隧道初期支护力学分析及参数优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
初期支护作为隧道工程中最为关键的结构和极为重要的承载单元,对其力学模型的研究长期以来一直是隧道及地下工程界的热点问题。但是,初期支护的工程应用远远超前于理论研究,目前对初期支护的力学问题的研究依然没有完全清晰,在很大程度上仍需进行更深入的理论探讨,同时在隧道工程实践中依然存在潜在风险隐患或过度浪费的现象。因此论文以长江学者和创新团队发展计划资助(IRT1045)和重庆市寸滩隧道工程为依托,采用资料收集整理、理论分析、现场监测与测试以及数值模拟等方法,系统地研究了隧道初期支护结构的受力问题以及应用研究。论文的主要工作如下:
     ①根据锚固界面层传递界面剪应力的机理,考虑锚杆与围岩间锚固接触界面上变形协调关系,建立了全长锚杆界面剪应力的受力模型,然后将锚杆界面剪应力以体积力的形式引入圆形隧道围岩弹塑性分析中,进而可探讨锚杆支护系统中锚杆受力状态和锚固层界面力学特征以及分析隧道弹塑性围岩介质中的岩体稳定性和支护结构受力机制等问题;并分析了支护时间和锚固层参数对应力分布规律的影响。并结合现场监测锚杆轴力对所提出的锚杆力学模型计算结果进行对比与验证。
     ②通过对隧道喷射混凝土衬砌的支护机理进行研究,探讨了喷射混凝土的支护作用,并根据隧道工程中喷射混凝土的力学特性,由“围岩—喷层支护”共同体的相互作用特点,并考虑喷层与围岩接触界面上变形协调关系,运用复合曲梁理论建立了喷层与围岩结构的复合承载体的力学模型,可分析喷射砼与围岩界面力的影响,进而探讨喷层结构的力学特征和隧道围岩的稳定性。
     ③根据喷层受到来自围岩的形变压力,将喷射混凝土层视为弹性地基曲梁,将初期支护中喷层结构按弹性地基曲梁进行计算分析,并以量测的围岩与喷层间的接触应力作为边界条件,来推求喷层结构内力的解析解,可研究隧道实际情况下的喷层结构的应力集中部位。
     ④通过分析软弱破碎围岩段隧道施工现场钢拱架与喷射混凝土联合支护的特点和受力特性,建立含有钢拱架和喷射砼的隧道复合初期支护的地基曲梁力学模型,然后运用地基曲梁相关理论,以现场监测获取的钢拱架应力值为基本参数来推求出隧道复合初期支护内力解析式,从而可迅速分析软弱破碎围岩段隧道支护力学性能。
     ⑤对软弱破碎围岩段初期支护中锚杆、喷射混凝土和钢拱架联合支护展开分析,根据围岩与支护相互作用特点,研究多种形式的联合支护作用下形成围岩组合拱的承载体力学模型。从围岩—联合支护断面的几何形状上,将系统锚杆形成围岩拱视为支护外拱,喷层与钢拱架则构成支护内层拱,然后将二者间的组合拱应力进行叠加,能够分析考虑锚、喷、钢架联合支护条件下的围岩变形和联合支护结构承载能力的关系,达到分析“锚喷网+钢拱架”联合支护与围岩相互作用以及承载力的目的。并将上述理论应用于工程实践并且结合数值模拟进行分析。
Initial support would be used as an important construction of tunnel.Themechanical analysis of initial support is one of key problems for tunnel andunderground engeering for long time. However, the engineering application of is farahead of theoretical research of initial support in tunnel. It is not completely clear for thesupporting mechanics, and exit many faults. The paper takes tunnel and undergroundengineering as studying background, to study the mechanics of tunnel initial supportfrom different aspects and different viewpoints, for obtaining the deeply levelsupporting mechanics, and providing theory proofs for tunnel design. Combined withSupported by Program for Changjiang Scholars and Innovative Research Team inUniversity (IRT1045), took Cuntan tunnel in Chongqing as an engineering example, onthe basis of previous research, the mechanical characteristics and action mechanism oftunnel initial support is systemic and thoroughly researched by theory analysis,numerical simulation and in-situ test. The main works and achievement of thesis can bedrawn as follows:
     ①The bolt’s axial displacement differential equation is established according tothe stress equilibrium in a small section of a rock bolt and the sheart stress transfermechanism of anchorage body interfacial layer between rock bolt and surroundingrock.Then the axial load distribution function and the shear stress distribution functionon the interface of the fully grouted bolt are obtained by solving the differentialequation under the interaction between rock bolt and surrounding rock mass.Thereaction of the shear stress on interface of the fully grouted bolt on the surrounding rockis assumed to be symmetric radial action. The plastic zone radius of circular tunnel forbolt-shotcrete support can be solved by means of Mohr-Coulomb yield condition.On thebasis of the model and function above, the mechanical effect of system for surroundingrock and initial support is analyzed. The selection of supporting time has great influenceon anchoring effect and surrounding rock stability; It is suggested that increasing thethickness of the grout layer properly can decrease efficiently shear stress concentrationat bolt end and also can improve the reinforcement effect of fully grouted rock bolt.
