正交色散傅立叶域光学相干层析成像的方法和系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Development of Orthogonal Dispersive Fourier Domain Optical Coherence Tomography
  • 作者:王川
  • 论文级别:博士
  • 学科专业名称:光学工程
  • 学位年度:2013
  • 导师:丁志华
  • 学科代码:0803
  • 学位授予单位:浙江大学
  • 论文提交日期:2013-04-01
摘要
本文的主要内容包括傅立叶域光学相干层析(FDOCT, Fourier domain optical coherence tomography)系统的理论和实验研究,特别是谱域光学相干层析(SDOCT, Spectral domain optical coherence tomography)系统中的超高分辨率光谱仪的研究工作。本文还结合应用研究,介绍了作者博士期间在傅立叶域光学相干层析系统的信号处理方面所取得的一些成果。本文的主要内容具体包括:
     一、基于超高分辨率正交色散光谱仪的FDOCT理论研究和系统研制:
     1、本文介绍的研究成果在国际上最早实现将基于光栅和虚像相控阵列(VIPA)的正交色散光谱仪应用于FDOCT系统,在50nm的大带宽范围内,实现了0.002nm的超高光谱分辨率以及约105的超高光谱采样率,从而实现了测量量程长达80mm的高信噪比、高分辨率SDOCT成像。这是目前为止所报道的量程最大、信噪比最高的SDOCT系统。
     2、提出了针对正交色散光谱的,基于特定光学厚度样品干涉信号的光谱标定方法,从而解决了正交色散光谱分布规律随波长非线性变化对光谱信号采集的影响,初步解决了超宽带正交色散光谱的一维化采样和插值问题。
     3、初步建立了基于正交色散光谱仪的FDOCT系统,并通过共路设计避免了环境扰动对干涉信号的影响,从而实现了皮米量级光学延迟量的精确测量,实现了对玻璃平板样品和透镜样品光学表面的OCT扫描成像。
     二、基于FDOCT系统的应用研究:
     1、发展了多普勒光学相干层析技术在生物样品测量中的应用,优化了多普勒图像的处理方法,建立了基于流体力学原理的血管轮廓自适应捕捉和分析算法,从而实现了小鼠脑血流在药物刺激和生物物理刺激下的实时动态监测。通过实验结果与仿真结果的对比,优化了循环肿瘤微流控芯片的设计。
     2、发展了光学蒙特卡洛仿真对多普勒信号的计算模型,实现了具有多层散射介质和折射介质模型的光子散射的蒙特卡洛仿真计算,并就此提出了通过散射介质提高光学多普勒信号信噪比的方法,并在激光多普勒血流仪中得到应用。
     3、通过光线追迹的方法分析了屈光介质中由于光线的折射和光程与实际距离的错配导致的OCT图像的重构误差。对OCT系统中轴向扫描光束在屈光介质内的各层界面上的折射路径进行了光学计算,求取了存在成像重构误差的OCT图像逆映射到样品真实结构的逆映射函数,并成功将这种方法应用于体外的玻璃毛细管和在体的人眼眼前节OCT图像的重构误差矫正。
     4、在三维成像、立体成像、偏振成像、干涉光谱的波动性研究方面,介绍了作者开展的一些应用性的研究工作。
In the thesis, the main part is around the theoretical and application study in Fourier domain optical coherence tomography (FDOCT), especially in its high resolution orthogonal dispersive spectrometer, with several application studies in analyzing the interference spectrum signal. The main works included in the thesis are:
     1. Theoretical study in FDOCT system based on high resolution orthogonal dispersive spectrometer:
     1.1. Two-dimensional dispersion generated by the combination of the VIPA and the grating in conjunction with a two-dimensional CCD leads to an improved performance of the spectrometer. Ultrahigh spectral resolution of0.002nm within a free spectrum range (FSR) of50nm is realized, providing the spectrometer with a spectral sampling rate up to~105. The developed FDOCT realizes an imaging depth over80mm, which is the longest depth range ever achieved by FDOCT. The increased spectral sampling rate also results in a high signal-to-noise ratio (SNR) of the SDOCT system.
     1.2. The spectrum calibration method based on a fixed optical thickness glass plate is raised. It can be used to solve the problem that large range spectrum has a non-linear distribution on the detector plane. Hence we can use this method to achieve one-dimensional spectrum signal from the two-dimensional orthogonal dispersed spectrum.
     1.3. Built the common path FDOCT system based on the high resolution orthogonal dispersive spectrometer, in order to eliminate phase turbulence due to environment variation. A sensitivity of optical delay measurement of3.0pm is achieved using an optical plate.
     2. Application study of FDOCT system:
     2.1Developed the Doppler method in FDOCT system, especially in its velocity measuring model, to capture the vessel area in the Doppler OCT image. The method is used in monitoring of drug and stimulation induced cerebral blood flow velocity changes in rat sensory cortex, and improvement of the design of microchip in detection of the circulating tumour cells.
     2.2Developed the Monte Carlo simulation method of photon transmission, with the improvement on adding the Doppler phase shift calculation and the multi-layer simulation. This method is used to improve the SNR of the Doppler signal and used in a portable Doppler laser flowmetry.
