17:0and MUFA which can be used tobeef origin traceability are filtered, and the samples of each feeding period are well distinguished, thegeographical characteristics are distinct.
     (4)a-C18:3, C14:0, C17:0and MUFA are relatively stable index system for beef provenance, theoverall discriminant rate of four beef-producing regions is83.6%, which shows good judging effect.
     (5)Fatty acid fingerprinting technology is a potencial technology of beef origin tracing.
引文
1.于维军.建立质量安全追溯制提升我国农畜产品国际竞争力.动物科学与动物医学,2004,2(9):46~48.
    2.郭波莉,魏益民,潘家荣.牛肉产地溯源技术研究.北京:科学出版社,2009:2~4.
    3. Schwagele F. Traceability from a European perspective[J]. Meat Science,2005,71(1):164~173.
    4.彭增起,曹兵海,,靳红果等,我国牛肉安全现状调查报告.中国畜牧科学,2009,326-328.
    5.卢佩章,戴朝政,张祥民.色谱理论基础(第二版).北京:科学出版社,1997,23.
    6.易现峰,李来兴,张晓爱.人工食物对高原鼠稳定性碳和氮同位素组成的影响动物学研究.2004,25(3):232~235.
    7.寇秀颖,于国萍.脂肪和脂肪酸甲酯化方法的研究.食品研究与开发,2005,26(2):46~47.
    8.达世禄.色谱学导论.武汉:武汉大学出版社,1988,39~48.
    9.傅若农,顾峻岭,近代色谱分析.北京:国防工业出版社,1998,15~52.
    10.范文来,徐岩.应用GC-FID和聚类分析比较四川地区白酒原酒与江淮流域白酒原酒.酿酒科技,2007(11):75~78
    11.吴潇,潘玉春,唐学明.肉制品的DNA溯源技术.猪业科学,2009,3:105~106.
    12.冯大伟,李八方,赵雪,等.鲤鱼、鱿鱼和鳕鱼皮中脂肪酸的气相色谱质谱GC-MS分析与比较.水利渔业,2006,26(5):21~23.
    13.豆成林.淮南猪肉品质特性研究[硕士学位论文].杨林:西北农林科技大学,2008.
    14.孙远明,余群力.食品营养学.北京:中国农业大学出版社,2002,55~60.
    15.徐国珍.黑山羊脂肪酸成分测定及营养价值评价.山地农业生物学报,1998,(5):304~306.
    16.曾旭敏,武田博.青海藏羊肉与日本羊肉脂肪酸组成及脂肪酸含量的比较分析.青海畜牧兽医杂志,2008,38(6):15~17.
    17.朱喜艳,曹旭敏,武田博.青海牦牛与日本牛动物性食品脂肪酸含量比较分析.青海畜牧兽医杂志,2005,35(4):16~17.
    18.魏雅萍,丁凤焕,徐惊涛,等.秏牛、犏牛及黄牛肉脂肪酸和风味物质的分析.青海畜牧兽医杂志,2009,39(5):3~4.
    19.杨明,龙虎,文勇立,等.四川牦牛、黄牛不同品种肌肉脂肪酸组成的气相色谱-质谱分析.食品科学,2008,29(3):444~449.
    20.郭冰.气相色谱仪及其应用.石油化工自动化,2007,5:88~89.
    21.宋凡.气相色谱法测定猪肉脂肪酸组成.饲料工业,2007,28(11):38~39.
    22.蔡先锋,郭波莉,魏益民.牛肉近红外光谱的地域及饲养期特征分析.中国农业科学,2011,44(20):4272~4278.
    23.王炜,张伟敏.单不饱和脂肪酸的功能特性.中国食物与营养,2005:44~46.
    24.肖颖,王军波,梁学军,等.富含单不饱和脂肪酸的坚果对高脂血症患者血脂水平的影响.中国公共卫生,2002,18(8):931~934.
    25.郭波莉.牛肉产地同位素与矿物元素指纹溯源技术研究[博士学位论文].北京:中国农业科学院,2007.
    26.马剑波.内蒙古地区牛乳营养成分及脂肪酸的研究[硕士学位论文].内蒙古:内蒙古农业大学,2008.
    27.张晓焱,苏学素,焦必宁.农产品产地溯源技术研究进展.食品科学,2010,31(3):271~278.
