分子在飞秒激光场中电离解离及在六极静电场中转动态选择研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了分子在外场中的行为和性质,试图得到详细和系统的相关分子与飞秒激光场相互作用以及分子能级结构和分子选态操控的相关动力学信息。
     多原子分子在飞秒激光场中的电离解离过程由于其量子态复杂性和多粒子关联一直是人们研究的热点,尤其在中等强度飞秒激光场中分子的电离解离过程,目前还有很多现象没有很好的解释。这些问题要求发展新实验探测技术手段。我们发展了一套速度成像探测实验平台,能量分辨率好于0.1 eV。在此平台上我们研究了CH_3I分子在与飞秒激光相互作用过程中的解离电离和库仑爆炸过程。实验上探测到CH_3I分子与飞秒激光作用后产生的不同碎片离子的角度分布和速度分布。通过对速度分布的研究,确认了一些碎片离子不同速度分量产生的解离电离或者库仑爆炸通道。在光强3.7×10~(14) W/cm~2下,测量和分析表明,碎片离子I+产生于5个通道,其中有2个解离电离通道和3个库仑爆炸通道;I2+产生于4个通道,其中有1个解离电离通道和3个库仑爆炸通道;I~(3+)产生于2个库仑爆炸通道。实验表明,在光强范围2×10~(14) ~ 6×10~(14) W/cm~2下CH_3I分子的碎片离子角度分布有很强的各向异性,这是由于飞秒激光与CH_3I分子的相互作用中的几何准直效应造成。不同的解离电离和库仑爆炸通道产生的碎片离子的角度分布差别很大,库仑爆炸通道产生的碎片离子的角分布的各向异性要比解离电离通道产生的碎片离子的角分布的各向异性要强很多。根据实验结果,我们提出了CH_3I分子在飞秒激光场中的高次电离是通过序列电离过程发生的,这个模型很好地解释了我们观察到的产生于不同反应通道的碎片离子动能随光强增加而增加的现象。
     利用飞秒泵浦‐探测技术,结合飞行时间质谱探测方法,研究了CS_2分子和SO2两种分子解离电离超快动力学过程。通过仔细控制波长为266 nm的泵浦光和400 nm的探测光的光强,在实验上得到了CS_2分子的母体离子CS_2~+和碎片离子S~+和CS~+随泵浦探测延迟时间的演化信号。观察到在时间零点之后,CS_2分子吸收两个266 nm的光子激发到里德堡6s态和在时间零点之前CS_2分子吸收三个400 nm的光子激发到里德堡4f态的演化规律。对实验数据拟合分析得到了这两种里德堡态的时间演化的信息。我们还首次研究了碎片离子随泵浦-探测延迟时间的演化情况,通过碎片离子分支比S+/CS+随时间的演化的探测,推断这些碎片离子是从母体离子的C 2?g+态解离产生的。实验中还观察到碎片离子的比值S~+/CS~+依赖于两束激光的延迟时间,这说明母体离子CS_2~+的解离过程与里德堡中间态随时间的演化相关联。?
     实验上我们还首次研究了SO_2分子里德堡F态的超快解离动力学。结果表明,SO_2分子经过里德堡F态的解离倾向于沿着反应坐标S-O发生,解离可能沿着两个不同的路径发生:其中一个为F态的预解离过程,演化时间为几百个飞秒;而另一个为F态经过内转换到E态,演化时间则为几个皮秒。实验还发现SO2里德堡F态解离也可能存在产生中性碎片原子O和S的解离通道。这些研究不仅拓展了上述分子的激发态超快动力学研究,而且深化了对于这些分子的结构、能量及其解离通道的认识。
     建立了六极杆静电场分子转动态选择装置并完成了对称陀螺分子CH_3I和CHCl_3转动态选择的实验。通过对比这两种分子在六极杆静电场中的聚焦曲线的理论模拟和实验结果,发现改变六极杆静电场可以通过一阶Stark效应聚焦并选择分子不同的转动态。在两种分子聚焦曲线的上升部分,我们获得了相对较单一的转动态分子束,而在聚焦曲线的平台部分,我们得到的是分子许多转动态叠加在一起的分子束。通过进一步降低转动温度或者增加分子束的速度,预期能够获得更为单一的转动态分子。这些研究为单量子态分子的结构以及动力学研究提供了基础。
In this thesis, we attend to study the properties of molecules in external field and try to obtain the detailed dynamic information concerning with the interaction of polyatomic molecules with intense femtosecond laser, the energy structure of simple triatomic molecules and manipulating dynamical processes with rotational state selection of molecules.
     Dissociation and ionization of polyatomic molecules in intense femtosecond laser field due to their complexity of quantum states and many-particle correlation has been a hot topic for years. Especially on the subject at moderate laser intensities, there are still a lot of phenomena which need to be interpreted. For further solving these problems, the development of novel spectroscopic techniques is necessary. We have built a velocity map imaging apparatus with a kinetic energy resolution of <0.1 eV. Using this apparatus, the interaction of CH_3I molecules with intense femtosecond laser has been investigated experimentally. The kinetic energy distribution and the angular distribution of the various atomic fragment ions In+ (n=1-3) have been measured. Several dissociative ionization and coulomb explosion channels were identified for In+ (n=1-3). In the laser field with the intensity of 3.7×10~(14) W/cm~2, five channels can produce the fragment ion I+, including two dissociative ionization channels and three Coulomb explosion channels, one dissociative ionization and three Coulomb explosion channels can lead to the fragment ion I2+, and there are only two Coulomb explosion channels contributing to the generation of the fragment ion I3+. As expected for a geometric alignment dominated the interaction process, these atomic ion fragments show the anisotropic angular recoil distributions peaked in the laser polarization direction. Also these results exhibited very different angular distribution of the fragment ions from dissociative ionization and Coulomb explosion channels. Furthermore, we have also studied the dependence of the kinetic energy release (KER) of In+ (n=1-3) upon the laser intensity. The relative weight of the various contributions from the identified dissociative ionization and Coulomb explosion channels was found to depend on the laser intensity obviously. We found that the interpretation of this experimental observation invoked a sequential ionization process of the molecules.