     ②According to the characteristics of interfacial stess between surrounding rockand shotcrete support,the article established mechanical model of composite curvedbeame for support system of tunnel surrounding rock and shotcrete lining, which considering the interfacial deformation coordination and the effects of bearing arch ofsurrounding rock. Then from static equilibrium of two differential elements, thedifferential equation for the radial displacement of composite curved beam are derivedout. All analytical formulas of both interfacial stress and internal forces betweensurrounding rock and shotcrete lining by arbitary distribution load are derived.And thusthe mechanical condition of interface zone and the stress concentration position areobtained,which is convenient to guideline for assessment of stability of surroundingrock and and prediction of safety. Finally,the analysis of tunnel project excavated bybenth method shows that shotcrete lining made the formation of compressive stresszone in surrounding rock by transferring stress from the interface between surroundingrock and shotcrete,which is beneficial to improve the stability of surrounding rock.
     ③According to the characteristics of shotcrete layer in initial support and thetheory of circular beam on elastic foundation,based on touch stresses between shotcretelayer and surrounding rock,the analytical solution of internal force is deduced.The stressconcentration position is obtained,which is convenient to make relative safetycountermeasures in the following construction.The analysis of tunnel project excavatedby bench method shows that the analytical expression of solving internal force based ontouch stresses is a new and effective way,so as to provide a more reliable basis for thesafety assessment of tunnel structures.
     ④Prompt analysis of the internal force of tunnel lining in weak-brokensurrounding rocks is one of key problems for tunnel construction,useful foridentification of construction safety state and evaluation of stability of the supportsystem.Steel arch support would be used as an important primary support of tunnelwhen the surrounding rock is weak and broken.According to its characteristics andmechanical properties in-situ,a mechanical model of steel arch and shotcrete isestablished.Analytical solutions of the internal force of the composite support arededuced based on the theory of circular beam on elastic foundation and steel archstresses measurement.As a result,stress concentrated parts of tunnel lining can bequickly identified.An example of a tunnel excavated by using the bench method verifiedthe method.
     ⑤The combined support method of rock bolt and shotcrete mesh and steel arch ininitial support of tunnel is widely used soft and broken surrounding rock,but it is verydeficient in understanding on bearing behavior of the combined supporting structure;and it still lacks quantitative analytical formulae especially for bearing capacities of primary supporting and secondary supporting.In allusion to the united supportingcharacteristics of rockbolt,shotcrete layer and steel sets of wall rock,the mechanicalmodel of overlap arch bearing body were put forward based on rock mechanics theory,which are composed with the outer compression arch(bolt supporting)and the innercompression arch(shotcrete and steel arch supporting).By means of elastoplastic theory,formulas of the bearing body of combined support were deduced.Then following theNATM prinsiple to transfer fully the ability of surrounding rock so that the deformationpressure is minimum on the combined support. Through the medium of establishing therelation between support displacement and structure stiffness,by means of optimizationmethod,to adjust support stiffness, finally gives reasonable supporting parameters.
引文
[1]蒋树屏.我国公路隧道建设技术的现状及展望[A],国际隧道研讨会暨公路建设技术交流大会论文集[C],北京:人民交通出版社,2002.11.
    [2]王梦恕等.中国隧道及地下工程修建技术[M].北京:人民交通出版社,2010.
    [3]于学馥,郑颖人,刘怀恒,等.地下工程围岩稳定分析[M].北京:煤炭工业出版社,1983.
    [4]徐干成,白洪才,郑颖人,等.地下工程支护结构[M].北京:中国水利水电出版社,2002.
    [5]中华人民共和国交通部.公路隧道设计规范JTG D70-2004[S].北京:人民交通出版社,2004.
    [6]贾剑青.复杂条件下隧道支护体时效可靠性及风险管理研究[D].重庆:重庆大学博士学位论文,2006,3.
    [7]徐祯祥,岩土锚固工程技术发展之回顾与展望[J].市政技术,2009,27(2):136~140.