    28.张晓焱.基于近红外光谱的柑桔产地溯源及橙汁掺假识别研究[硕士学位论文].重庆:西南大学,2010.
    29. Schmidt O, Quilter J M, Bahar B, et al. Inferring the origin and dietary history of beef from C,Nand S stable isotope ratio analysis. Food Chemistry,2005,91:545~549.
    30. Capone S, Siciliano P, Quaranta F, et al. Analysis of vapours and foods by means of an electronicnose based on a sol–gel metal oxide sensors array. Sensors and Actuators B,2000, B69(3):230~235.
    31. Mannina L, Patumi M, Proietti N, et al. Geographical characterization of Italian extra virgin oliveoils using high-field1H NMR spectroscopy. Journal of Agricultural and Food Chemistry,2001,49(6):2687~2696.
    32. Bertran E, Blanco M, Coello J, Iturriaga H, et al. Near-infra-red spectrometry and patternrecognition as screening methods for the authentication of virgin olive oils of very closegeographical origins. Journal of Near Infrared Spectroscopy,2000,8(1):45~52.
    33. Bianchi G, Giansante L, Shaw A, et al. Chemometric criteria for the characterisation of ItalianProtected Denomination of Origin(DOP)olive oils from their metabolic profiles. Eur J Lipid SciTechnol,2001,103:141~150.
    34. Decker M, Trihaas J, Nielsen P V. White mould cheese: New tools for objective quality evaluation.Denmark: Technical University of Denmark,2003:210.
    35. Miguel Angel, Rodriguez Delgado, Guillermo, et al. Principal component analysis of thepolyphenol content in young red wines. Food Chemistry,2002,78(4):523~532.
    36. Kamm W, Dionisi F, Fay LB. Analysis of steryl esters in cocoa butter by on-line liquidchromatography-gas chromatography. J Chromatogr A,2001,918(2):341~349.
    37. Steine C, Beaucousin F, Siv C, et al, Potential of semi-conductor sensor arrays for the originauthentication of pure Valencia orange juices. Sgs-cervac, France.Journal of Agricultural&FoodChemistry,2001,49:3151~3160.
    38. Goodner K L, Baldwin E A. The comparison of an electronic nose and gas chromatograph fordifferentiating NFC orange juices. Citrus&Subtropical products Research Laboratory, USDAFlorida. Proceeding,2001,114:158~160.
    39. Liu Shuhua, ZHANG Xuegong, Sun Suqin. Discrimination and feature selection of geographicorigins of traditional Chinese medicine herbs with NIR spectroscopy, Chinese Science Bulletin,2005,2:179~184.
    40. Young A W, Hyo J K, Jung H C. Discrimination of herbal medicines according to geographicalorigin with near infrared reflectance spectroscopy and pattern recognition techniques. Journal ofPharmaceutical and Biomedical Analysis,1999,21:407~413.
    41. Renou J P, Deponge C, Gachon P, et al. Characterisation of animal products according togeographic origin and feeding diet using nuclear magnetic resonance and isotope ratio massspectrometry: Cow milk. Food Chemistry,2004,85:63~66.
    42. Sung T C, Yaakob B, Che M, et al. Rapid Profiling of Animal-Derived Fatty Acids Using Fast GC×GC Coupled to Time of Flight Mass Spectrometry. Am Oil Chem Soc,2009,86:949~958.
    43. William N M, Robert J, Maxwell, et al. Effects of dietary regimen and tissue site on bovine fattyacid profiles. Anim Sci,1984,59:109~121.
    44. Collomb M, Butikofer U, Sieber R, et al. Composition of fatty acids in cow’s milk fat produced inthe Lowlands, Mountains and Highlands using high resolution gas chromatography. InternationalDairy Journal,2002,2:62~66.
    45. Bugaud C, Buchin S, Coulon J B, et al. Influence of the nature of alpine pastures on plasminactivity, fatty acid and volatile compound composition of milk. Le Lait,2001,81(3):401~414.
    46. Bugaud C, Buchin S, Coulon J B, et al. Relationships between flavour and chemical compositionof Abondance cheese derived from different types of pastures. LeLait,2001,81(5):593~607.
    47. Pillonel L, Luginbuhl W, Picque D, et al. Analytical methods for the discrimination of thegeographic origin of Emmentaler cheese: Mid-infrared and near-infrared spectroscopy. EuropeanFood Research and Technology,2002,216(2):174~178.