     2.3Raise the geometrical optics algorithms for numerical correction of the unavoidable image distortions in the raw OCT image due to the refraction and the mismatch. The mapping of the raw OCT images to the actual structures is obtained and experimentally verified. The corrected images of the glass tube and the human eye are coincident to the actual structures.
     2.4Improved application in three-dimensional OCT imaging, polarization sensitive OCT and spectral fluctuation analyzing of the OCT signal.
引文
[1]曾绍群,骆清明,徐海峰,刘贤德.近红外频域光学断层成像初探.量子电子学报,1996,5:
    [2]Wang Chuan, Ding Zhihua, Mei Shengtao, Yu Hang, Hong Wei, Yan Yangzhi, Shen Weidong. Ultralong-range phase imaging with orthogonal dispersive spectral-domain optical coherence tomography. Optics letters,2012,37(21): 4555
    [3]赵庆亮,郭周义,魏华江,杨洪钦,司俊丽,谢树森,巫国勇,钟会清,李兰权,郭晓.不同的光透明剂对在体人皮肤组织光学透明的反射光谱研究.光谱学与光谱分析,2011,31(2):
    [4]徐小晖,吴淑莲,李晖.基于光学相干层析成像技术的鼠皮肤Ⅱ度烫伤及其修复过程监控.激光生物学报,2011,20(6):
    [5]Takada Kazumasa, Takato Norio, Noda Juichi, Uchida Naoya. Interferometric optical-time-domain reflectometer to determine backscattering characterization of silica-based glass waveguides. JOSAA,1990,7(5):857
    [6]Takada Kazumasa, Yokohama Itaru, Chida Kazumori, Noda Juichi. New measurement system for fault location in optical waveguide devices based on an interferometric technique. Applied optics,1987,26(9):1603
    [7]Huang David, Swanson Eric A, Lin Charles P, Schuman Joel S, Stinson William G, Chang Warren, Hee Michael R, Flotte Thomas, Gregory Kenton, Puliafito Carmen A. Optical coherence tomography. [Thesis]:Massachusetts Institute of Technology, Whitaker College of Health Sciences and Technology.1993
    [8]Chen Zhongping, Milner Thomas E, Srinivas Shyam, Wang Xiaojun, Malekafzali Arash, van Gemert Martin JC, Nelson J Stuart. Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography. Optics letters, 1997,22(14):1119
    [9]Chen Zhongping, Milner Thomas E, Dave Digant, Nelson J Stuart. Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media. Optics letters,1997,22(1):64
    [10]Kulkarni Manish D, Leeuwen Ton G van, Yazdanfar Siavash, Izatt Joseph A. Velocity-estimation accuracy and frame-rate limitations in color Doppler optical coherence tomography. Optics letters,1998,23(13):1057
    [11]Faber Dirk J, Mik Egbert G, Aalders Maurice CG, van Leeuwen Ton G. Light absorption of (oxy-) hemoglobin assessed by spectroscopic optical coherence tomography. Optics letters,2003,28(16):1436
    [12]Lu Chih-Wei, Lee Cheng-Kuang, Tsai Meng-Tsan, Wang Yih-Ming, Yang CC. Measurement of the hemoglobin oxygen saturation level with spectroscopic spectral-domain optical coherence tomography. Optics letters,2008,33(5): 416
    [13]Morgner U, Drexler W, Kartner FX, Li XD, Pitris C, Ippen EP, Fujimoto JG. Spectroscopic optical coherence tomography. Optics letters,2000,25(2):111
    [14]De Boer Johannes F, Srinivas Shyam M, Park B Hyle, Pham Tuan H, Chen Zhongping, Milner Thomas E, Nelson J Stuart. Polarization effects in optical coherence tomography of various biological tissues. Selected Topics in Quantum Electronics, IEEE Journal of,1999,5(4):1200
    [15]Wang Hui, Al-Qaisi Muhammad K, Akkin Taner. Polarization-maintaining fiber based polarization-sensitive optical coherence tomography in spectral domain. Optics letters,2010,35(2):154
    [16]De Boer Johannes F, Milner Thomas E, van Gemert Martin JC, Nelson J Stuart. Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography. Optics letters,1997, 22(12):934
    [17]Peterson Lindsy M., Jenkins Michael W., Gu Shi, Barwick Lee, Watanabe Michiko, Rollins Andrew M.4D shear stress maps of the developing heart using Doppler optical coherencetomography. Biomed Opt Express,2012, 3(11):3022
    [18]Liu Gangjun, Lin Alexander J., Tromberg Bruce J., Chen Zhongping. A comparison of Doppler optical coherence tomography methods. Biomed Opt Express,2012,3(10):2669
    [19]Yuan Zhijia, Luo Zhongchi, Ren Hugang, Pan Yingtian, Du Congwu. Doppler Optical Coherence Tomography for Flow Imaging with Optimized Digital Frequency Ramping Method. OS A Technical Digest (CD); 2010. Optical Society of America, p BSuD14.