    [8]陆士良,汤雷,杨新安.锚杆锚固力与锚固技术[M].北京:煤炭工业出版社,1998.
    [9]林永熙.大秦线军都山隧道工程在施工技术上有新的突破[J].中国铁路,1992(2):32~33.
    [10]吴爱样,李宏业,王永前,杨保华.金川二矿深部开采面临的问题及对策[J].矿业研究与开发,200222(6):13~I5.
    [11]张乐文,汪稔.岩土锚固理论研究之现状[J].岩土力学,2002,23(5):627~631.
    [12]曾宪明,李世民,陆卫国,等.制约锚固类结构发展应用的若干问题概论[J].岩土工程学报,2010,32(增1):57~62.
    [13] Goto,Y. Crack formed in concrete around deformed tension bars[J].Journal of AmericanConcrete Institute,1971,68(4):244~251.
    [14] Hansor N W. Influence of surface roughness of pre-stressing strand on band performance[J].Journal of Pre-stressed Concrete Institute,1969,14(1):32~45.
    [15] Lutz L,Gergeley P. Mechanics of band and slip of deformed bars in concrete [J].Journal ofAmerican Concrete Institute.1967,64(11):711~721.
    [16] Stillborg B. Experimental investigation of steel cables for rock reinforcement in hard rock
    [Doctoral thesis Ph.D].Sweden: Lulea University of technology,1984.
    [17] PhilliPsSHE.Factors affecting the design of anehorages in rock [R]London:cementationResearch Ltd.,1970.
    [18] I. W. Farmer&Holmberg, Stress distribution along a resin grouted rock anchor[J],Int.. RockMech. And Geomech.1975(12):347~351.
    [19] D. J. Jarred, C. M. Haberfield. Tendon/grout interface performance in grouted anchors[C].In: Proc.Ground Anchorages and Anchored Structures. London: Thomas Telford,1997.
    [20] A. Kilic, E. Yasar, C. D. Atis. Effect of bar shape on the pull-out capacity of fully-groutedrockbolts[J].Tunnelling and Underground Space Technology.2003,18:1-6.
    [21] A. Kilic, E. Yasar, A. G. Celik. Effect of grout properties on the pull-out load capacity offully-grouted rockbolts[J]. Tunnelling and Underground Space Technology.2002,17:355-362.
    [22] N Gurung.1-D analytical solution for extensible and inextensible soil/rock reinforcement inpull-out tests[J].Geotextiles and Geomembranes,2001,(19):195-212.
    [23] Fujita K.A method to predict the load-displaeement relationship of ground anehors[A],Proceedings of the9thInternational Conference on Soil Mechanics and FoundationEngineering[C],Tokyo:The Japanese Soeiety of Soil Mechanics and foundation Engineering,1977,58-62.
    [24] Nak-Kyung Kim. Performance of Tension and Compression Anchors in weathered soil[J].Journal of Geotechnical and Geoenvironmental Engineering.2003,129(12):1138-1150.
    [25]朱焕春,荣冠,肖明,等.张拉荷载下全长粘结式锚杆工作机理试验研究[J].岩石力学与工程学报,2002,21(3):379~384.
    [26]许宏发,卢红标,钱七虎.土层灌浆锚杆的蠕变损伤特性研究[J].岩土工程学报,2002,24(l):61~63.
    [27]徐景茂,顾雷雨.锚索内锚固段注浆体与孔壁之间峰值抗剪强度试验研究[J].岩石力学与工程学报,2004,23(22):3765~3769.
    [28]沈俊,陈安敏,顾雷雨.宜兴抽水蓄能电站地下厂房锚杆承载力现场试验研究与计算方法[J].岩石力学与工程学报,2004,23(10):1735~1740.
    [29]汤雷,陆士良,高加胜.锚杆拉拔试验的意义[J].矿山压力与顶板管理,1996,(2):68~70.
    [30] Gunnar Wijk. A theoretical remark on the stress filed prestressed rock bolts[J]. InternationalJournal of rock mechanics mining science&Geomechanics abstract.1978(15):289-294.
    [31]尤春安.全长粘结式锚杆的受力分析[J].岩石力学与工程学报,2000,19(3):339-341.
    [32]朱训国,杨庆,栾茂田.岩体锚固效应及锚杆的解析本构模型研究[J].岩土力学,2007,28(3):527~532.
    [33]汤雷,蒋金平.锚杆支护强度[J].地下空间,1997,17(2):65~69.
    [34]牟瑞芳,王建宇,张武国.按共同变形原理计算地锚锚固段粘结应力分布[J].路基工程,1999,2:31~34.