     Ultrafast dynamics and dissociative ionization of CS_2 and SO2 were studied by means of femtosecond time resolved pump-probe method combined with a time-of- flight mass spectrometer. By carefully controlling the intensities of the 266 nm and 400 nm lasers as pump or probe light, the transients of both parent ion (CS_2~+) and fragment ions (S+ and CS+) were observed. It was found that all ion signals decay exponentially, but different for the cases with 266 nm or 400 nm light as pumping. We attributed these differences to the evolution of different Rydberg states 6s and 4f pumped by two 266 nm photons or three 400 nm photons, respectively. The lifetimes of these two Rydberg states were obtained simultaneously from one pump-probe experiment by the best fitting of the transients. It is the first time to study the transient single of fragment ions S+ and CS+ produced by dissociation of CS_2~+. Our observation suggested that the final state of parent ionic molecules CS_2~+ in the laser field is its C 2?g+ state, based on the measured S+/CS+ branching ratio. Another observation in the present experiment is that the S+/CS+ ratio is dependent on the delay time of the two lasers, indicating that the dissociation process of CS_2~+ is related to the evolution of the intermediate Rydberg state of the neutral molecules. This femtosecond pump-probe method was also employed to study the dissociation dynamics of SO2. The results clearly showed that the F state of SO2 dissociates along the S-O bond. The transients of S+ and O+, however, have different behavior, which consist a fast growth and a long decay component. Possible mechanism of the fragment formation was discussed for understanding the dissociation dynamics of the F state of SO2. Our experimental results extend the previous studies on ultrafast dynamics of these molecules on excited states and also provide better understanding for structures, energies, and dissociation processes of these molecules.
     A molecular rotational state-selecting hexapole machine has been designed and built in our lab. We studied the focusing curves of the two symmetry top molecules, CH_3I and CHCl3, on the hexapole machine. Comparing to the theoretical simulation, we observed different rotational states could be focused at different voltage applied on the hexapole via the first order Stark effect. During the rising part of the focusing curve for CH_3I, there was only one single rotational state at some particular voltage. As for CHCl3 there were two rotational states contributing to the rising part of its focusing curve. It is expected that if the rotational temperature of the molecular beam can be further decreased or the beam velocity can be increased, more pure population on a single rotational state in molecular beam could be achieved. This in turn will be important for producing an ideal initial sample beam in the precision study of structure and dynamics of molecules on a unique quantum state.
引文
[1] W BENJAMIN. Imaging in Molecular Dynamics: Technology and Applications[M]. Cambridge University Press, New York, 2003.
    [2] G SUITS and R E CONTINETTI. Imaging in Chemical Dynamics[M]. ACS Symposium Series 770, Oxford University Press, 2000.
    [3] M N R ASHFOLD, N H NAHLER, A J O EWING, O P J VIEUXMAIRE, R L TOOMES, T N KITSOPOULOS, I A GARCIA, D A CHESTAKOV, S M WU and D H PARKER. Imaging the dynamics of gas phase reactions[J]. Physical Chemistry Chemical Physics, 2006, 8 (1): 26-53.
    [4] R DIESEN, J C WAHR, and S E ADLER. Photochemical recoil spectroscopy[J]. The Journal of Chemical Physics, 1969, 50 (8): 3635-3642.
    [5] J FRANKLIN, P M HIERL and D A WHAN. Measurement of the translational energy of ions with a time of flight mass spectrometer[J]. The Journal of Chemical Physics, 1967, 47 (9): 3148-3159.
    [6] A M WODTKE and Y T LEE. Molecular Photodissociation Dynamics[M]. Royal Society of Chemistry, London, 1987.
    [7] Y LEE, J D MCDONALD, P R LEBRETON, and D R HERSCHBACH. Molecular beam reactive scattering apparatus with electron bombardment detector[J]. Review of Scientific Instruments, 1969, 40 (11): 1402-1411.
    [8] G CAPOZZA, E SEGOLONI, F LEONORI, G G VOLPI and P CASAVECCHIA. Soft electron impact ionization in crossed molecular beam reactive scattering: The dynamics of the O(3P)+C2H2 reaction[J]. The Journal of Chemical Physics, 2004, 120 (10): 4557-4566.
    [9] X YANG, J LIN, Y T LEE, D A BLANK, A G SUITS and A M WODTKE. Universal crossed molecular beams apparatus with synchrotron photoionization mass spectrometric product detection[J]. Review of Scientific Instruments, 1997, 68 (9): 3317-3328.
    [10] R SMITH, M ANSELMENT, L F DIMAURO, J M FRYE and T J SEARS. Laser induced fluorescence study of the 2B2-2A2 transition of the furan cation in a supersonic free jet expansion[J]. The Journal of Chemical Physics, 1987, 87 (8): 4435-4451.
    [11] D CHANDLER and P L HOUSTON. Two-dimensional imaging of state-selected photodissociation products detected by multiphoton ionization[J]. The Journal of Chemical Physics, 1987, 87 (2): 1445-1456.
    [12] A EPPINK and D H PARKER. Velocity map imaging of ions and electrons using electrostatic lenses: Application in photoelectron and photofragment ion imaging of molecular oxygen[J]. Review of Scientific Instruments, 1997, 68 (9): 3477-3487.
    [13] W WILEY and I H MCLAREN. Time of flight mass spectrometer with improved resolution[J]. Review of Scientific Instruments, 1955, 26 (12): 1150-1160.
    [14] J H MOORE, C C DAVIS and M A COPLAN. Building scientific apparatus[M]. CAMBRIDGE UNIVERSITY PRESS, New York, 2003.
