微波技术在活性炭烟气脱硫中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对活性炭在微波场中的升温行为、活性炭的微波改性及其脱硫以及载硫活性炭的微波解吸进行了比较系统的研究。
     试验结果显示,活性炭在微波场中的升温速率很快,在试验条件下,180秒后基本达到温度最大值。活性炭在微波场中的升温过程可分为三个阶段:线性升温期、对数升温期和稳定期。影响活性炭升温过程各因素的重要性依次是:微波功率>>加热时间>载气量>>活性炭质量。活性炭的升温速率和温度最大值随微波输入功率增大而增大;随载气量的增大而减小;受活性炭质量的影响极小。
     微波改性活性炭的脱硫性能远好于原炭,试验中改性活性炭相对于原炭的吸附容量增加率高达144.3%~288.0%。改性后活性炭表面的孔隙结构没有发生明显的变化;而表面碱性基团数量和N元素含量明显增加。微波改性后活性炭脱硫能力提高的主要原因是炭表面碱性基团数量和N元素含量的增加。
     微波解吸过程中SO_2的脱附速率和回收速率都很快,试验中反应570秒就基本解吸完全。微波解吸出口SO_2的体积浓度和质量回收率都很高,试验中最高分别达到25%和99.7%。增加微波功率既有利于获取高浓度的SO_2气体,又有利于提高SO_2的回收率;减小载气量有利于获取高浓度SO_2气体,但不利于SO_2的回收;活性炭质量对SO_2体积浓度和回收率的影响很小。各因素对SO_2回收率的影响程度依次是:解吸时间>载气量>微波功率>活性炭质量。载硫活性炭的微波解吸反应遵从一级动力学模式,脱附速率常数k随微波功率增加呈对数增加,随载气量增加呈指数增加。
The behavior of activated carbon's temperature increasing in the field of microwave, the modification of activated carbon(AC) by microwave heating and its adsorption capability of SO2, the desorption of SO2 from AC by microwave are investigated in a bench scale.
    Experimental results show that AC can strongly absorb and fully use microwave energy and its temperature will increase rapidly and reach the maximum after 180 seconds. The temperature rising process of the AC in microwave's field can be divided into three steps: linearity rise step, logarithm rise step and stability step. The order of degree that the investigated factors affects the AC's temperature changing is: input power of microwave>>heating time>carrier gas volume flux>>activated carbon weight. Moreover, the higher the microwave power is, the quicker the AC's temperature increase and the higher the temperature's maximum is. On the other hand, smaller N2 volume flux is benefit to AC's temperature-rising. Comparatively, activated carbon weight is not so much important as far as AC's temperature changing process is concerned.
    The desulfurization capability of modified activated carbon by microwave is higher than that of original one ranging from 144.3% to 288.0%. The change of porous texture of Modified AC by microwave is not so much obvious compared with original one, while the quantity of surface basic functional groups and Nitrogen elements of modified AC is much more than original one.
    