    48. Pillonel L, Ampuero S, Tabacchi R, et al. Analytical methods for the determination of thegeographic origin of emmental cheese:vola-tile compounds by GC/MS-FID and electronic nose.European Food Research and Technology,2003,216(2):179~183.
    49. Bettina M F, Gerard G, Ruedi H, et al. Geographic origin of meat—elements of an analyticalapproach to its authentication. Eur Food Res Technol,2005,221:493~503.
    50. Zunin P, Boggia R, Salvadeo P, et al. Geographical traceability of West Liguria extravirgin oliveoils by the analysis of volatile terpe-noid hydrocarbons. Journal of Chromatography A,2005,1089(1/2):243~249.
    51. Lucia G, Daria D V, Giorgio B. Classification of monovarietal Italian olive oils by unsupervised(PCA) and supervised (LDA) chemometrics. Food Agriculture,2003,83:905~911.
    52. Stefanoudaki E, Kotsifaki F, Koutsaftakis A. Classification of Virgin Olive Oils of the Two MajorCretan Cultivars Based on Their Fatty Acid Composition. Journalof American Oil Chemists’Socity,1999,76(5):623~626.
    53. Ollivier D, Artaud J, Pinatel C, et al.Triacylglycerol and fatty acid compositions of French virginolive oils. Characterisation by chemometrics.Journal of Agricultural and Food Chemistry,2003,51:5723~5731.
    54. Ranalli A, Mattia G, Ferrante M L, etal. Incidence of olive cultivation area on analyticalcharacteristics of the oil. Rivista Italiana delle Sostanze Grasse,1998,74(11):501~508.
    55. Salvador M D, Aranda F, Gomez-Alonso S, et al. Influence of extraction system, production yearand area on. Cornicabra virgin olive oil: a study of five crop seasons. Food Chemistry,2003,80:359~366.
    56. Lee D S, Lee E S, Kim H J, et al. Reversed phase liquid chromatographic determination oftriacylglycerol composition in sesame oils and chemometric detection of adulteration. AnalyticaChimica Acta,2001,429:321~330.
    57. Scott L T, Fred J E. A comparison of oil and fat content in oilseeds and ground beef-usingsupercritical fluid extraction and related analytical techniques. Food Research International,1997,30(5):365~310.
    58. Miguel A, Rodryguez D, Guillermo G, et al. Principal component analysis of the polyphenolcontent in young red wines. Food Chemistry,2002,78:523~532.
    59. Alonso R M, Serra F, Reniero F,et al.Botanical and geographical characterization of green coffee(coffea arabica and coffea Caneph ora):chemometric evaluation of phenolic and methylxanthinecontents.Journal of Agricultural and Food Chemistry,2009,57(10):4224~4235.
    60. Kamm W, Dionisi F, Fay LB, et al. Analysis of steryl esters in cocoa butter by on-line liquidchromatography-gas chromatography,2001,918(2):341-349.
    61. Matter D, Schenker H, Husmann G, et al. Characterization of animal fats via the GC pattern offame mixtures obtained by transesterification of the triglycerides. Chromatographia,1989,27:1~2.
    62. A V Fisher, M Enser, R I Richardson, etal. Fatty acid composition and eating quality of lamb typesderived from four diverse breed production systems. Meat Science,2000,55:141~147.
    63. Jean P R, Guy B, Christine D, et al. Characterization of animal products according to geographicorigin and feeding diet using nuclear magnetic resonance and isotope ratio mass spectrometry. PartII: Beef meat. Food Chemistry,2004,86:251~256.
    64. Ense T, Hallett K G, Hewett B, et al. Fatty Acid Content and Composition of UK Beef and LambMuscle in Relation to Production System and Implications for Human Nutition. Meat Science,1998,49(3):329~341.
    65. Moloney A P, French P. Fatty acid composition and eating quality of muscle from steers offeredgrazed grass; grass silage or concentrate based diets. In: Proceedings XX International GrasslandCongress, Sao Pedro, Sao Paulo, Brazil,2001,708~709.
    66. Malauaduli A E, Siebert B D, Bottema C D, et al. Breed comparison of the fatty acid compositionof muscle phospholipids in Jersey and Limousin cattle. Anim Sci,1998,76:766~773.
    67. Renou J P, Deponge C, Gachon P, et al. Characterization of animal products according togeographic origin and feeding diet using nuclear magnetic resonance and isotope ratio massspectrometry: cow milk. Food Chem,2004,85:63~66.