    [20]Wojtkowski M., Szkulmowska A., Szkulmowski M., Bajraszewski T., Fojt W., Kowalczyk A. Doppler Spectral Optical Coherence Tomography with optical frequency shift. In:Andersen P., Chen Z., editors. Proceedings of SPIE-OSA Biomedical Optics; 2007. Optical Society of America.p 6627_34.
    [21]Munce Nigel R., Mariampillai Adrian, Standish Beau A., Pop Mihaela, Anderson Kevan J., Liu George Y., Luk Tim, Courtney Brian K., Wright Graham A., Vitkin I. Alex, Yang Victor X. D. Electrostatic forward-viewing scanning probe for Doppler optical coherence tomography using a dissipative polymer catheter. Opt Lett,2008,33(7):657
    [22]Yazdanfar Siavash, Yang Changhuei, Sarunic Marinko, Izatt Joseph. Frequency estimation precision in Doppler optical coherence tomography using the Cramer-Rao lower bound. Opt Express,2005,13(2):410
    [23]Leeuwen Ton G. van, Kulkarni Manish D., Yazdanfar Siavash, Rollins Andrew M., Izatt Joseph A. High flow velocity imaging using color Doppler optical coherence tomography. In:Fujimoto J., Patterson M., editors. OSA Trends in Optics and Photonics; 1998. Optical Society of America. p ATuD2.
    [24]Yazdanfar Siavash, Kulkarni Manish D., Izatt Joseph A. High resolution imaging of in vivo cardiac dynamics using color Doppler optical coherence tomography. In:Fujimoto J., Patterson M., editors. OSA Trends in Optics and Photonics; 1998. Optical Society of America. p AMB2.
    [25]Huang Liangmin, Ding Zhihua, Hong Wei, Wang Chuan, Wu Tong. Higher-order cross-correlation-based Doppler optical coherence tomography. Opt Lett,2011, 36(22):4314
    [26]Rolland Jannick P., Meemon Panomsak, Murali Supraja, Kaya Ilhan, Papp Nicolene, Thompson Kevin P., Lee Kye-Sung. Gabor Domain Optical Coherence Microscopy. In:Anderson P., Bouma B., editors. Proceedings of SPIE-OSA Biomedical Optics; 2009. Optical Society of America, p 7372_1K.
    [27]Bouchal Petr, Bradu Adrian, Podoleanu Adrian Gh. Gabor fusion technique in a Talbot bands optical coherence tomography system. Opt Express,2012,20(5): 5368
    [28]Dickensheets David L, Kino Gordon S. Silicon-micromachined scanning confocal optical microscope. Microelectromechanical Systems, Journal of, 1998,7(1):38
    [29]Pan Yingtian, Lankenou E, Welzel J, Birngruber R, Engelhardt R. Optical coherence-gated imaging of biological tissues. Selected Topics in Quantum Electronics, IEEE Journal of,1996,2(4):1029
    [30]Szydlo J, Delachenal N, Gianotti R, Walti R, Bleuler H, Salathe RP. Air-turbine driven optical low-coherence reflectometry at 28.6-kHz scan repetition rate. Optics communications,1998,154(1):1
    [31]Ballif J, Gianotti R, Chavanne Ph, Walti R, Salathe RP. Rapid and scalable scans at 21 m/s in optical low-coherence reflectometry. Optics letters,1997,22(11): 757
    [32]Campbell DJ, Krug PA, Falconer IS, Robinson LC, Tait GD. Rapid scan phase modulator for interferometric applications. Applied optics,1981,20(2):335
    [33]Zvyagin Andrei V, Smith Elwyn DJ, Sampson David D. Delay and dispersion characteristics of a frequency-domain optical delay line for scanning interferometry. JOSA A,2003,20(2):333
    [34]Rollins Andrew M, Kulkarni Manish, Yazdanfar Siavash, Izatt Joseph A, Lasocki Deborah L, Collins Peter J, Matson Charles L, Gershenson Meir, Chugui Yu V, Liu Hanli. Video rate optical coherence tomography. Opt Express,1998,3: 219
    [35]Fercher Adolph F, Hitzenberger Ch K, Kamp G, El-Zaiat Sy Y. Measurement of intraocular distances by backscattering spectral interferometry. Optics communications,1995,117(1):43
    [36]Brezinski Mark E. Optical coherence tomography:principles and applications. ed.:Academic press.2006. p.