    [35]杨庆,朱训国,栾茂田.注浆岩石锚杆双曲线模型的建立及锚固效应的参数分析[J].岩石力学与工程学报,2007,26(4):692~698.
    [36] Selvadurai. Some results concerning the viscoelastic relaxation of pretress in a surface Rockanchor[J].International Journal of rock mechanics mining science&Geomechanics abstract,1979(16):1307-1310.
    [37] H.Stille,M.Holmberg.Support of weak rockwith ground bolts and shotcrete[J].InternationalJournal of rock mcehanics mining science&Geomechanics abstract,1989,26(1):99-113.
    [38] B.Inderarane, P.K.Kaiser. Design for grouted rock bolts on the convergence controlmethod[J].International Journal of rock mechanics mining science&Geomechanics abstract1990,27(4):269-281.
    [39] C.Li,B.StillBorg.Analytical models for rock bolts[J].International Journal of Mechanics andMining Sciences,1999,(36):1013-1029.
    [40]蔡跃,蒋宇静,江崎哲郎.杆状支护系统的耦合模型及应用[J].岩石力学与工程学报,2003,22(6):1024~1028.
    [41] Yue Cai,Tetsuro Esaki,YuJing Jiang.A rock bolt and rock mass interaction model[J].International Journal of Mechanics and Mining Sciences,2004(41):1055~1067.
    [42] Yue Cai,Tetsuro Esaki,YuJing Jiang.An analytical model to predict axial load in grouted rockbolt for soft rock tunneling[J].Tunnelling and underground space technology,2004(19):607~618.
    [43]何思明,李新坡.预应力锚杆作用机制研究[J].岩石力学与工程学报,2006,25(9):1876~1880.
    [44]何思明.基于损伤理论的预应力锚索荷载-变形特性分析[J].岩石力学与工程学报,2004,23(5):786~792.
    [45]张乐文,李术才.岩土锚固的现状与发展[J].岩石力学与工程学报,2003,22(增1):2214~2221.
    [46]朱训国.地下工程中注浆岩石锚杆锚固机理研究[D].大连理工大学博士论文,2007,5.
    [47]朱维申,张玉军,任伟中.系统锚杆对三峡船闸高边坡岩体加固作用的块体相似模型试验研究[J].岩土力学,1996,17(2):1~6.
    [48]邹志晖.锚杆在不同岩体中的工作激励[J].岩土工程学报,1993,(6):71~79.
    [49]侯朝炯,勾攀峰.巷道锚杆支护围岩强度强化机理研究[J].岩石力学与工程学报,2000,19(3):342~345.
    [50]勾攀峰,侯朝炯.巷道锚杆支护围岩强度强化机理研究[J].重庆大学学报,2000,19(3):342~345.
    [51]杨松林,朱焕春,刘祖德.加锚层状岩体的本构模型[J].岩土工程学报,2001,23(4):427~430.
    [52]杨松林,徐卫亚,朱焕春.锚杆在节理中的加固作用[J].岩土力学,2002,23(5):604~607.
    [53]张玉军,刘谊平.层状岩体的三维弹塑性有限元分析[J].岩石力学与工程学报,2002,21(11):1615~1619.
    [54]张玉军,刘谊平.正交各向异性岩体中地下洞室稳定的粘弹-粘塑性三维有限元分析[J],岩土力学,2002,23(3):278~283.
    [55]朱浮声,郑雨天.全长粘结式锚杆的加固作用分析[J].岩石力学与工程学报,1996,15(4):333~337.
    [56]张强勇,朱维申,程峰.裂隙岩体损伤锚柱单元支护模型及其应用[J].岩土力学,1998,19(4):19~24.
    [57]张强勇,朱维申.裂隙岩体弹塑性损伤本构模型及其加锚计算[[J].岩土工程学报,1998,20(6):90~95.
    [58] Chen S H,Pande G N.Rheological model and finite element analysis of jointed rock massesreinforced by passive,fully-grouted bolts[J].Int.J.Rock Mech.Min.Sci.&Geomech. Abstr.1994,31(3):273-277.
    [59] Chen S H,Egger P.Three-dimensional elastic-viscopastic finite Element analysis ofreinforcedrock massed and its application[J].Int.J.for Num.And Anal.Math,in Genomic,1999,23(1):61-78.
    [60]陈胜宏,强晟,陈尚法.加锚岩体的三维复合单元模型研究[J].岩石力学与工程学报,2003,22(1):1~8.
    [61]雷晓燕.三维锚杆单元理论及其应用[J].工程力学,1996,13(2):50~60.
