电化学脱盐法对钢筋混凝土材料特性影响与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用电化学脱盐法能够有效去除钢筋混凝土中的氯离子,电化学脱盐技术作为一种较为新颖的技术,国内外虽然做了大量的研究,但是还不够系统深入。本文通过研究影响电化学脱盐效率的几种因素,建立电化学脱盐的数学模型,从而对电化学脱盐技术更加深入的了解;通过研究电化学脱盐技术对钢筋混凝土材料力学特性,微观结构,电化学特性等的影响,为实际工程更科学的使用电化学脱盐技术,提供理论依据。本文的研究内容主要包括以下几个方面:
     1)通过自行设计的电化学脱盐装置研究了不同水灰比、不同电流密度在不同脱盐周期下对电化学脱盐效率的影响。研究结果表明:在电化学脱盐的前六周,随着脱盐时间的增加,混凝土中氯离子含量基本程线性递减,实际工程中可以通过延长脱盐时间来达到电化学脱盐的目的;水灰比对电化学脱盐有显著影响,水灰比提高,混凝土的密实度降低,电化学脱盐效率提高;电流密度高,混凝土中离子传输的能垒高,电化学脱盐效率高。
     2)通过对电化学脱盐前后钢筋混凝土材料的抗压强度试验和拉拔试验,研究发现:电化学脱盐对钢筋混凝土材料抗压性能影响不大,但是随着脱盐周期的增加,钢筋和混凝土之间的粘结性能降低;利用液氮吸附法测量脱盐前后混凝土内孔隙结构的变化。研究发现:电化学脱盐技术改变了混凝土材料内部的孔隙特征。
     3)通过测量脱盐前后钢筋半电池电位变化和交流阻抗谱试验,研究发现:经过脱盐处理钢筋的电位正移,电化学脱盐处理的试件有明显的特征阻抗谱出现,说明电化学脱盐技术有使活化钢筋逐渐恢复钝化的趋势。
     4)通过研究电化学脱盐的影响因素,得出不同水灰比,电流密度混凝土中氯离子含量随时间变化关系,研究钢筋和混凝土之间的粘结机理,得出钢筋和混凝土材料之间的粘结强度和脱盐周期之间的关系,为实际工程中估算脱盐电流、脱盐周期等提供理论根据。
As a kind of novel technology, electrochemical chloride extraction technology can remove chloride ions in the concrete effectively. The scholars around the world have done lots of work, however, the research are still not thorough enough. Several factors on efficiency of electrochemical chloride extraction are compared, by establishing the mathematical model, electrochemical chloride extraction technology could be comprehended more thorough. By researching influence of electrochemical chloride extraction technology on mechanics characteristic, microscopic structure, electrochemistry characteristic of reinforced concrete materials, more scientific use about electrochemical chloride extraction technology can be offered to the actual project. The main works of this paper include:
     Firstly, the influence on efficiency of electrochemical chloride extraction due to the different water ratio, the different current density under the different desalinization cycle has been studied by the instrument we designed ourselves. The results indicated that: at the previous six weeks when the chloride ion content in the concretes decreased linearity as desalinization time's increased, in the actual project, electrochemical chloride extraction may be served by extending desalinization time; The water ratio has the remarkable influence on the electrochemistry desalinization, the water ratio enhances as concretes compactness reduces, thus the electrochemistry desalinization efficiency could be enhanced; Also, the higher current density is, the larger concretes intermediate ion transmission's energy barrier, which can result in the high electrochemistry desalinization efficiency.
     Secondly, according to the compressive strength of reinforced concrete material during the electrochemistry, and strength change between the steel bar and the concretes, utilizing the liquid nitrogen adsorption law to test the pore structure change, the results indicated that: the electrochemistry desalts has little effect on the reinforced concrete material resistant to compression performance, however, along with desalinization cycle increases, the concretes bonding properties between the steel bar and concrete reduces; the pore structure can be changed due to the electrochemical chloride extraction technology, and which results in the change on some performance of reinforced concrete materials.
     Thirdly, by the half-cell potential method and the alternating-current impedance spectrum experiment,we can discovered that: the electrochemistry desalinization processing test sample showed the obvious characteristic impedance spectrum after the desalinization the electric potential to move,which can explained that the electrochemistry desalinization technology could activate the steel bar to resume deactivated gradually.
     Finally, the mathematical model which is affected by the different factor can be obtained by researching theses factors and the total equation which based on the different influencing factor is obtained, more scientific use about electrochemical chloride extraction technology can be offered to the actual project.