    [37]Ha Gerd, Lindner Michael Walter. "Coherence Radar" and "Spectral Radar"—New Tools for Dermatological Diagnosis. Journal of biomedical optics,1998,3(1):21
    [38]Wojtkowski Maciej, Leitgeb Rainer, Kowalczyk Andrzej, Bajraszewski Tomasz, Fercher Adolf F. In vivo human retinal imaging by Fourier domain optical coherence tomography. Journal of biomedical optics,2002,7(3):457
    [39]Chinn SR, Swanson EA, Fujimoto JG. Optical coherence tomography using a frequency-tunable optical source. Optics letters,1997,22(5):340
    [40]de Boer Johannes F., Cense Barry, Park B. Hyle, Pierce Mark C, Tearney Guillermo J., Bouma Brett E. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt Lett,2003,28(21):2067
    [41]Li Xiaolu, Han Jae-Ho, Liu Xuan, Kang Jin U. Signal-to-noise ratio analysis of all-fiber common-path optical coherence tomography. Appl Opt,2008,47(27): 4833
    [42]De Boer Johannes F, Cense Barry, Park B Hyle, Pierce Mark C, Tearney Guillermo J, Bouma Brett E. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Optics letters,2003,28(21):2067
    [43]White B. R., Pierce M. C, Nassif N., Cense B., Park B. H., Tearney G. J., Bouma B. E., Chen T. C., de Boer J. F. In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography. Optics express,2003,11(25):3490
    [44]Nassif N. A., Cense B., Park B. H., Pierce M. C., Yun S. H., Bouma B. E., Tearney G. J., Chen T. C., de Boer J. F. In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve. Optics express,2004,12(3):367
    [45]Nassif N., Cense B., Park B. H., Yun S. H., Chen T. C., Bouma B. E., Tearney G. J., de Boer J. F. In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography. Optics letters,2004,29(5):480
    [46]Cense B., Nassif N. A., Chen T., Pierce M., Yun S. H., Park B. H., Bouma B. E., Tearney G. J., de Boer J. F. Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography. Optics express,2004, 12(11):2435
    [47]Huber R., Wojtkowski M., Taira K., Fujimoto J. G., Hsu K. Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging:design and scaling principles. Optics express,2005,13(9):3513
    [48]Huber Robert, Adler Desmond C, Fujimoto James G. Buffered Fourier domain mode locking:unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s. Optics letters,2006,31(20):2975
    [49]Choma M. A., Sarunic M. V., Yang C. H., Izatt J. A. Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Optics express,2003,11(18):2183
    [50]Yasuno Y., Madjarova V. D., Makita S., Akiba M., Morosawa A., Chong C. Sakai T., Chan K. P., Itoh M., Yatagai T. Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments. Optics express,2005,13(26):10652
    [51]Yun S. H., Tearney G. J., de Boer J. F., Iftimia N., Bouma B. E. High-speed optical frequency-domain imaging. Optics express,2003,11(22):2953
    [52]Drexler Wolfgang, Fujimoto James G. State-of-the-art retinal optical coherence tomography. Progress in Retinal and Eye Research,2008,27(1):45
    [53]Park B, Pierce Mark C, Cense Barry, Yun Seok-Hyun, Mujat Mircea, Tearney Guillermo, Bouma Brett, de Boer Johannes. Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 μm. Optics express,2005,13(11):3931
    [54]Tong Louis, Wong Ee Hwee, Chan Yiong Huak, Balakrishnan Vivian. Agreement between Scheimpflug photography and A-scan ultrasonography in anterior segment ocular measurements in children. Optometry & Vision Science,2003, 80(7):529
    [55]Hockwin Otto, Dragomirescu Viorel, Laser Heike, Wegener Alfred, Eckerskorn Ursula. Measuring lens transparency by scheimpflug photography of the anterior eye segment:principle, instrumentation, and application to clinical and experimental ophthalmology. Cutaneous and Ocular Toxicology,1987, 6(4):251
    [56]Koretz Jane F, Strenk Susan A, Strenk Lawrence M, Semmlow John L. Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment:a comparative study. JOSAA,2004,21(3):346
    [57]Laws Fiona, Laws David, Wood Ivan, Clark David. Assessment of a new through-the-eyelid technique for'A'scan ultrasound ocular axial length measurement. Ophthalmic and Physiological Optics,1998,18(5):408
    [58]Pavlin ChJ, Harasiewicz K, Sherar MD, Foster FS. Clinical use of ultrasound biomicroscopy. Ophthalmology,1991,98(3):287
    [59]Chiao Leroy, Sharipov Salizhan, Sargsyan Ashot E, Melton Shannon, Hamilton Douglas R, McFarlin Kellie, Dulchavsky Scott A. Ocular examination for trauma; clinical ultrasound aboard the International Space Station. The Journal of Trauma and Acute Care Surgery,2005,58(5):885
    [60]Marchini Giorgio, Pagliarusco Andrea, Toscano Andrea, Tosi Roberto, Brunelli Chiara, Bonomi Luciano. Ultrasound biomicroscopic and conventional ultrasonographic study of ocular dimensions in primary angle-closure glaucoma. Ophthalmology,1998,105(11):2091
    [61]Zhou Chuanqing, Wang Jianhua, Jiao Shuliang. Dual channel dual focus optical coherence tomography for imaging accommodation of the eye. Optics express, 2009,17(11):8947
    [62]Rombouts Serge ARB, Barkhof Frederik, Sprenger Michiel, Valk Jaap, Scheltens Philip. The functional basis of ocular dominance:functional MRI (fMRI) findings. Neuroscience letters,1996,221(1):1
    [63]Berkowitz Bruce A, Roberts Robin, Luan Hongmei, Bissig David, Bui Bang V, Gradianu Marius, Calkins David J, Vingrys Algis J. Manganese-enhanced MRI studies of alterations of intraretinal ion demand in models of ocular injury. Investigative ophthalmology & visual science,2007,48(8):3796
    [64]Buhring U, Herrlinger U, Krings T, Thiex R, Weller M, Kiiker W. MRI features of primary central nervous system lymphomas at presentation. Neurology, 2001,57(3):393
    [65]Li S Kevin, J Lizak Martin, Jeong Eun-Kee. MRI in ocular drug delivery. NMR in biomedicine,2008,21(9):941
    [66]De Potter Patrick, Shields Jerry A, Shields Carol L. MRI of the Eye and Orbit. ed.:Lippincott Williams & Wilkins.1995. p.