    
    The process of desorption and reclamation of SO2 from activated carbon is so rapid that the AC' regeneration could be nearly completed within 570 seconds. The maximal volume content of SO2 in carrier gas (N2) and the maximal mass reclamation ratio of sulfur dioxide is about 25% and 99.7% respectively. Increasing input microwave power benefits obtaining higher volume content of SO2 and more mass ratio of reclaimed SO2, and decreasing N2 volume flux benefits attaining higher volume content of SO2 but is not good as to the reclamation of SO2 Comparatively, the influence of AC's weight on the desorption and reclamation of SO2 is very little. The order of degree that those factors affects the reclamation ratio of SO2 is: reaction time > carrier gas volume flux > power of microwave >activated carbon weight.
    The desorption process of sulfur dioxide from activated carbon by microwave promotion accords with the first order kinetics model, and the rate constant raises logarithmically with the increase of microwave power and exponentially with the carrier gas volume.
引文
[1]中国环境保护产业协会 中国环境保护产业技术装备水平评价[M] 北京:中国环境科学出版 2000.第1版:131
    [2]http://www.zhb.gov. cn/649368268829622272/index.shtml
    [3]李晶,刘清华,丁大伟.浅谈城市大气污染现状及其综合防治.云南环境科学.2000.19(1):43-45
    [4]孙金栋,朱养华.火电厂脱硫技术应用现状及发展.北京建筑工程学院学报.2002.18(1):13-18
    [5]刘德军,陈平.快速热解在高硫煤燃烧前脱硫中的应用可行性研究.煤炭转化.1999.22(3):58-61
    [6]Yang J.K, Chen S.E Chemical Desulfurization of Coal Using Microwave Irradiation. Proceedings of the 5th International Conference on Processing and Utilization of High-Sulfur.Coals. 1993.: 317
    [7]Ryu Hee W, Chang Yong K, Kim Sang D. Microbial Coal Desulfurization in an Airlift Bioreactor by Sulfur-Oxidizing Bacterium Thiobacillus Ferrooxidans.Fuel.Proeessing Technology.1993.36(1-3): 267-275
    [8]江爱朋,陈亮,金余其等.煤泥流化床燃烧脱硫试验研究.锅炉技术.2001.32(8):27-32
    [9]王智微,张朝阳.高硫煤在循环流化床燃烧室内的脱硫研究.洁净煤技术.2002.8(3):43-46
    [10]Zhang Lian, Sato Atsushi, Ninomiya Yoshihiko, et al.In Situ Desulfurization during Combustion of High-Sulfur Coals Added with Sulfur Capture Sorbents. Fuel.2003.82(3): 255-266
    [11]Naruse Ichiro, Kim Heejoon, Lu Guoqing, et al. Study on Characteristics of Self-Desulfurization and Self-Denitrification in Biobriquette Combustion.Symposium (International) on Combustion. 1998.2:2973-2979
    [12]Wolff E.H.P., Montfoort A.G., van den Bleek C.M. Fluidized Bed Combustion of Coal: The Low Temperature Regenerative Desulfurization Process.Institution of Chemical Engineers Symposium Series. 1991.123: 175-191
    [13]颜岩,贾力,彭晓峰等.干法烟气脱硫反应的试验研究.环境工程.2002.20(3):
    
    38-41,24
    [14]黄学敏,马广大.干法烟气脱硫用高效粒状脱硫剂的研究.西安建筑科技大学学报.2000.32(3):245-247
    [15]沙钝,张显振,高良交.烟道气石灰石干法脱硫反应机理的研究.化学工程师.1994.(45):29-31
    [16]刘世斌,李存儒,韩镇海等.工业锅炉烟气干法脱硫.太原工业大学学报.1995.26(3):8-13
    [17]Kim Heejoon, Mizuno Akira, Sakaguchi Yuhei, et al.Development of a New Dry-Desulfurization Process by a Non-Thermal Plasma Hybrid Reactor.Energy and Fuel.2002.16(16): 1601
    [18]Ishizuka T, Yamamoto T, Murayama T, et al.Effect of Calcium Sulfate Addition on the Activity of the Absorbent for Dry Flue Gas Desulfurization.Energy and Fuel.2001.15(2): 438-443
    [19]沈伯雄,姚强,徐旭常.基于流态化的半干法烟气脱硫技术.煤炭转化.2002.25(2):14-16
    [20]韩琪,李忠华.石灰石/石膏湿法烟气脱硫的化学过程研究.电力环境保护.2002.18(1):1-3,21
    [21]Wada Jun, Tsujino, Toshio. Research and Development of a New wet Desulfurization Process for Coal Gasification Combined Cycle (IGCC). Journal of the Japan Institute of Energy.1999.78(5): 345-353
    [22]V. Nagibin. Radiation-Chemical Method of Gas Purification from SO_2 Radiat [J] .Phys. Chem.1992.50(4): 307-329
    [23]Majundar S.A. Novel Liquid Membrane Technology for Removal of SO_2 / NO_x from Flue Gas [J]. Prepr. ACS. Dir. Pet. Chem.1991.36(1): 25-32
    [24]Schmidt D.S. The Selective High Temperature Removal of SO_2 / NO_x from Flue Gas [J]. Proc. Intersoc. Engery Convers Eng. Conf. 1993, 28th (2): 245-249
    [25]李晓斐,傅大放,马光.半干法烟气脱硫新技术——粉末-颗粒喷动床技术.环境污染治理技术与设备.2002.3(6):53-56
    [26]何春红,郑嘉明,阮湘泉.活性炭在烟气脱硫中的应用.化学工业与工程.2002.19(1):96-100
    