引文
1.金伟良,赵羽习.混凝土结构耐久性.科学出版社, 2002
    2.洪定海.混凝土中钢筋腐蚀与保护.中国铁道出版社,北京, 1998
    3.洪乃丰.混凝土中钢筋腐蚀与防护技术(1)——钢筋腐蚀危害对混凝土的破坏作用.工业建筑, 1999, (2):24~28
    4. Wei chung Yeih, Jiang Jhy Chang, Chi Che Hung. Selecting an adequate procedure for the electrochemical chloride removal. Cement and Concrete Research. 2006, (36 ):562~570
    5.姬永升,袁迎曙,丁北斗等.钢筋混凝土结构局部修补电化学不相容实验研究.混凝土, 2004, (6):3~6
    6.赵卓,蒋晓东.受腐蚀混凝土结构耐久性检测诊断.黄河水利出版社, 2006
    7.张明春,陈爱芝.海水环境混凝土耐久性探讨.商品混凝土, 2005, (4):33~37
    8.范庆新,成立,于其俊,张永建,王新祥等.电化学脱盐原理及其应用技术要点.广东建材. 2004, (10):18~20
    9.陈年和,王军强.化学脱盐对钢筋力学性能的影响.徐州建筑职业技术学院学报. 2001, 1(1):35~37
    10. Corrosion and Protection of metals in Contact with Concrete. Heiot-Watt University, European Commision Cost 509 Draft Final Report, Edinburgh, 1996, (9):1~3
    11.李翠玲,路新瀛,张海霞.确定氯离子在水泥基材料中扩散系数的快速试验方法.工业建筑. 1998, (6):23~26
    12.范庆新,余其俊,成立,李铁锋,韦江雄,张永健.电化学脱盐技术及其效果初探.混凝土. 2005, (12):101~104
    13.成立,余其俊,韦江雄,范庆新.电化学除盐试验研究.广东建材. 2006, (7):8~9
    14. A J Van den Hondel, Polder R B. Electrochemical realkalisation and chloride removal of concrete. Construction Repair. 1992, (10):19~24
    15. Schneck U. Investigation on the chloride transformation during theelectrochemical chloride extraction process. Material and Corrosion. 2000, (51):91~96
    16.李森林,范卫国,蔡伟成,葛保中,朱雅仙.电化学脱盐防腐技术的室内试验研究.水利水运工程学报. 2001, (3):36~40
    17. Elsener B, Molina M, Bohni H. The electrochemical removal of chlorides from reinforced concrete. Corrosion Science. 1993, (35):1563~1570
    18.朱雅仙,朱锡昶,罗德宽,葛燕,李森林,范卫国,朱秀娟.电化学脱盐对钢筋混凝土性能的影响.水运工程. 2002, (5):8~12
    19. Miyagawa T. Influence of Desalination on the Behavior of Reinforced Concrete Beams. Construction Repair. 1996 (4):20~23
    20. Ueda T. Influences of Desalination on Bond Behavior Between Concrete and Reinforcing Steel. In:Proc. of International Conference on Concrete under Severe Conditions, 1995 (1):625~634
    21. Lock C E. Effect of Impressed Current on Bond Strength BetweenSteel Rebar and Concrete. Corrosion, Paper, 1983(178)
    22.周新刚,周长军,王振.混凝土中消除氯离子的原理与应用.工业建筑. 2002, 32(2):15~18
    23.朱雅仙,朱锡昶,罗德宽,葛燕,李森林,范卫国,朱秀娟.电化学脱盐对钢筋混凝土性能的影响.水运工程. 2002, (5):8~12
    24. Lankard D.R, Slatter J.E, Holden W.A, Niest D.E. Neutralization of chloride in concrete. FHWA Report No.FHWA-RD-76-6,Battelle Columbus Laboratories. September 1975
    25. Ahmad S, Bhattacharjee B, Wason R. Experimental service lifeprediction of rebar-corroded reinforced concrete structure. ACI Materials Journal. 1997, 94(4):60~311
    26. Plder R, Vander H.J. Electrochemical realkalisation and chloride removal of concrete. State of the art, laboratory and field experience, Proceedings of RILEM Conference. Rehabilitation of Concrete Structures, Melbourne. 1992, 135~147
    27. Andrade C. Calculation of chloride diffusion coefficients in concrete from ionic migration measurements. Cem Concr Res, 1993, 23 (3):724~742
    28. Castellote M, Andrade C, Alonso C. Electrochemical removal of chlorides modelling of the extraction, resulting profiles and determination of theefficient time of treatment. Cement and Concrete Research, 2000, 30:615~621
    29. Sergi G, Yu SW, Page CL. Diffusion of chloride and hydroxylions in cementitious materials exposed to a saline environment. Magazine of Concrete Research, 1992, 44(158):9~63
    30. Mangat PS, Molloy BT. Prediction of free chloride concentration in concrete using routine inspection data. Magazine of Concrete Research. 1994, 46(169):87~279
    31. Berke NS, Hicks MC. Predicting chloride profiles in concrete. Corrosion Engineering. 1994, 50(3): 9~234