    [67]Yacoub Essa, Shmuel Amir, Logothetis Nikos, Ugurbil Kamil. Robust detection of ocular dominance columns in humans using Hahn Spin Echo BOLD functional MRI at 7 Tesla. Neuroimage,2007,37(4):1161
    [68]Nolan Winifred P, See Jovina L, Chew Paul TK, Friedman David S, Smith Scott D, Radhakrishnan Sunita, Zheng Ce, Foster Paul J, Aung Tin. Detection of primary angle closure using anterior segment optical coherence tomography in Asian eyes. Ophthalmology,2007,114(1):33
    [69]Choma Michael A, Sarunic Marinko V, Yang Changhuei, Izatt Joseph A. Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Optics express,2003,11(18):2183
    [70]Leitgeb R, Hitzenberger CK, Fercher Adolf F. Performance of fourier domain vs. time domain optical coherence tomography. Opt Express,2003,11(8):889
    [71]Wojtkowski Maciej, Bajraszewski Tomasz, Targowski Piotr, Kowalczyk Andrzej. Real-time in vivo imaging by high-speed spectral optical coherence tomography.
    [72]Leitgeb R, Drexler W, Unterhuber A, Hermann B, Bajraszewski T, Le T, Stingl A, Fercher A. Ultrahigh resolution Fourier domain optical coherence tomography. Optics express,2004,12(10):2156
    [73]Nassif Nader, Cense Barry, Hyle Park B, Yun Seok H, Chen Teresa C, Bouma Brett E, Tearney Guillermo J, de Boer Johannes F. In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography. Optics letters,2004,29:480
    [74]Baikoff Georges, Lutun Eric, Wei Jay, Ferraz Caroline. Anterior chamber optical coherence tomography study of human natural accommodation in a 19-year-old albino. Journal of Cataract& Refractive Surgery,2004,30(3):696
    [75]Goldsmith Jason A, Li Yan, Chalita Maria Regina, Westphal Volker, Patil Chetan A, Rollins Andrew M, Izatt Joseph A, Huang David. Anterior chamber width measurement by high-speed optical coherence tomography. Ophthalmology, 2005,112(2):238
    [76]Baikoff Georges, Jitsuo Jodai Horacio, Bourgeon Gregoire. Measurement of the internal diameter and depth of the anterior chamber:IOLMaster versus anterior chamber optical coherence tomographer. Journal of Cataract& Refractive Surgery,2005,31(9):1722
    [77]Richdale Kathryn, Bullimore Mark A, Zadnik Karla. Lens thickness with age and accommodation by optical coherence tomography. Ophthalmic and Physiological Optics,2008,28(5):441
    [78]Yan Pi-Song, Lin Hao-Tian, Wang Qi-Lin, Zhang Zhen-Pin. Anterior Segment Variations with Age and Accommodation Demonstrated by Slit-Lamp-Adapted Optical Coherence Tomography. Ophthalmology,2010,117(12): 2301
    [79]Gora Michalina, Karnowski Karol, Szkulmowski Maciej, Kaluzny Bartlomiej J, Huber Robert, Kowalczyk Andrzej, Wojtkowski Maciej. Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range. Optics express,2009,17(17):14880
    [80]Potsaid Benjamin, Baumann Bernhard, Huang David, Barry Scott, Cable Alex E, Schuman Joel S, Duker Jay S, Fujimoto James G. Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second. Optics express,2010,18(19): 20029
    [81]Furukawa Hiroyuki, Hiro-Oka Hideaki, Satoh Nobuyuki, Yoshimura Reiko, Choi Donghak, Nakanishi Motoi, Igarashi Akihito, Ishikawa Hitoshi, Ohbayashi Kohji, Shimizu Kimiya. Full-range imaging of eye accommodation by high-speed long-depth range optical frequency domain imaging. Biomedical Optics Express,2010,1(5):1491
    [82]Baumann Bernhard, Pircher Michael, Gotzinger Erich, Hitzenberger Christoph K. Full range complex spectral domain optical coherence tomography without additional phase shifters. Optics express,2007,15(20):13375
    [83]Sarunic Marinko V, Asrani Sanjay, Izatt Joseph A. Imaging the ocular anterior segment with real-time, full-range Fourier-domain optical coherence tomography. Archives of ophthalmology,2008,126(4):537
    [84]Grulkowski Ireneusz, Gora Michalina, Szkulmowski Maciej, Gorczynska Iwona, Szlag Daniel, Marcos Susana, Kowalczyk Andrzej, Wojtkowski Maciej. Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera. Optics express,2009,17(6):4842
    [85]Shen Meixiao, Wang Michael R, Yuan Yimin, Chen Feng, Karp Carol L, Yoo Sonia H, Wang Jianhua. SD-OCT with prolonged scan depth for imaging the anterior segment of the eye. Ophthalmic Surg Lasers Imaging,2010,41:S65