    [15] T NISHIDE and T SUZUKI. Photodissociation of Nitrous Oxide revisited by high-resolution photofragment imaging:? energy partitioning[J]. The Journal of Physical Chemistry A, 2004, 108 (39): 7863-7870.
    [16] G SCOLES. Atomic and molecular beam methods[M]. Oxford University Press, New York, 1988.
    [17] S MANZHOS and H P LOOCK. Photofragment image analysis using the Onion-Peeling algorithm[J]. Computer Physics Communications, 2003, 154 76.
    [18] C GEBHARDT, T P RAKITZIS, P C SAMARTZIS, V LADOPOULOS and T N KITSOPOULOS. Slice imaging: A new approach to ion imaging and velocity mapping[J]. Review of Scientific Instruments, 2001, 72 (10): 3848.
    [19] V DRIBINSKI, A OSSADTCHI, V A MANDELSHTAM and H REISLER. Reconstruction of Abel-transformable images: The Gaussian basis-set expansion Abel transform method[J]. Review of Scientific Instruments, 2002, 73 (7): 2634.
    [20] K CODLING and L J FRASINSKI. Dissociative ionization of small molecules in intense laser fields[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 1993, 26 (5): 783.
    [21] P B CORKUM and P DIETRICH. Communication in Atomic and Molecular Physics, 1993, 28 357.
    [22] A G SUZOR, F H MIES, L F DIMAURO, E CHARRON and B YANG. Dynamics of H2+ in intense laser fields[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 1995, 28 (3):
    [23] F A ILKOV, T D G WALSH, S TURGEON and S L CHIN. Dissociative tunnel ionization of H2 in an intense mid-ir laser field[J]. Physical Review A, 1995, 51 (4): R2695.
    [24] M J DEWITT and R J LEVIS. Observing the transition from a multiphoton-dominated to a field-mediated ionization process for polyatomic molecules in intense laser fields[J]. Physical Review Letters, 1998, 81 (23): 5101.
    [25] C WU, Y XIONG, N JI, Y HE, Z GAO and F A KONG. Field ionization of aliphatic Ketones by intense femtosecond laser[J]. The Journal of Physical Chemistry A, 2000, 105 (2): 374-377.
    [26] C ELLERT, H STAPELFELDT, E CONSTANT, H SAKAI, J WRIGHT, D M RAYNER and P B CORKUM. Observing molecular dynamics with timed Coulomb explosion imaging[J]. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1998, 356 (1736): 329-344.
    [27] I ATSUSHI, A HISHIKAWA and K YAMANOUCHI. Extraction of molecular dynamics in intense laser fields from mass-resolved momentum imaging maps: application to Coulomb explosion of NO[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2000, 33 (2): 223.
    [28] S CHELKOWSKI and A D BANDRAUK. Two-step Coulomb explosions of diatoms in intense laser fields[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 1995, 28 (23): L723.
    [29] K W D LEDINGHAM, D J SMITH, R P SINGHAL, T MCCANNY, P GRAHAM, H S KILIC, W X PENG, A J LANGLEY, P F TADAY and C KOSMIDIS. Multiply charged ions from aromatic molecules following irradiation in intense laser fields[J]. The Journal of Physical Chemistry A, 1999, 103 (16): 2952-2963.
    [30] G L KAMTA and A D BANDRAUK. Phase dependence of enhanced ionization in asymmetric molecules[J]. Physical Review Letters, 2005, 94 (20): 203003.
    [31] X P TANG, S F WANG, M E ELSHAKRE, L R GAO, Y L WANG, H F WANG and F A KONG. The field-assisted stepwise dissociation of acetone in an intense femtosecond laser field[J]. The Journal of Physical Chemistry A, 2002, 107 (1): 13-18.
    [32] S WANG, X TANG, L GAO, M E ELSHAKRE and F KONG. Dissociation of Methane in intense laser fields[J]. The Journal of Physical Chemistry A, 2003, 107 (32): 6123-6129.
    [33] M E ELSHAKRE, L GAO, X TANG, S WANG, Y SHU and F KONG. Dissociation ofacetaldehyde in intense laser field: Coulomb explosion or field-assisted dissociation[J]. The Journal of Chemical Physics, 2003, 119 (11): 5397-5405.
    [34] M BREWCZYK and L J FRASINSKI. Thomas-Fermi-Dirac model of nitrogen molecules ionized by strong laser fields[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 1991, 24 (13): L307.
    [35] P GRAHAM, K W D LEDINGHAM, R P SINGHAL, T MCCANNY, S M HANKIN, X FANG, D J SMITH, C KOSMIDIS, P TZALLAS, A J LANGLEY and P F TADAY. An investigation of the angular distributions of fragment ions arising from the linear CS2 and CO2 molecules[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 1999, 32 (23): 5557.
    [36] F R PRUNA, E SPRINGATE, H L OFFERHAUS, M KRISHNAMURTHY, N FARID, C NICOLE and M J J VRAKKING. Spatial alignment of diatomic molecules in intense laser fields: I. Experimental results[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2001, 34 (23): 4919.
    [37] E SPRINGATE, F R Pruna, H L OFFERHAUS, M KRISHNAMURTHY and M J J VRAKKING. Spatial alignment of diatomic molecules in intense laser fields: II. Numerical modelling[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2001, 34 (23): 4939.
    [38] M SCHMIDT, S DOBOSZ, P MEYNADIER, P D’OLIVEIRA, D NORMAND, E CHARRON and A S WEINER. Fragment-emission patterns from the Coulomb explosion of diatomic molecules in intense laser fields[J]. Physical Review A, 1999, 60 (6): 4706.
    [39] J H POSTHUMUS, J PLUMRIDGE, M K THOMAS, K CODLING, L J FRASINSKI, A J LANGLEY and P F TADAY. Dynamic and geometric laser-induced alignment of molecules in intense laser fields[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 1998, 31 (13): L553-558.