    [62]雷晓燕,C.Swoboda,杜庆华.接触摩擦单元的理论及其应用[J].岩土工程学报,1994,16(3):23~32.
    [63]雷晓燕.三维接触问题新模型研究[J].土木工程学报,1996,29(3):24~33.
    [64] Rabcewicz L.Principles of dimensioning the support system for the New Austrian TunnelingMethod[J].Water Power,1973,25(3):88-93.
    [65]董方庭,宋宏伟,郭志宏,等.巷道围岩松动圈支护理论[J].煤炭学报,1994,19(1):21~32.
    [66]董芳庭,等.巷道围岩松动圈支护理论及应用技术[M].北京:煤炭工业出版社,2001.
    [67] Oreste P.P,Peila.D.Modeling progressive hardening of shotcrete in convergence-confinenmentapproach to tunnel design[J].Tunnelling and Underground Space Technology,1997,12(3):425-431.
    [68] Salamon著,边志升译.地下工程的岩石力学[M].北京,冶金工业出版社,1982.
    [69]朱维申,李术才,白世伟,等.施工过程力学原理的若干发展和工程实例分析[J].岩石力学与工程学报,2003,22(10):1586~1591.
    [70] Freeman. T. J. The behavior of fully-bonded rock bolts in the fielder experimental tunnel [J].Tunnels and Tunneling,1978,7:37-40.
    [71]王明恕,何修仁,郑雨天.全长锚固锚杆的力学模型及其应用[J].金属矿山,1983,(4):24~29.
    [72]王明恕.全长锚固锚杆机理的探讨[J].煤炭学报,1983,1(1):40~47.
    [73] Windsor.C.R.Rock reinforcement system[J].International Journal Rock Mechanics andMining Science,1997,34(6):919-951.
    [74] Windsor.C.R, Thompson.A.G. Reinforcement design for jointed rock masses[A]. In:Proc33rdU.S. Symp. Rock Mech[C].[s.l.]:[s.n.],1992,520-521.
    [75] Thompson.A.G,Windsor.C.R.Tensioned cable bolt reinforcement-an integrated case study[C].Proc.8thInternational congression on rock mechanics, Tokyo,V2,1995:679-683,Balkema:Rotterdam.
    [76]陆士良,汤雷,杨新安.锚杆锚固力与锚固技术[M].北京:煤炭工业出版社,2007.
    [77] Rose D.Steel fibre reinforced shotcrete for tunnlels linings[J].Tunnels and Tunnelling,1986,18(5):39-44.
    [78]王红喜,陈友治,丁庆军.喷射混凝土的现状与发展[J].岩土工程技术,2004,18(1):51~54.
    [79]程良奎.喷射混凝土(一)--喷射混凝土的最新发展与施工工艺[J].工艺建筑,1986,(1):49-56.
    [80] Poad M E,Serbousek M O.The engineering characteristics of shotcrete[J].North AmericanRapid Excavation and Tunneling Conference,1972,(6):573-591.
    [81]马宝祥.湿式混凝土喷射机的发展及应用[J].河北建筑科技学院学报,2000,17(3):49-51.
    [82]程良奎,杨志银.喷射混凝土与土钉墙[M].北京:中国建筑工业出版社,1998.
    [83]张向东,张树光,李永靖.喷射混凝土技术的发展与应用[J].煤,2000,10(1):19-21.
    [84]谢兴保.现代喷射混凝土技术原理及特性分析[J].武汉水利电力大学学报,1994,27(6):658-665.
    [85]何满潮,竞海河,孙晓明.软岩工程力学[M].北京:科学出版社,2002.
    [86]重庆建筑工程学院,同济大学.岩体力学[M].北京:中国建筑工业出版社,1981.
    [87] Carranza-Torres C,Fairhurst C.Application of the convergence-confinement method of tunneldesign to rock masses that satisfy the Hoek-Brown failure criterion[J].Tunnelling andUnderground Space Technology,2000,15(2):187-213.
    [88] Oreste P.P.Analysis of structural interaction in tunnels using the convergence-confinementapproach[J].Tunnelling and Underground Space Technology,2003,18:347-363.
    [89]刘启琛,王建宇,谢泰极.锚喷支护的理论与实践[J].铁道学报,1(2):79-91.
    [90]周昌达.喷射混凝土拱承载能力试验[J].昆明工学院学报,1988,13(4):14-19.
    [91]宋德彰.喷射混凝土支护对隧洞围岩的力学效应[J].同济大学学报,1992,20(3):257-262.
    [92]刘允芳.弹性介质岩体中圆形隧洞喷射混凝土衬砌计算方法[J].工程力学,1985,2(3):110-112.