    [86]Du Chixin, Shen Meixiao, Li Ming, Zhu Dexi, Wang Michael R., Wang Jianhua. Anterior Segment Biometry during Accommodation Imaged with Ultralong Scan Depth Optical Coherence Tomography. Ophthalmology,2012,119(12): 2479
    [87]Potsaid Benjamin, Gorczynska Iwona, Srinivasan Vivek J, Chen Yueli, Jiang James, Cable Alex, Fujimoto James G. Ultrahigh speed spectral/Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second. Optics express,2008,16(19):15149
    [1]Ha Gerd, Lindner Michael Walter. "Coherence Radar"and "Spectral Radar'—New Tools for Dermatological Diagnosis. Journal of biomedical optics,1998,3(1):21
    [2]Chen Teresa C, Cense Barry, Pierce Mark C, Nassif Nader, Park B Hyle, Yun Seok H, White Brian R, Bouma Brett E, Tearney Guillermo J, de Boer Johannes F. Spectral domain optical coherence tomography:ultra-high speed, ultra-high resolution ophthalmic imaging. Archives of ophthalmology,2005,123(12): 1715
    [3]Bentaleb-Machkour Z., Jouffroy E., Rabilloud M., Grange J. D., Kodjikian L. Comparison of central macular thickness measured by three OCT models and study of interoperator variability. ScientificWorldJournal,2012,2012:842795
    [4]Kim H. C., Cho W. B., Chung H. Morphologic changes in acute central serous chorioretinopathy using spectral domain optical coherence tomography. Korean J Ophthalmol,2012,26(5):347
    [5]Muraoka Y., Ikeda H. O., Nakano N., Hangai M., Toda Y., Okamoto-Furuta K., Kohda H., Kondo M., Terasaki H., Kakizuka A., Yoshimura N. Real-time imaging of rabbit retina with retinal degeneration by using spectral-domain optical coherence tomography. PLoS One,2012,7(4):e36135
    [6]Fercher Adolf F, Hitzenberger Christoph K, Sticker Markus, Zawadzki R, Karamata Boris, Lasser Theo. A new dispersion compensation technique for Partial Coherence Interferometry (PCI) and Optical Coherence Tomography (OCT);2001.
    [7]Barkai Eli, Jung YounJoon, Silbey Robert. Time-dependent fluctuations in single molecule spectroscopy:A generalized wiener-khintchine approach. Physical review letters,2001,87(20):207403
    [8]Couch. L. W. Digital and Analog Communications Systems. ed.:New Jersey: Prentice Hall.2001. p.
    [9]Szkulmowska A, Wojtkowski M, Gorczynska I, Bajraszewski T, Szkulmowski M, Targowski P, Kowalczyk A, Kaluzny JJ. Coherent noise-free ophthalmic imaging by spectral optical coherence tomography. Journal of Physics D: Applied Physics,2005,38(15):2606
    [10]Ai Jun, Wang Lihong V. Spectral-domain optical coherence tomography: Removal of autocorrelation using an optical switch. Applied Physics Letters, 2006,88(11):111115
    [11]de Boer Johannes F., Cense Barry, Park B. Hyle, Pierce Mark C., Tearney Guillermo J., Bouma Brett E. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt Lett,2003,28(21):2067
    [12]Li Xiaolu, Han Jae-Ho, Liu Xuan, Kang Jin U. Signal-to-noise ratio analysis of all-fiber common-path optical coherence tomography. Appl Opt,2008,47(27): 4833
    [13]Huang David, Swanson Eric A, Lin Charles P, Schuman Joel S, Stinson William G, Chang Warren, Hee Michael R, Flotte Thomas, Gregory Kenton, Puliafito Carmen A. Optical coherence tomography. [Thesis]:Massachusetts Institute of Technology, Whitaker College of Health Sciences and Technology.1993
    [14]Povazay Boris, Bizheva K, Unterhuber Angelika, Hermann Boris, Sattmann Harald, Fercher Adolf F, Drexler Wolfgang, Apolonski A, Wadsworth WJ, Knight JC. Submicrometer axial resolution optical coherence tomography. Optics letters,2002,27(20):1800
    [15]Drexler Wolfgang. Ultrahigh-resolution optical coherence tomography. Journal of biomedical optics,2004,9(1):47
    [16]Wojtkowski Maciej, Srinivasan Vivek, Ko Tony, Fujimoto James, Kowalczyk Andrzej, Duker Jay. Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. Optics express,2004,12(11):2404
    [17]Fujimoto JG, Bouma B, Tearney GJ, Boppart SA, Pitris C, Southern JF, Brezinski ME. New Technology for High-Speed and High-Resolution Optical Coherence Tomographya. Annals of the New York Academy of Sciences,2006,838(1):95