    68. Marius C, UeliButikofera, Robert S, et al. Composition of fatty acids in cow’s milk fat produced inthe lowlands, mountains and highlands of Switzerland using high-resolution gas chromatography.International Dairy Journal,2002,12:649~659.
    69. Ranalli A, Mattia G, Ferrante M L, et al. Incidence of olive cultivation area on analyticalcharacteristics of the oil. Rivista Italiana delle Sostanze Grasse,1998,74:501~508.
    70. Zunin P, Boggia, Raffaella, et al. Geographical traceability of West Liguria extravirgin olive oils bythe analysis of volatile terpenoid hydrocarbons. Journal of Chromatography A,2005,1089(1/2):243~249.
    71. Longobardi F, Ventrella A, Napoli C, et al. Classification of olive oils according to geographicalorigin by using1H NMR fingerprinting combined with multivariate analysis. Food Chemistry,2010,130(1):177~183.
    72. Kamm W, Dionisi F, Fay LB, et al. Analysis of steryl esters in cocoa butter by on-line liquidchromatography-gas chromatography. J Chromatogr A,2001,918(2):341~349.
    73. Diraman, H Diraman, H Saygi, et al.Relationship between geographical origin and fatty acidcomposition of Turkish virgin olive oils for two harvest years. Journal of the American OilChemists’ Society,2010,87(7):781~789.
    74. Risticevic S, Carasek E, Pawliszyn J. Headspace solid-phase micro extraction-gaschromatographic-time-of-flight mass spectrometric methodology for geographical originverification of coffee. AnalyticaChimicaActa,2008,617(1/2):72~84.
    75. Liu L, Cozzolino D, Cynkar W U, et al. Preliminary study on the application of visible-nearinfrared spectroscopy and chemometrics to classify riesling wines from different countries. FoodChemistry,2008,106(2):781~786.
    76. Radovic B S, Careri M, Mangia A, et al. Contribution of dynamic headspace GC-MS analysis ofaroma compounds to authenticity testing of honey. Food Chemistry,2001,72(4):511~520.
    77. Stefanoudaki E, Kotsifaki F, Koutsaftakis A, et al. Classification of Virgin Olive Oils of the TwoMajor Cretan Cultivars Based on Their Fatty Acid Composition. Journal of American OilChemists’ Society,1999,76(5):623~626.
    78. Longobardi F, Ventrella A, Casiello G, et al. Characterization of the geographical origin of Greekvirgin olive oils based on instrumental and multivariate statistical analysis. Food Chemistry,2011,09:130~145.
    79. Dufey P A, Collomb M. Production of beef in mountain areas and fatty acid composition of themuscle longissimusdorrsi in the Herens breed. Prospect for traceability.15th Meeting of theFAO-CIHEAM Mountain Pastures Network Integrated research for the sustainability of mountainpastures,2009:175~177.
    80. Alonso Salces R M, Serra F, Reniero F, et al. Botanical and geographical characterization of greencoffee(coffea arabica and coffea Caneph ora):chemometric evaluation of phenolic andmethylxanthine contents. Journal of Agricultural and Food Chemistry,2009,57(10):4224~4235.
    81. Scollan N, Hocquette J F, Nuernberg K, et al. Innovations in beef production systems that enhancethe nutritional and health value of beef lipids and their relationship with meat quality. Meat Sci,2006,74:17~33.
    82. Demirel G, Ozpinar H, Nazli B, Keser O. Fatty acids of lamb meat from two breeds fed differentforage: concentrate ratio. Meat Sci,2006,72:229~235.
    83. Solomon M B,Lynch G P,Paroczya E, et a1.Influence of rapeseed meal,whole rapeseed,andsoybean meal on fatty acid composition and cholestero lcontent ofmuscle and adipose tissue fromranl lambs.J Anim Sci,1991,69:40~55.
    84. Cramer D A, Barton R A, Shorland F B. A comparison of the effects of white clover (Trifoliumrepens) and of perennial ryegrass (Lolium perenne) on fat composition and flavour of lamb. J.agric. Sci. Camb.,1967,69:367~373.
    85. Hartfoot C G, G P Hazl ewood. Lipid metabolism in the rumen. In: P. N. Hobson and C. S. Stewart(eds.) The rumen microbial ecosystem.1997:382~426.