    [40] J H POSTHUMUS, A J GILES, M R THOMPSON, W SHAIKH, A J LANGLEY, L J FRASINSKI and K CODLING. The dissociation dynamics of diatomic molecules in intense laser fields[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 1996, 29 (14): L525-532.
    [41] P GRAHAM, K W D LEDINGHAM, R P SINGHAL, T MCCANNY, S M HANKIN, X FANG, P TZALLAS, C KOSMIDIS, P F TADAY and A J LANGLEY. The angular distributions of fragment ions from labelled and unlabelled N2O in intense laser fields[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2000, 33 (18): 3779-3786.
    [42] S COURIS, E KOUDOUMAS, S LEACH and C FOTAKIS. Polarization effects on the ionization of molecules under picosecond and femtosecond laser excitation[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 1999, 32 (15): L439-450.
    [43] A T J B EPPINK and D H PARKER. Methyl iodide A-band decomposition study by photofragment velocity imaging[J]. The Journal of Chemical Physics, 1998, 109 (12): 4758-4767.
    [44] Y J JUNG, Y S KIM, W K KANG and K H JUNG. Photoelectron imaging spectroscopy for (2+1) resonance-enhanced multiphoton ionization of atomic iodine produced from A-band photolysis of CH3I[J]. The Journal of Chemical Physics, 1997, 107 (18): 7187-7193.
    [45] A J VAN DEN BROM, M L LIPCIUC and M H M JANSSEN. The correlation between I(2P3/2)/I(2P1/2) branching and CH3 rotation in photolysis of single quantum state-selected CH3I (JK=11)[J]. Chemical Physics Letters, 2003, 368 (3-4): 324-330.
    [46] P C SAMARTZIS, B L G BAKKER, D H PARKER and T N KITSOPOULOS. Photoelectron and photofragment velocity imaging following the excitation of CH3I to the A-band using fs, ps, and ns laser pulses[J]. The Journal of Physical Chemistry A, 1999, 103 (31): 6106-6113.
    [47] J J LARSEN, H SAKAI, C P SAFVAN, I W LARSEN and H STAPELFELDT. Aligning molecules with intense nonresonant laser fields[J]. The Journal of Chemical Physics, 1999, 111 (17): 7774-7781.
    [48] A SUGITA, M MASHINO, M KAWASAKI, Y MATSUMI, R J GORDON and R BERSOHN. Control of photofragment velocity anisotropy by optical alignment of CH3I[J]. The Journal of Chemical Physics, 2000, 112 (5): 2164-2167.
    [49] S Y LIU, K ALNAMA, J MATSUMOTO, K NISHIZAWA, H KOHGUCHI, Y P LEE and T SUZUKI. He I ultraviolet photoelectron spectroscopy of benzene and pyridine in supersonic molecular beams using photoelectron imaging[J]. The Journal of Physical Chemistry A, 2011, 115 (14): 2953-2965.
    [50] P GRAHAM, K W D LEDINGHAM, R P SINGHAI, S M HANKIN, T MCCANNY, X FANG, C KOSMIDIS, P TZALLAS, P F TADAY and A J LANGLEY. On the fragment ion angular distributions arising from the tetrahedral molecule CH3I[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2001, 34 (20): 4015-4022.
    [51] R MA, C WU, N XU, J HUANG, H YANG and Q GONG. Geometric alignment of CH3I in an intense femtosecond laser field[J]. Chemical Physics Letters, 2005, 415 (1-3): 58-63.
    [52] H LIU, Z YANG, Z GAO and Z TANG. Ionization and dissociation of CH3I in intense laser field[J]. The Journal of Chemical Physics, 2007, 126 (4): 044316-044319.
    [53] Y WANG, S ZHANG, Z WEI and B ZHANG. Velocity map imaging of dissociative ionization and Coulomb explosion of CH3I induced by a femtosecond laser[J]. The Journal of Physical Chemistry A, 2008, 112 (17): 3846-3851.
    [54] L V KELDYSH. Diagram technique for nonequilibrium processes[J]. Soviet Physics - JETP, 1965, 20 (5): 1018-1026.
    [55] S KAZIANNIS, P SIOZOS and C KOSMIDIS. Dynamic alignment of CH3I by strong picosecond laser pulses[J]. Chemical Physics Letters, 2005, 401 (1-3): 115-121.
    [56] K WALTER, R WEINKAUF, U BOESL and E W SCHLAG. Molecular ion spectroscopy: Mass selected, resonant two-photon dissociation spectra of CH3I+ and CD3I+[J]. The Journal of Chemical Physics, 1988, 89 (4): 1914-1922.
    [57] P SHARMA, R K VATSA, B N RAJASEKHAR, N C DAS, T K GHANTY and S K KULSHRESHTHA. Photoionization of CH3I mediated by the C state in the visible and ultraviolet regions[J]. Rapid Communications in Mass Spectrometry, 2005, 19 (11): 1522-1528.
    [58] C WU, Y YANG, Z WU, B CHEN, H DONG, X LIU, Y DENG, H LIU, Y LIU and Q GONG. Coulomb explosion of nitrogen and oxygen molecules through non-Coulombic states[J]. Physical Chemistry Chemical Physics, 2011, 13 (41): 18398-18408.
    [59] E BALDIT, S SAUGOUT and C CORNAGGIA. Coulomb explosion of N2 using intense 10 and 40fs laser pulses[J]. Physical Review A, 2005, 71 (2): 021403.
    [60] W GUO, J ZHU, B WANG, Y WANG and L WANG. Angular distributions of fragment ions of N2 in a femtosecond laser field[J]. Physical Review A, 2008, 77 (3): 033415.
    [61] H STAPELFELDT and T SEIDEMAN. Colloquium: Aligning molecules with strong laser pulses[J]. Reviews of Modern Physics, 2003, 75 (2): 543.