    [93]张德兴.砂浆锚杆和喷射混凝土支护的受力分析[J].岩土工程学报,1985,7(4):24-33.
    [94]吴洪词.隧道喷射混凝土支护的曲线结构单元模拟[J].岩土力学,1998,19(1):38-44.
    [95]关宝树.喷锚支护结构的荷载状态—喷锚支护结构接触压力实测资料的统计分析[J].岩土工程学报,1985,4(4):183-192.
    [96]刘启深,臧萱武.喷锚支护的使用效果及受力机理[J].中国铁道科学,1985,4(4):183-192.
    [97]颜永弟.喷射混凝土最佳喷速及一次喷层厚度的理论解[J].岩土工程学报,1998,20(4):105-108.
    [98]宋宏伟,牟彬善.破裂岩石锚固组合拱承载能力及其合理厚度探讨[J].中国矿业大学学报,1997,26(2):33-36.
    [99] Dong F T, Song H W. The broken rock zone around tunnels and its support theory. In: Peng SS. Proc. of7th Inter-national Conference. Morgantown: WVU,1988.336~343.
    [100]宋宏伟,郭志宏,周荣章,等.围岩松动圈支护理论的基本观点[J].建井技术,1994,(4):3-9.
    [101]付成华,周洪波,陈胜宏.混凝土喷层支护节理岩体等效力学模型及其应用[J].岩土力学,2009,30(7):1967-1973.
    [102]韩斌,王贤来,文有道.不良岩体巷道的湿喷混凝土支护技术[J].中南大学学报,2010,41(6):2381-2385.
    [103]李洪泉,杨成永,陆景慧.干缩和徐变对隧道喷射混凝土支护安全的影响[J].北京交通大学学报,2009,33(4):18-22.
    [104] Gardner N J, Lockman M J. Design provisions for drying shrinkage and creep of normal-strength concrete[J].ACI Materials Journal,2001,98(2):159-167.
    [105]孙河川,张鏖,施仲衡.喷锚支护与隧道自承拱的机理[J].岩土工程学报,2004,26(4):490-494.
    [106]程良奎.喷锚支护技术讲座(一)—喷射混凝土支护的作用与设计[J].有色金属(矿山部分),1978(1):33-37.
    [107]程良奎.喷锚支护技术讲座(三)—喷射混凝土支护施工中的若干问题[J].有色金属(矿山部分),1978(3):47-51.
    [108]程良奎.喷锚支护技术讲座(五)—喷锚支护的工程实践[J].有色金属(矿山部分),1978(5):34-38.
    [109]常燕庭.喷射混凝土早期材料性质对支护效果的影响[J].长江科学院院报,1992,9(3):8-16.
    [110]关宝树.隧道及地下工程喷混凝土支护技术[M].北京:人民交通出版社,2009.
    [111]公路隧道施工技术规范(JTJ042-94)[S].北京:人民交通出版社,1994.
    [112]陈新瑜,唐亦川,文建军.破碎围岩条件下隧道开挖支护方法改进方案探讨[J].长安大学学报(地球科学版),2003,25(3).
    [113] L. Malmgren, E. Nordlund, S.Rotund. Adhesion strength and shrinkage of shotcrete[J].Tunnelling and Underground Space Technology.2005.20.33-48.
    [114]祝云华.钢纤维喷射混凝土力学特性其在隧道单层衬砌中的应用研究[D].重庆:重庆大学博士学位论文,2009.
    [115]黄国兴,刘燕波,柳华英,等.对喷射混凝土与围岩黏结强度检测方法的评价[J].水利学报,2010,41(11):1382-1386.
    [116]黄国兴,陈文耀,尹俊宏.喷射混凝土与围岩黏结强度合理指标的探讨[J].水力发电,2007(2):78-80.
    [117]郑颖人,刘怀恒,顾金才.均匀地层中锚喷支护理论与设计[J].岩土工程学报,1981,3(1):58-69.
    [118]张黎明,郑颖人,王在泉,等.有限元强度折减法在公路隧道中的应用探讨[J].岩土力学,2007,28(1):97-101.
    [119] Kumar P.Infinite elements for numerical analysis of underground excavations[J].Tunnellingand Underground Space Technology,2000,15(1):117-124.
    [120] A. Harraz, M.El-Meligy and A.Dif. Probabilistic-based codified design of tunnels[J].Journalof Engineering and Applied Science.1999,46(5):853-872.
    [121]张延新,蔡美峰,乔兰,等.高速公路隧道开挖与支护力学行为研究[J].岩石力学与工程学报,2006,25(6):1284-1289.