    86. Lunt D K, S B Smith. wagyu beef holds profit potential for US Feedlots feedstuffs,2002,8:8.
    87. Seideman S C. Methods of expressing collagen characteristics and their relationship to meattenderness and muscle fiber types. J.Food Sci,1986,(51):273~276.
    88. Stefanoudaki E, Kotsifaki F, et al. Classification of Virgin Olive Oils of the Two Major CretanCultivars Based on Their Fatty Acid Composition. Journal of American Oil Chemists’ Society,1999,76:623~626.
    89. Dufey P A, Collomb M. Production of beef in mountain areas and fatty acid composition of themuscle longissimusdorrsi in the Herens breed: Prospect for traceability.15th Meeting of theFAO-CIHEAM Mountain Pastures Network Integrated research for the sustainability of mountainpastures,2009:175~177.
    90. Marius C, Butikofera U, Robert S, et al. Composition of fatty acids in cow’s milk fat produced inthe lowlands, mountains and highlands of Switzerland using high-resolution gas chromatography.International Dairy Journal,2002,12:649~659.
    91. Jean P R, Bielickia G, Christine D, et al. Characterization of animal products according togeographic origin and feeding diet using nuclear magnetic resonance and isotope ratio massspectrometry. Part II: Beef meat. Food Chemistry,2004,86:251~256.
    92. Stefanoudaki E, Kotsifaki F, et al. The potential of HPLC triglyceride profiles for the classificationof Cretan olive oils. Food Chemistry,1997(60):425~432.
    93. Zunin P, Boggia R, Salvadeo P, et al. Geographical traceability of West Liguria extravirgin oliveoils by the analysis of volatile terpenoid hydrocarbons. Journal of Chromatography A,2005,1089(1/2):243~249.
    94. Ollivier D, Artaud J, Pinatel C, et al.Triacylglycerol and fatty acid compositions of French virginolive oils. Characterisation by chemometrics.Journal of Agricultural and Food Chemistry,2003,51:5723~5731.
    95. Fisher A V, Enser M, Richardson R I, et al. Fatty acid composition and eating quality of lamb typesderived from four diverse breed production systems. Meat Sci.,2000,55:141~147.
    96. Garciapt, Penselna, Sanchoam, et al. Beef lipids in relation to animal breed and nutrition inArentina. Meat Science,2008,79:500~508.
    97. Wood J D, Ensern, Fisher A V, et al. Fat deposition, fatty acid composition and meat quality: AReview. Meat Science,2008,78:343~358.
    98. Wachira A M, Sinclair L A, Wilkinson R G,et al. Effects of dietary fat source and breed on thecarcass composition, n-3polyunsaturated fatty acid and onjugated linoleic acid content of sheepmeat and adipose tissue. British Journal of Nutrition,2002,88:697~709.
    99. Wood J D, Nute G R, Richardson R I, et al. Effects of breed, diet and muscle on fat deposition andeating quality in pigs. Meat Science,2004,67:651~667.
    100. Sanudo C, Enser M, Campo M M, et al. Fatty acid composition and fatty acid characteristics oflamb carcasses from Britain and Spain. Meat Sci.,2000,54:339~346.
    101. Aurousseau B, Bauchart D, Calichon E, et al. Effect of grass or concentrate feeding systems andrate of growth on triglyceride and phospholipid and their fatty acids in the M. longissimus thoracisof lambs. Meat Science,2004,66:531~541.
    102. Warren H E, Scollan N D, Enser M, et al. Effects of breed and a concentrate or grass silage diet onbeef quality in cattle of3ages. I: Animal performance, carcass quality and muscle fatty acidcomposition. Meat Science,2008,78:256~269.
    103. French P, Oriordan E G, Monahan F J, et al. Fatty acid composition of intra-musculartriacylglycerols of steers fed autumn grass and concentrates. Livestock Production Science,2003,81:307~317.
    104. Elmore J S, Warren H H, Mottram M S, et al. A comparison of the aroma volatiles and fatty acidcompositions of grilled beef muscle from Aberdeen Angus and Holstein Fresian steers fed dietsbased on silage or concentration. Meat Science,2004,68:27~33.
    105. Lup, Zhangly, Yinjd, et al. Effects of soybean oil and linseed oil on fatty acid compositions ofmuscle lipids and cooked pork flavor. Meat Science,2008,80:910~918.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700