    [62] J CHEN, R MA, H REN, X LI, H YANG and Q GONG. Femtosecond laser-induced dissociative ionization and Coulomb explosion of ethanol[J]. International Journal of Mass Spectrometry, 2005, 241 (1): 25-29.
    [63] M CASTILLEJO, M MARTIN, R DE NALDA, S COURIS and E KOUDOUMAS. Anisotropic distributions of ion fragments produced by dissociative ionization of halogenated ethylenes in intense laser fields[J]. The Journal of Physical Chemistry A, 2002, 106 (12):2838-2843.
    [64] Z XIA, D D ZHANG, H LIU, H F XU, M X JIN AND D J DING. Angular distributions of fragment ions in dissociative ionization of CH2I2 molecules in intense laser fields[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2010, 43 (2): 025102.
    [65] B LI and A B MYERS. Emission polarization in the S3 state of CS2 vapor as a probe of predissociation: Consideration of the finite bandwidth of the incident field[J]. The Journal of Chemical Physics, 1991, 94 (4): 2458.
    [66]尹淑慧,刘建勇,楼南泉.飞秒时间分辨实验中相关函数和时间零点的确定[J].原子与分子物理学报, 2006, 23 (1): 49.
    [67] N F SCHERER, J L KNEE, D D SMITH and A H ZEWAIL. Femtosecond photofragment spectroscopy: The reaction ICN→CN + I[J]. The Journal of Physical Chemistry, 1985, 89 5141.
    [68] I V HERTEL and W RADLOFF. Ultrafast dynamics in isolated molecules and molecular clusters[J]. Reports on Progress in Physics, 2006, 69 1897.
    [69] S T BROWN, T J V HUIS, B C HOFFMAN and H F SCHAEFFER. Excited electronic states of carbon disulphide[J]. Molecular Physics, 1999, 96 (4): 693-704.
    [70] J L ROEBBER and V VAIDA. The direct ultraviolet absorption spectrum of the 1Σg+?→?1B2(1Σu+) transition of jet‐cooled 13C32S2 and 12C34S2[J]. The Journal of Chemical Physics, 1985, 83 (6): 2748.
    [71] A S BEATTY, R C SHIELL, D CHANG and J W HEPBURN. Resonance enhanced multiphoton ionization spectroscopy of jet cooled 12C32S2 and 12C34S32S from 45500 to 48000 cm[J]. The Journal of Chemical Physics, 1999, 110 (17): 8476.
    [72] H T LIOU, P DAN, T Y HSU, H YANG and H M LIN. The predissociation of CS2 at 210 nm and the spectra of photofragment CS[J]. Chemical Physics Letters, 1992, 192 (5-6): 560-565.
    [73] R A MORGAN, M A BALDWIN, A J ORR-EWING, M N R ASHFOLD, W J BUMA, J B MILAN and C A D LANGE. Resonance enhanced multiphoton ionization spectroscopy of carbon disulphide[J]. The Journal of Chemical Physics, 1996, 104 (16): 6117.
    [74] J LIU, M HOCHLAF, G CHAMBAUD, P ROSMUS and C Y NG. High resolution pulsed field ionization-photoelectron bands for CS2+: An experimental and theoretical study[J]. The Journal of Physical Chemistry A, 2001, 105 2183.
    [75] D AITCHISON and J H D ELAND. Dissociative ionisation of CS2 and the formation ofS2+[J]. Chemical Physics, 2001, 263 (2-3): 449-457.
    [76] L ZHANG, J CHEN, H XU, J DAI, S LIU and X MA. ?2Πu state-intermediated two-photon dissociation of CS2+ via the first channel[J]. The Journal of Chemical Physics, 2001, 114 (24): 10768.
    [77] L ZHANG, F WANG, Z WANG, S YU, S LIU and X MA. Study on the second dissociation channel of CS2+ by using [1+1] two-photon dissociation[J]. The Journal of Physical Chemistry A, 2004, 108 (8): 13421347.
    [78] F ZHANG, Z WEI, Z CAO, C ZHANG and B ZHANG. Photodissociation/photoionization processes of chlorobromomethane induced by femtosecond laser pulses with pump-probe scheme[J]. Chinese Science Bulletin, 2008, 53 (5): 681-686.
    [79] W G HWANG, H L KIM and M S KIM. State-selected photodissociation dynamics of CS2+ in the ??2Σg+ state[J]. The Journal of Chemical Physics, 2000, 113 (10): 4153.
    [80] A P BARONAVSKI and J C OWRUTSKY. Lifetime of the S3 state of CS2 measured by femtosecond ultraviolet multiphoton ionization spectroscopy[J]. Chemical Physics Letters, 1994, 221 (5-6): 419-425.
    [81] P FARMANARA, V STERT and W RADLOFF. Ultrafast predissociation and coherent phenomena in CS2 excited by femtosecond laser pulses at 194–207 nm[J]. The Journal of Chemical Physics, 1999, 111 (12): 5338.
    [82] D TOWNSEND, H SATZGER, T EJDRUP, A M D LEE, H STAPELFELDT and A STOLOW. Excited state decay dynamics in CS2[J]. The Journal of Chemical Physics, 2006, 125 (23): 234302.
    [83] H LIU, J ZHANG, S YIN, L WANG and N LOU. CS2 decay dynamics investigated by two-color femtosecond laser pulses[J]. Physical Review A, 2004, 70 (4): 042501.
    [84] K L KNAPPENBERGER, E B W LERCH, P WEN and S R LEONE. Coherent polyatomic dynamics studied by femtosecond time-resolved photoelectron spectroscopy: Dissociation of vibrationally excited CS2 in the 6s and 4d Rydberg states[J]. The Journal of Chemical Physics, 2006, 125 174314.
    [85] K L KNAPPENBERGER, E B W LERCH, P WEN and S R LEONE. Stark-assisted population control of coherent CS2 4f and 5p Rydberg wave packets studied by femtosecond time-resolved photoelectron spectroscopy[J]. The Journal of Chemical Physics, 2007, 127 124318.