    [122]陈浩.地下工程围岩与支护体相互作用的模型试验研究与理论分析[D].中国科学院武汉岩土力学研究所博士论文,2008,5.
    [123]顾金才,沈俊,陈安敏.地质力学模型试验技术及其工程应用[J].岩石力学与工程—世纪成就会议论文集,403-412.
    [124]郭文兵,李楠,王有凯.软岩巷道围岩应力分布规律光弹性模拟实验研究[J].煤炭学报,2002,27(6):596-600.
    [125]郭舜年.二滩水电站导流隧洞围岩与支护系统的地质力学平面模型试验研究[J].水电站设计,1997,13(2):95-99.
    [126]刘洪洲.大跨度扁担隧道施工的力学响应及施工方法的研究[D].重庆大学博士学位论文,1999.
    [127]杨林德.岩土工程问题的反演理论与工程实践[M].北京:科学出版社.
    [128]李晓红.隧道新奥法及其量测技术[M].北京:科学出版社.
    [129] Shunsuke S, Shinichi A, Kunifumi T,et al. Back analysis for tunnel engineering as a modernobservational method[J]. Tunnelling and Underground Space Technology,2003,18:527-528.
    [130] Karmen F B, Borut P. Displacement analysis of tunnel support in soft rock around a shallowhighway tunnel at Golovec[J]. Engineering Geology,2004,(75):185-196.
    [131] Kirsten H A D. Determination of rock mass elastic moduliby back analysis of deformationmeasurement[C]. Proceedings of Symposium on Exploration for Rock Engineering.Johannesburg, South Africa:[s.n.],1976:1154-1160.
    [132]蒋树屏,赵阳.复杂地质条件下公路隧道围岩监控量测与非确定性反分析研究[J].岩石力学与工程学报,2004,23(20):3460-3464.
    [133] Kolymbas D.Tunnelling and tunnel mechanics—a rational approach to tunnelling[M].Heidelberg:Springer-Verlag,2005.
    [134] Sakurai S.Lessons learned from filed measurements in tunnelling[J].Tunnelling andUnderground Space Technology,1997,12(4):453-460.
    [135]徐明新,杨成永,张强.施工期隧道喷混凝土支护安全性评价[J].北京交通大学学报,2008,32(1):1-6.
    [136] Oreste P P.Back-analysis techniques for the improvement of the understanding of rock inunderground constructions[J].Tunnelling and Underground Space Technology,2005,20(1):7-21.
    [137] Kitagawat,Kumetat,Ichizyot,et al.Application of convergence-confinement analysis to thestudy of preceding displacement of a squeezing rock tunnel[J].Rock Mechanics and RockEngineering,1991,24(1):31-51.
    [138] Tetsuo Ito, Wataru Akagi, Hiromichi Shiroma, et al.Estimation of natural ground behaviorahead of face by measuirng deformation which uitlized TBM drifttunnel[J].Tunnelling andUnderground Space Technology,2004,19:527-528.
    [139]朱汉华,孙红月,杨建辉.公路隧道围岩稳定与支护技术[M].北京:科学出版,2007.
    [140]孙钧.地下工程设计理论与实践[M].上海:上海科学技术出版社,1996.
    [141]杨双锁,张百胜.锚杆对岩土体作用的力学本质[J].岩土力学,2003,24(增刊):279–282.
    [142]姚显春,李宁,陈蕴生.隧洞中全长黏结式锚杆的受力分析[J].岩石力学与工程学报,2005,24(13):2271-2274.
    [143]伍国军,褚以惇,陈卫忠,等.地下工程锚固界面力学模型及其时效性研究[J].岩土力学,2011,32(1):237–243.
    [144]张永兴,徐洪.砂浆受腐蚀锚固体的锚固特性试验研究[J].岩土力学,2010,31(10):3058–3062.
    [145] YuT.Z,XianC.J. Behavior of rock blasting as tunneling support[C].Proceeding of theinternational symposium on rock bolting,1983.
    [146]冯振兴,李正秀,唐少武.扩散方程基本解的积分处理[J].武汉大学学报(自然科学版),1997,43(3):289-295.
    [147]王成.隧道围岩介质中全粘结式锚杆的受力机理[J].重庆交通学院学报,1990,9(2):38-44.
    [148]汤伯森.弹塑性围岩砂浆锚杆支护问题的估算法[J].岩土工程学报,1991,13(6):42-51.
    [149] Carranza-Torres C,Fairhurst C.The elastoplatic reponse of underground excavations in rockmasses that satisfy the Hoek-Brown failure criterion [J].International Journal of RockMechanics and Mining Sciences,1999,36(6):777–809.