    [18]Nassif NA, Cense B, Park BH, Pierce MC, Yun SH, Bouma BE, Tearney GJ, Chen TC, De Boer JF. In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve. Opt Express,2004,12(3):367
    [19]Morgner U, Drexler W, Kartner FX, Li XD, Pitris C, Ippen EP, Fujimoto JG. Spectroscopic optical coherence tomography. Optics letters,2000,25(2):111
    [20]Morgner U, Kartner FX, Cho SH, Chen Y, Haus HA, Fujimoto JG, Ippen EP, Scheuer V, Angelow G, Tschudi T. Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser. Optics letters,1999,24(6):411
    [21]Ko Tony, Adler Desmond, Fujimoto James, Mamedov Dmitry, Prokhorov Viatcheslav, Shidlovski Vladimir, Yakubovich Sergei. Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source. Optics express,2004,12(10):2112
    [22]Zhang Jun, Rao Bin, Yu Lingfeng, Chen Zhongping. High-dynamic-range quantitative phase imaging with spectral domain phase microscopy. Optics letters,2009,34(21):3442
    [23]Wang Chuan, Ding Zhihua, Mei Shengtao, Yu Hang, Hong Wei, Yan Yangzhi, Shen Weidong. Ultralong-range phase imaging with orthogonal dispersive spectral-domain optical coherence tomography. Optics letters,2012,37(21): 4555
    [24]Tsai Meng-Tsan, Lee Ya-Ju, Yao Yung-Chi, Kung Che-Yen, Chang Feng-Yu, Lee Jiann-Der. Quantitative Phase Imaging With Swept-Source Optical Coherence Tomography for Optical Measurement of Nanostructures. Ieee Photonics Technology Letters,2012,24(8):640
    [25]Singh Kanwarpal, Dion Carolyne, Wajszilber Marcelo, Ozaki Tsuneyuki, Lesk Mark R., Costantino Santiago. Measurement of Ocular Fundus Pulsation in Healthy Subjects Using a Novel Fourier-Domain Optical Coherence Tomography. Investigative ophthalmology & visual science,2011,52(12): 8927
    [26]Shock Itay, Barbul Alexander, Girshovitz Pinhas, Nevo Uri, Korenstein Rafi, Shaked Natan T.2012. Optical phase measurements in red blood cells using low-coherence spectroscopy. In:Wax A. P., Backman V., editors. Biomedical Applications of Light Scattering Vi.
    [27]Betzig E, Isaacson M, Lewis A. Collection mode near-field scanning optical microscopy. Applied Physics Letters,1987,51(25):2088
    [28]Leitgeb R, Hitzenberger CK, Fercher Adolf F. Performance of fourier domain vs. time domain optical coherence tomography. Opt Express,2003,11(8):889
    [29]Leitgeb R, Drexler W, Unterhuber A, Hermann B, Bajraszewski T, Le T, Stingl A, Fercher A. Ultrahigh resolution Fourier domain optical coherence tomography. Optics express,2004,12(10):2156
    [30]Choma Michael A, Sarunic Marinko V, Yang Changhuei, Izatt Joseph A. Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Optics express,2003,11(18):2183
    [1]Xiao Shijun, Weiner Andrew M.2-D wavelength demultiplexer with potential for> 1000 channels in the C-band; 2004. IEEE. p 573-574.
    [2]Xiao Shijun, McKinney Jason D, Weiner Andrew M. Photonic microwave arbitrary waveform generation using a virtually imaged phased-array (VIPA) direct space-to-time pulse shaper. Photonics Technology Letters, IEEE,2004, 16(8):1936
    [3]Supradeepa VR, Leaird Daniel E, Weiner Andrew M. Programmable high resolution broadband pulse shaping using a 2-D VIPA-grating pulse shaper with a liquid crystal on silicon (LCOS) spatial light modulator; 2010. Optical Society of America.
    [4]Shirasaki M. Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer. Optics letters,1996,21(5):366
    [5]Diddams Scott A, Hollberg Leo, Mbele Vela. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature,2007, 445(7128):627
    [6]Cundiff Steven T, Weiner Andrew M. Optical arbitrary waveform generation. Nature Photonics,2010,4(11):760
    [7]Wise Stacy, Quetschke V, Deshpande AJ, Mueller G, Reitze DH, Tanner DB, Whiting BF, Chen Y, Tunnermann A, Kley E. Phase effects in the diffraction of light:beyond the grating equation. Physical review letters,2005,95(1): 13901
    [8]Noda H, Namioka T, Seya M. Geometric theory of the grating. JosA,1974,64(8): 1031
    [9]Benton Stephen A, Bove V Michael, Connors-Chen Elizabeth, Farmer William. Holographic imaging. ed.:Wiley-Interscience New York, NY, USA:.2008. p.