    [86] C Z BISGAARD, O J CLARKIN, G WU, A M D LEE, O GE NER, C C HAYDEN and A STOLOW. Time-resolved molecular frame dynamics of fixed-in-space CS2 molecules[J]. Science, 2009, 323 1464.
    [87] D WU, Q WANG, X CHENG, M JIN, X LI, Z HU and D DING. Effect of cation absorption on ionization/dissociation of cycloketone molecules in a femtosecond laser field[J]. The Journal of Physical Chemistry A, 2007, 111 (38): 9494-9498.
    [88] Q WANG, D WU, D ZHANG, M JIN, F LIU, H LIU, Z HU, D DING, H MINEO, Y A DYAKOV, Y TERANISHI, S D CHAO, A M MEBEL and S H LIN. Ionization and dissociation processes of pyrrolidine in intense femtosecond laser field[J]. The Journal of Physical Chemistry C, 2009, 113 (27): 11805-11815.
    [89] K YAMANOUCHI, M OKUNISHI, Y ENDO and S TSUCHIYA. Laser induced fluorescence spectroscopy of the C? 1B2-X? 1A1 band of jet-cooled SO2: rotational and vibrational analyses in the 235-210 nm region[J]. Journal of Molecular Structure, 1995, 352-353 (0): 541-559.
    [90] B R COSOFRET, S M DYLEWSKI and P L HOUSTON. Changes in the vibrational population of SO(3Σ-) from the photodissociation of SO2 between 202 and 207 nm[J]. The Journal of Physical Chemistry A, 2000, 104 (45): 10240-10246.
    [91] H RAN, D XIE and H GUO. Theoretical studies of absorption spectra of SO2 isotopomers[J]. Chemical Physics Letters, 2007, 439 (4-6): 280-283.
    [92] G ZHANG, L ZHANG and Y JIN. Emission spectrum and relaxation kinetics of SO2 induced by 266 nm laser[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2010, 77 (1): 141-145.
    [93] I TOKUE and S NANBU. Theoretical studies of absorption cross sections for the system of sulfur dioxide and isotope effects[J]. The Journal of Chemical Physics, 2010, 132 (2): 024301.
    [94] M SUTO, R L DAY and L C LEE. Fluorescence yields from photodissociation of SO2 at 1060-1330 A[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 1982, 15 (22): 4165.
    [95] V Y FOO, C E BRION and J B HASTED. Electron energy-loss spectra of some triatomic molecules[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1971, 322 (1551): 535-554.
    [96] L ZHANG, L PEI, J DAI, T ZHANG, C CHEN, S YU and X MA. Study onresonance-enhanced multiphoton ionization (REMPI) of SO2 in the range 365–405 nm[J]. Chemical Physics Letters, 1996, 259 (3-4): 403-407.
    [97] B XUE, Y CHEN and H L DAI. Observation of the singlet-triplet pair of the 4p Rydberg state and assignment of the Rydberg series of SO2[J]. The Journal of Chemical Physics, 2000, 112 (5): 2210.
    [98] A A DIXIT, Y LEI, K W LEE, E QUI ONES and P L HOUSTON. Dissociation of sulfur dioxide by ultraviolet multiphoton absorption between 224 and 232 nm[J]. The Journal of Physical Chemistry A, 2005, 109 (9): 1770-1775.
    [99] E S WISNIEWSKI and A W CASTLEMAN. Femtosecond photodissociation dynamics of excited-state SO2[J]. The Journal of Physical Chemistry A, 2002, 106 (45): 10843-10848.
    [100] K KNAPPENBERGER and A W CASTLEMAN. The influence of cluster formation on the photodissociation of sulfur dioxide: Excitation to the E state[J]. The Journal of Chemical Physics, 2004, 121 (8): 3540.
    [101] D P HYDUTSKY, N J BIANCO and A W CASTLEMAN JR. The photodissociation of SO2 between 200 and 197 nm[J]. Chemical Physics, 2008, 350 (1-3): 212-219.
    [102] S M HURLEY, T E DERMOTA, D P HYDUTSKY and A W CASTLEMAN. Photodissociation of SO2 clusters[J]. The Journal of Physical Chemistry A, 2003, 107 (18): 3497-3502.
    [103] T E DERMOTA, D P HYDUTSKY, N J BIANCO and A W CASTLEMAN. Ultrafast dynamics of the SO2(H2O)n cluster system[J]. The Journal of Physical Chemistry A, 2005, 109 (37): 8254-8258.
    [104] T E DERMOTA, D P HYDUTSKY, N J BIANCO and A W CASTLEMAN. Excited-state dynamics of (SO2)m clusters[J]. The Journal of Physical Chemistry A, 2005, 109 (37): 8259-8267.
    [105] P R BROOKS. Reactions of oriented molecules[J]. Science, 1976, 193 (4247): 11-16.
    [106] I V LITVINYUK, K F LEE, P W DOOLEY, D M RAYNER, D M VILLENEUVE and P B CORKUM. Alignment-dependent strong field ionization of molecules[J]. Physical Review Letters, 2003, 90 (23): 233003.
    [107] R B BERNSTEIN, D R HERSCHBACH and R D LEVINE. Dynamical aspects of stereochemistry[J]. The Journal of Physical Chemistry, 1987, 91 (21): 5365-5377.
    [108] H J LOESCH. Orientation and alignment in reactive beam collisions: recent progress[J].Annual Review of Physical Chemistry, 1995, 46 (1): 555-594.
    [109] P BROOKS, E M JONES and K SMITH. Orienting polar molecules in molecular beams. Symmetric tops[J]. The Journal of Chemical Physics, 1969, 51 (7): 3073.
    [110] B FRIEDRICH and D HERSCHBACH. Alignment and trapping of molecules in intense laser fields[J]. Physical Review Letters, 1995, 74 (23): 4623.