    
    [27] 张守玉,向银花,赵建涛等.活性炭质材料脱硫机理探讨.煤炭转化.2002.25(2):29-34
    [28] 范延臻,王宝贞.活性炭表面化学.煤炭转化.2000.23(4):26-30
    [29] Teng H, Yeh T. S, Hsu L. Y. Preparation of Activated Carbon from Bituminous Coal with Phosphoric Acid Activation.Carbon. 1998.36(9): 1387-1395
    [30] Rodriguez-Reinoso F, Molina-Sabio M. Activated Carbons from Lignocellulosie Materials by Chemical and/or Physical Activation: An Overview. Carbon. 1992.30(7): 1111-1118
    [31] Tamon H, Okazaki M.Influence of Acidic Surface Oxides of Activated Carbon on Gas Adsorption Characteristics.Carbon. 1996.34(6):741-746
    [32] Jagiello J, Bandosz T. J, Schwarz J. A.A Study of the Activity of Chemical Groups on Carbonaceous and Model Surfaces by Infinite Dilution Chromatography. Chromatographia. 1992.33(9-10):441-444
    [33] Morawski A. W, Inagaki M.Application of Modified Synthetic Carbon for Adsorption of Trihalomethanes from Water.Desalination. 1997.114:23-27
    [34] Vinke P, van Verbree M, Voskamp A. F, et al. Modification of the Surfaces of Gas-Activated Carbon and a Chemically Activated Carbon with HNO_3.Carbon.1994. 32(4):675-686
    [35] 张颖,李光明,陈玲等.活性炭再生技术的发展.化学世界.2000.8:441-444
    [36] Bagreev. A, Rahman. H, Bandosz. T. J.Thermal Regeneration of a Spent Activated Carbon Previously Used as Hydrogen Sulfide Adsorbent.Carbon. 2001.39(9): 1319-1326
    [37] Ko. Tse-Hao, Chiranairadul. P. Regeneration of PAN-Based Activated Carbon Fibers by Thermal Treatments in Air and Carbon Dioxide. Journal of Materials Research.1995. 10(8): 1969-1976
    [38] Hoist Joachim, Martens Burkhard, Gulyas Holger, et al.Aerobic Biological Regeneration of Dichloromethane-Loaded Activated Carbon.Journal of Environmental Engineering. 1991.117(2): 194-208
    [39] Rinkus Keith, Reed Brian E, Lin Wei.NaOH Regeneration of Pb and Phenol-Loaden Activated Carbon.Ⅰ: Batch Study Results.Separation Science and Technology.1997.32(14): 2367-2384
    [40] Matheickal J.T, Yu Q, Linden J. In-Situ Regeneration of Phenol-Saturated Activated
    