    32. Tang L. Electrical accelerated methods for determining chloride diffusivity in concrete: current development. Magazine of Concrete Research. 1996, 48(176): 9~173
    33. Masi M, Colella D, Radaelli G, Bertolini L.Simulation of chloride penetration in cement-based materials. Cement and Concrete Research. 1997,27(10):601~1591
    34. Samson E, Marchand J, Beaudoin JJ. Describing ion diffusion mechanism in cement-based materials using the homogenization technique. Cement and Concrete Research. 1999, 29(10): 500~1341
    35. Marchand J. Modelling the behavior of unsaturated cement systems exposed to aggressive chemical environments. Materials and Structures/Materiaux et Constructions. 2001, 34:195~200
    36. Johannesson BF. Diffusion of a mixture of cations and anions dissolved in water. Cement and Concrete Research. 1999, 29:700~1261
    37. Yu Wang, Long-yuan Lib, Page C.L. Modelling of chloride ingress into concrete from a saline environment. Building and Environment. 2005, 40:1573~1582
    38. Ihekwaba N.M, Hope B.B. Pull - out and bond degradation of steel rebars in ECE concrete. Cement and Concrete Research. 1996, (26 ): 267~282
    39. Rose G.E. Desalination- a review of research on possible change in the steel- to- concrete bond strength. Proceeding of the international conference on repair of concrete structures. Svolver, Norway, May, 1997:309~318
    40.王军强,范卫国.电化学脱盐对钢筋混凝土性能影响的初步研究.水利科技, 2002, (1): 50~53
    41. Miller J.B, Nustad G.E. Effect of electrochemical tretment on steel- toconcrete bond strength.Engineering Solution to Industrial Corrosion Problems, Nace, Sandefjord, June 1993:49
    42. Orellan J.C, Escadeillas G. Electrochemical chloride extraction: efficiency and side effects. Cement and concrete research, 2004, (34): 227~234
    43.李森林.电化学脱盐处理对钢筋-砂浆体系影响的研究.南京:南京水利科学研究院, 2001
    44.李森林.脱盐处理对钢样-混凝土界面微观结构的影响.海洋工程第22卷第2期
    45.张宝兰,卫淑珊.华南海港钢筋混凝土暴露十年试验.水运工程, 1999(3): 6~13
    46.王新祥,邓春林,成立,韦江雄,余其俊,文梓芸.混凝土在电化学脱盐过程中内部离子迁移和结构变化的研究.混凝土与水泥制品. 2006年第4期
    47. Buenfeld N.R and Broomfield J.P. Influence of Electrochemical chloride extraction on the bond between steel and concrete. Magazine of concrete research, 2000, 52(2): 79~91
    48. Buenfeld N.R and Broomfield J.P. Effect of electrochemical chloride removal on rebar bond structure and concrete properties. Pro.of Inter Conf.on Corrosion and Corrosion Protection of steel in concrete, ED. by Swamy R N, Univ.of Sheffield UK, 1994:1439~1450
    49. Engineering Solution to Industrial Corrosion Problems, Nace, Sandefjord, June 1993:49
    50.朱雅仙,朱锡昶,葛燕,武世翔,朱秀娟.用半电池电位评估钢筋混凝土构件中钢筋腐蚀状态.水利水运工程学报. 2003, 12(4):41~44
    51. Green W.K, Lyon S.B, Scantlebury J.D. Electrochemical changes in chloride contaminated reinforced concrete following cathodic polarization. Corros Sci, 1993, (35):1627~1631
    52.卓蓉晖.水泥混凝土结构和性能研究的新方法——交流阻抗谱法.国外建材科技. 2005, 26(1):19~24
    53.邓春林,余其俊,韦江雄,王新祥,文梓芸.电化学除盐后钢筋混凝土电化学性能的变化.混凝土. 2007, (1):14~18
    54. Gu.P, Hristova R. A study of corrosion inhibitor performance in chloride contaminated concrete corrosion as electrochemical impedance spectroscopy. ACI Materials Journal, 1997, 94(5):385~395
    55. Sagoe-Crentsil K K, Glasser F P, Irvine J T S, Electrochemical characteristics of reinforced concrete corrosion as determined by impendance spectroscopy. British Corrosion Journal, 1992, 27(2): 113~118
    56.魏宝明,储伟,汪鹰.混凝土中钢筋的腐蚀与保护.腐蚀与保护. 1999, 20(2):56~58
    57.魏宝明,金属腐蚀理论及应用.化学工业出版社. 1984, 12
    58.刘晓敏,宋光玲.混凝土中钢筋腐蚀破坏得研究概况.材料保护. 1996, 29(6):15~20

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700