    [111] J J LARSEN, K HALD, N BJERRE, H STAPELFELDT and T SEIDEMAN. Three dimensional alignment of molecules using elliptically polarized laser fields[J]. Physical Review Letters, 2000, 85 (12): 2470-2473.
    [112] K F LEE, D M VILLENEUVE, P B CORKUM, A STOLOW and J G UNDERWOOD. Field-free three-dimensional alignment of polyatomic molecules[J]. Physical Review Letters, 2006, 97 (17): 173001.
    [113] J G UNDERWOOD, B J SUSSMAN and A STOLOW. Field-free three dimensional molecular axis alignment[J]. Physical Review Letters, 2005, 94 (14): 143002.
    [114] R W ANDERSON. Tracks of symmetric top molecules in hexapole electric fields[J]. The Journal of Physical Chemistry A, 1997, 101 (41): 7664-7673.
    [115] M J L DE LANGE, J J VAN LEUKEN, M M J E DRABBELS, J BULTHUIS, J G SNIJDERS and S STOLTE. Direct spectroscopic determination of the degree of orientation of parity-selected NO[J]. Chemical Physics Letters, 1998, 294 (4-5): 332-338.
    [116]刘福春.分子在外场中转动态选择和准直、取向研究[D].长春:吉林大学, 2006.
    [117] F C LIU, M X JIN, X GAO and D J DING. Hexapole state-selection and beam focus of polar top molecules[J]. Chinese Physics Letters, 2006, 23 (2): 344.
    [118] F C LIU, M X JIN and D J DING. Hexapole state-selection and beam focus of linear triatomic molecules[J]. Chinese Physics Letters, 2006, 23 (5): 1165.
    [119] J EVERDIJ, A HUIJSER and N F VERSTER. Improved space focusing of polar diatomic molecules in a system of quadrupole and hexapole fields[J]. Review of Scientific Instruments, 1973, 44 (6): 721.
    [120]李荣华,冯果忱.微分方程数值解法[M].高等教育出版社, 1996.
    [121]马金汶.计算物理学[M].中国科学技术出版社, 2001.
    [122] N I BUTKOVSKAYA, M N LARICHEV, I O LEIPUNSKII, I I MOROZOV and V L TAL'ROSE. Mass-spectrometric analysis of the polar molecules beam.: I. Focusing ininhomogeneous electric field[J]. Chemical Physics, 1976, 12 (3): 267-271.
    [123] D VAN DEN ENDE and S STOLTE. Reactive scattering with a state selected beam: the influence of the internal state and orientation of no upon the chemilum nescent reactivity with O3[J]. Chemical Physics Letters, 1980, 76 (1): 13-15.
    [124] K K CHAKRAVORTY, D H PARKER and R B BERNSTEIN. Focusing, rotational state selection and orientation of CH3I in a seeded supersonic beam[J]. Chemical Physics, 1982, 68 (1-2): 1-12.
    [125] H OHOYAMA, T KASAI, K OHASHI and K KUWATA. Observation of orientation-dependent CF3 chemiluminescence in the reaction of Ar(3P0,2) with oriented CF3H[J]. Chemical Physics Letters, 1987, 136 (3-4): 236-240.
    [126] F VONBUN. Analysis of a Multipole State Separator and Focuser for Polarizable Molecules[J]. Journal of Applied Physics, 1958, 29 (4): 632.
    [127] M HASHINOKUCHI, D C CHE, D WATANABE, T FUKUYAMA, I KOYANO, Y SHIMIZU, A WOELKE and T KASAI. Single |JKM> state-selection of OH radicals using an electrostatic hexapole field[J]. Physical Chemistry Chemical Physics, 2003, 5 (18): 3911-3915.
    [128] T HAIN, R M MOISION and T J CURTISS. Hexapole state-selection and orientation of asymmetric top molecules: CH2F2[J]. The Journal of Chemical Physics, 1999, 111 (15): 6797.
    [129] T D HAIN, M A WEIBEL, K M BACKSTRAND and T J CURTISS. Rotational state selection and orientation of OH and OD radicals by electric hexapole beam-focusing[J]. The Journal of Physical Chemistry A, 1997, 101 (41): 7674-7683.
    [130] M L LIPCIUC and M H M JANSSEN. Slice imaging of the quantum state-to-state cross section for photodissociation of state-selected rovibrational bending states of OCS (v2 = 0,1,2|JlM>)+CO(J)+S[J]. The Journal of Chemical Physics, 2007, 126 (19): 194318.
    [131] P W HARLAND, W P HU, C VALLANCE and P R BROOKS. Spatial deorientation of upper-Stark-state-selected supersonic beams of CH3F, CH3Cl, CH3Br, and CH3I[J]. Physical Review A, 1999, 60 (4): 3138.
    [132] N YONEKURA, C GEBAUER, H KOHGUCHI and T SUZUKI. A crossed molecular beam apparatus using high-resolution ion imaging[J]. Review of Scientific Instruments, 1999, 70 (8): 3265.
    [133] A OKANO, H OHOYAMA and T KASAI. Focusing and selecting the linear jour HBr-N2Oby using a 2 m long electrostatic hexapole field[J]. The Journal of Chemical Physics, 2002, 116 (4): 1325.
    [134] D C CHE, F PALAZZETTI, Y OKUNO, V AQUILANTI and T KASAI. Electrostatic hexapole state-selection of the asymmetric-top molecule propylene oxide[J]. The Journal of Physical Chemistry A, 2010, 114 (9): 3280-3286.
    [135] M H M JANSSEN, J W G MASTENBROEK and S STOLTE. Imaging of oriented molecules[J]. The Journal of Physical Chemistry A, 1997, 101 (41): 7605-7613.
    [136] V Z DMITRY and N Z VICTOR. Laser-assisted molecular orientation in gaseous media: new possibilities and applications[J]. New Journal of Physics, 2009, 11 (10): 105041.