    Carbon Using Ethanol. Developments in Chemical Engineering and Mineral Processing. 1998.6(5): 263-272
    [41] Narbaitz, Roberto M, Cen Jianqi. Electrochemical Regeneration of Granular Activated Carbon Water Research.1994.28(8): 1771-1778
    [42] Chihara Kazuyuki, Oomori Kanji, Oono Takao, et al.Supercritical CO_2 Regeneration of Activated Carbon Loaded with Organic Adsorbates.Water Science and Technology. 1996.35(7) :261-268
    [43] Madras Giridhar, Erkey Can, Akgerman Aydin.Supercritical Fluid Regeneration of Activated Carbon Loaded with Heavy Molecular Weight Organics.Industrial & Engineering Chemistry Research.1993.32(6) :1163-1168
    [44] 王三反.超声波再生活性炭的初步研究.中国给水排水.1998.14(2):24-27
    [45] 刘守新,王岩,郑文超.活性炭再生技术研究进展.东北林业大学学报.2001.29(3):61-63
    [46] 孙来九.微波加热技术与化学反应.现代化工.1994.(9):44-45
    [47] 梁亮,梁逸曾.微波辐射技术在有机合成中的应用.化学通报.1996.(3):26-27
    [48] 陈津,刘浏,曾加庆等.微波加热在含碳球团中应用的研究.工业加热,2001.(6):8-10
    [49] 杨伯伦,贺拥军.微波加热在化学反应中的应用进展.现代化工.2001.21(4):8-12
    [50] Guo Jia, Lua Aik Chong. Preparation of Activated Carbons from Oil-Palm-Stone Chars by Microwave-Induced Carbon Dioxide Activation.Carbon.2000.38(14): 1985-1993
    [51] Menendez J.A., Menendez E.M., Iglesias M.J., et al. Modification of the Surface Chemistry of Active Carbons by Means of Microwave-Induced Treatments.Carbon.1999. 37(7): 1115-1121
    [52] Coss P. Moses, Cha Chang Yul. Microwave Regeneration of Activated Carbon Used for Removal of Solvents from Vented Air. Journal of the Air and Waste Management Association.2000.50(4): 529-535
    [53] Bradshaw S.M., Van Wyk E.J., De Swardt J.B. Preliminary Economic Assessment of Microwave Regeneration of Activated Carbon for the Carbon in Pulp Process. Journal of Microwave Power and Electromagnetic Energy. 1997.32(3): 131-144
    [54] Bradshaw S.M., Van Wyk E.J., De Swardt J.B. Microwave Heating Principles and the
    
    Application to the Regeneration of Granular Activated Carbon.Journal of the South African Institute of Mining and Metallurgy.1998.98(4) :201-210
    [55] Van Wyk E.J., Bradshaw S.M., De Swardt J.B. Dependence of Microwave Regeneration of Activated Carbon on Time and Temperature.Journal of Microwave Power and Electromagnetic Energy.1998.33(3):151-157
    [56] 王学谦,宁平.活性炭吸附硫化氢及微波辐照解吸研究.环境污染与防治.2001.23(6):274-275,279
    [57] Weng Sihao, Wang Jie. Exploration on the Mechanism of Coal Desulfurization Using Microwave Irradiation / Acid Washing Method.Fuel Processing Technology.1992.31(3): 233-240
    [58] 张泃立,马宝歧,倪炳华.天然气微波法脱硫试验研究.西安石油学院学报.1994.9(3):70-71
    [59] Martin D, Radoiu M, Calinescu I, et al. Combined Electron Beam and Microwave Treatment for Flue Gas Purification.Materials and Manufacturing Processes.1999. 14(3) :365-382
    [60] 秦华,徐岩,付俊青.微波诱导等离子体法对燃煤烟气脱硫的研究.煤质技术.1999.(5):27,29
    [61] 周立秋,刘钢.陶瓷微波加热过程模型研究.硅酸盐学报.1995.23(6):618-625
    [62] 白向钰,吴苏,鹿安理等.新型加工陶瓷材料的微波加热系统.微波学报.1999.15(2):174-178
    [63] 曲世鸣,张明.微波混合加热技术及应用前景.物理.1999.28(2):117-119
    [64] 李开喜,凌立成,刘朗等.热处理改性的活性炭纤维的脱硫活性.催化学报.2000.21(3):264-268
    [65] 刘军利,古可隆.高温处理对活性炭孔隙结构的影响.林产化学与工业.1999.19(3):37-40
    [66] Stohr B, Boehm H.P., Schlogl R. Enhancement of the Catalytic Activity of Activated Carbons in Oxication Reactions by the Thermal Treatment with Ammonia or Hydrogen Cyanide and Observation of a Superoxide Species as a Possible inter Mediate [J]. Carbon.1991.29(6) :707
    [67] Davini E Adsorption and Desorption of SO_2 on Activated Carbon: The effect of Surface
    
    Basic Groups. Carbon.1990.28(4) :565-571
    [68]陈尚芹编著.环境污染物监测.冶金工业出版社.1988.第1版:64-65,76-78
    [69]Cvetanovic R.J, Amenomiya Y. A Temperature Programmed Desorption Technique for Investigation of Practical Catalyst [J]. Catal.Rev. 1999.8:2726-2731
    [70]蒋文举,宁平主编.大气污染控制工程.四川大学出版社.2001.第1版:167

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700