    [150]方勇,何川.全长粘结式锚杆与隧道围岩相互作用研究[J].工程力学,2007,24(6):111-116.
    [151]徐金海,石炳华,王云海.锚固体强度与组合拱承载能力的研究与应用[J].中国矿业大学学报,1999,28(5):481–483.
    [152]余伟健,高谦,朱川曲.深部软弱围岩叠加拱承载体强度理论及应用研究[J].岩石力学与工程学报,2010,29(10):2134-2142.
    [153]祝云华.钢纤维喷射混凝土力学特性及其在隧道单层衬砌中的应用研究[博士论文][D].重庆:重庆大学,2009:78-81.
    [154]刘鸿文.高等材料力学[M].北京:高等教育出版社,1985.
    [155]中华人民共和国建设部. GB/50086-2001锚杆喷射混凝土支护技术规范[S].北京:中国计划出版社,2001.
    [156]黄宏伟,徐凌.大风垭口公路隧道围岩及初期支护变形与内力研究[J].岩石力学与工程学报,2004,23(1):44-52.
    [157]陈耕野,刘斌,万明富等.韩家岭大跨度公路隧道应力监测分析[J].岩石力学与工程学报,2005,24(增):5509-5515.
    [158]文竞舟,张永兴,王成.基于接触应力反分析隧道初期支护结构内力的研究[J].岩土力学2011,32(8):2467-2472.
    [159]梁政.埋地管道对称水平弯头的弹性地基曲梁解[J].西南石油学院学报,1989,11(3):65-74.
    [160]孙富学,蔡晓鸿,朱云辉.基于初参数法的多心圆拱隧道衬砌结构内力与变位求解[J].岩土力学,2009,30(4):1127-1130.
    [161]蔡晓鸿,蔡勇平.水工压力隧洞结构应力计算[M].北京:中国水利水电出版社,2004.
    [162]韩桂武,刘斌,范鹤.浅埋黄土隧道衬砌结构受力分析[J].岩石力学与工程学报,2007,26(增1):3250-3256.
    [163]李晓红,李登新,靳晓光,等.初期支护对软岩隧道围岩稳定性和位移影响分析[J].岩土力学,2005,26(8):1207-1210.
    [164]何英伟,雷明锋,彭立敏,等.软弱破碎围岩隧道初期支护受力特征测试分析[J].公路工程,2009,34(1):132-135.
    [165]李元松,李新平,代翼飞,等.隧道围岩与衬砌受力特性测试与数值分析[J].岩土力学,2007,28(7):1348-1358.
    [166]曲海锋,朱合华,黄成造,等.隧道初期支护的钢拱架与钢格栅选择研究[J].地下空间与工程学报,2007,3(2):
    [167]刘波,伍鹤皋,苏凯,等.导流隧洞钢拱架与喷锚支护体系有限元分析[J].武汉大学学报(工学版),2009,42(1):29-32.
    [168]沈才华,童立元.钢拱架柔性支撑稳定性预测判别方法探讨[J].土木工程学报,2007,40(3):88-91.
    [169]文竞舟,张永兴,王成,等.钢拱架应力反分析隧道初期支护力学性能的研究[J].土木工程学报,2012,45(2):170-175.
    [170] C.Carranza-Torres, M.Diederichs.Mechanical analysis of circular liners with particularreference to composite supports.For example, liners consisting of shotcrete and steel sets[J].Tunnelling and Underground Space Technology,2009,24:506-532.
    [171]侯朝炯,郭励生,勾攀峰.煤巷锚杆支护[M].徐州:中国矿业大学出版社,1999:14–25.
    [172]戴兰芳,梁旭黎,李文秀.巷道围岩与支护相互作用分析[J].矿山压力与顶板管理,2005,22(3):33–35.
    [173]侯公羽.围岩—支护作用机制评述及其流变变形机制概念模型的建立与分析[J].岩石力学与工程学报,2008,27(增2):3618–3629.
    [174]靳晓光,李晓红,杨春和,等.深埋隧道围岩—支护结构稳定性研究[J].岩土力学,2005,26(9):1473–1476.
    [175]刘保国,杜学东.圆形洞室围岩与结构相互作用的黏弹性解析[J].岩石力学与工程学报,2004,23(4):561—564.
    [176]刘小兵,韩玉华.喷锚支护参数的优化确定[J].岩石力学与工程学报,1994,13(1):79—89.
    [177]刘小兵.按滑移楔体理论设计的锚喷支护优化模型[J].公路,1996,11(1):79—89.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700