    [137] M OKADA and T KASAI. Molecular orientation effects in gas-surface dynamical processes[J]. The European Physical Journal B - Condensed Matter and Complex Systems, 2010, 75 (1): 71-79.
    [138] K KRAMER and R B BERNSTEIN. Focusing and orientation of symmetric top molecules with the electric six pole Field[J]. The Journal of Chemical Physics, 1965, 42 (2): 767.
    [139] S GANDHI and R B BERNSTEIN. Focusing and state selection of NH3 and OCS by the electrostatic hexapole via first- and second-order Stark effects[J]. The Journal of Chemical Physics, 1987, 87 (11): 6457.
    [140] M E GREENSLADE, M I LESTER, D ? RADENOVI?, A J A VANROIJ and D H PARKER. (2+1) Resonance-enhanced ionization spectroscopy of a state-selected beam of OH radicals[J]. The Journal of Chemical Physics, 2005, 123 (7): 074309.
    [141] P BROOKS and E M JONES. Reactive scattering of K atoms from oriented CH3I molecules[J]. The Journal of Chemical Physics, 1966, 45 (9): 3449.
    [142] R BEUHLER and R B BERNSTEIN. Crossed beam study of the reactive asymmetry of oriented Methyl Iodide molecules with Rubidium[J]. The Journal of Chemical Physics, 1969, 51 (12): 5305.
    [143] R BERNSTEIN. Analysis of the experimental orientation dependence of the reaction CH3I+Rb-RbI+CH3[J]. The Journal of Chemical Physics, 1985, 82 (8): 3656.
    [144] S CHOI and R BERNSTEIN. Orientational opacity function for CH3I+Rb reactive backscattering: The steric cone of nonreaction[J]. The Journal of Chemical Physics, 1985, 83 (9):
    [145] L V NOVAKOSKI and G M MCCLELLAND. Orientation of CHF3 desorbed and scattered from Ag(111): Measurements using electrostatic focusing[J]. Physical Review Letters, 1987, 59 (11): 1259.
    [146] A MEIJER and A J H M MEIJER. On the energy dependence of the steric effect for atom-molecule reactive scattering. II. The reaction Ca(1D)+CH3F(JKM=111)-CaF+CH3[J]. The Journal of Chemical Physics, 1994, 101 (9): 7603.
    [147] P W HARLAND, W P HU, C VALLANCE and P R BROOKS. Spatial deorientation of upper-Stark-state-selected supersonic beams of CH3F, CH3Cl, CH3Br, and CH3I[J]. Physical Review A, 1999, 60 (4): 3138.
    [148] S IONOV, M E LAVILLA, R S MACKAY and R B BERNSTEIN. Surface temperature dependence of the steric effect in the scattering of oriented tert-butyl chloride and fluoroform molecules by graphite(0001)[J]. The Journal of Chemical Physics, 1990, 93 (10): 7406.
    [149] T CURTISS, R S MACKAY and R B BERNSTEIN. Steric effect in the scattering of hexapole-oriented beams of symmetric-top molecules by graphite(0001)[J]. The Journal of Chemical Physics, 1990, 93 (10): 7387.
    [150] S IONOV, M E LAVILLA and R B BERNSTEIN. Orientational dependence of the translational energy transfer in the scattering of oriented fluoroform and tert-butyl chloride molecules by a graphite(0001) surface[J]. The Journal of Chemical Physics, 1990, 93 (10): 7416.
    [151] M LAVILLA, I V IONOVA and S I IONOV. State-to-state rotationally inelastic scattering of ND3 on a graphite (0001) surface[J]. The Journal of Chemical Physics, 1992, 97 (12): 9366.
    [152] R T JONGMA, G BERDEN, D VAN DER ZANDE, T RASING, H ZACHARIAS and G MEIJER. State-to-state scattering of metastable CO molecules from a LiF(100) surface[J]. Physical Review Letters, 1997, 78 (7): 1375.
    [153] R JONGMA, G BERDEN, T RASING, H ZACHARIAS and G MEIJER. State-to-state scattering of metastable CO molecules from a LiF (100) surface[J]. The Journal of Chemical Physics, 1997, 107 (1): 252.
    [154] N CHANDRA and M CHAKRABORTY. Photoelectron spectroscopic studies of polyatomic molecules: Degree of orientation and ionization of rotationally state selected, oriented molecules[J]. The Journal of Chemical Physics, 1991, 95 (9): 6382.
    [155] M WU, R J BEMISH and R E MILLER. Photodissociation of molecules oriented by dcelectric fields: Determining photofragment angular distributions[J]. The Journal of Chemical Physics, 1994, 101 (11): 9447.
    [156] R JONGMA, T RASING and G MEIJER. Two-dimensional imaging of metastable CO molecules[J]. The Journal of Chemical Physics, 1995, 102 (5): 1925.
    [157] R NEUHAUSER and H J NEUSSER. Alignment of gas phase molecules by dynamic Stark effect with coherent narrow-band ultraviolet laser pulses[J]. The Journal of Chemical Physics, 1995, 103 (13): 5362.
    [158] C MAINOS. Laser-induced steric effects in nonlinear processes from short laser pulses[J]. Physical Review A, 1996, 54 (5): 4226.
    [159] V AQUILANTI, M BARTOLOMEI, F PIRANI, D CAPPELLETTI, F VECCHIOCATTIVI, Y SHIMIZU and T KASAI. Orienting and aligning molecules for stereochemistry and photodynamics[J]. Physical Chemistry Chemical Physics, 2005, 7 (2): 291-300.
    [160] R ARNAU, A GIJSBERTSEN, O GHAFUR, O M SHIR, T B?CK, S STOLTE and M J J VRAKKING. Optimization of laser field-free orientation of a state-selected NO molecular sample[J]. New Journal of Physics, 2009, 11 (10): 105040.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700