    [10]Shirasaki M, Akhter AN, Lin C. Virtually imaged phased array with graded reflectivity. Photonics Technology Letters, IEEE,1999,11(11):1443
    [11]Shirasaki Masataka. Compensation of chromatic dispersion and dispersion slope using a virtually imaged phased array; 2001. IEEE, p TuSl-TuSl.
    [12]Shirasaki Masataka.1999. Virtually imaged phased array (VIPA) having air between reflecting surfaces. Google Patents.
    [13]Shirasaki M. Chromatic-dispersion compensator using virtually imaged phased array. Photonics Technology Letters, IEEE,1997,9(12):1598
    [14]Cao Simon XF.2001. Tunable chromatic dispersion and dispersion slope compensator utilizing a virtually imaged phased array. Google Patents.
    [15]Weiner Andrew M. Reply to Comment on "Generalized grating equation for virtually-imaged phased-array spectral dispersions". Applied optics,2012, 51(34):8187
    [16]Shioda Tatsutoshi, Morisaki Takashi, Tuan Quoc Banh, Suzuki Kohei. Two-dimensional single-shot tomography using a virtually imaged phased array and a spatial phase modulator. Applied optics,2012,51(21):5224
    [17]Nugent-Glandorf Lora, Neely Tyler, Adler Florian, Fleisher Adam J., Cossel Kevin C., Bjork Bryce, Dinneen Tim, Ye Jun, Diddams Scott A. Mid-infrared virtually imaged phased array spectrometer for rapid and broadband trace gas detection. Optics letters,2012,37(15):3285
    [18]Gauthier Daniel J. Comment on "Generalized grating equation for virtually imaged phased-array spectral dispersers". Applied optics,2012,51(34):8184
    [19]de Boer Johannes F., Cense Barry, Park B. Hyle, Pierce Mark C, Tearney Guillermo J., Bouma Brett E. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt Lett,2003,28(21):2067
    [20]Li Xiaolu, Han Jae-Ho, Liu Xuan, Kang Jin U. Signal-to-noise ratio analysis of all-fiber common-path optical coherence tomography. Appl Opt,2008,47(27): 4833
    [1]Xiao Shijun, Weiner Andrew M.2-D wavelength demultiplexer with potential for≥ 1000 channels in the C-band; 2004. IEEE, p 573-574.
    [2]Xiao Shijun, McKinney Jason D, Weiner Andrew M. Photonic microwave arbitrary waveform generation using a virtually imaged phased-array (VIPA) direct space-to-time pulse shaper. Photonics Technology Letters, IEEE,2004, 16(8):1936
    [3]Supradeepa VR, Leaird Daniel E, Weiner Andrew M. Programmable high resolution broadband pulse shaping using a 2-D VIPA-grating pulse shaper with a liquid crystal on silicon (LCOS) spatial light modulator; 2010. Optical Society of America.
    [4]Shirasaki M. Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer. Optics letters,1996,21(5):366
    [5]Diddams Scott A, Hollberg Leo, Mbele Vela. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature,2007, 445(7128):627
    [6]Cundiff Steven T, Weiner Andrew M. Optical arbitrary waveform generation. Nature Photonics,2010,4(11):760
    [7]Wise Stacy, Quetschke V, Deshpande AJ, Mueller G, Reitze DH, Tanner DB, Whiting BF, Chen Y, Tunnermann A, Kley E. Phase effects in the diffraction of light:beyond the grating equation. Physical review letters,2005,95(1): 13901
    [8]Noda H, Namioka T, Seya M. Geometric theory of the grating. JosA,1974,64(8): 1031
    [9]Benton Stephen A, Bove V Michael, Connors-Chen Elizabeth, Farmer William. Holographic imaging, ed.:Wiley-Interscience New York, NY, USA:.2008. p.
    [1]Wang Chuan, Ding Zhihua, Mei Shengtao, Yu Hang, Hong Wei, Yan Yangzhi, Shen Weidong. Ultralong-range phase imaging with orthogonal dispersive spectral-domain optical coherence tomography. Optics letters,2012,37(21): 4555
    [2]黄良敏,丁志华,洪威,王川.相关多普勒光学层析成像.物理学报,2012,61(2):
    [3]Wang Chuan, Yang Yong, Ding Zhihua, Meng Jie, Wang Kai, Yang Wenwei, Xu Ying. Monitoring of drug and stimulation induced cerebral blood flow velocity changes in rat sensory cortex using spectral domain Doppler optical coherence tomography. Journal of biomedical optics,2011,16(4):046001
    [4]Wang Chuan, Ding Zhihua, Meng Jie, Yin Binglun. Simulation and measurement of flow field in microchip. Journal of Innovative Optical Health Sciences, 2010,3(01):25
    [5]Wang Chuan, Ding Zhihua, Geiser Martial, Wu Tong, Chen Minghui. Choroidal laser Doppler flowmeter with enhanced sensitivity based on a scattering plate. Journal of biomedical optics,2011,16(4):047004
    [6]杨柳,王川,丁志华,洪威,黄良敏.屈光介质中谱域光学相干层析成像的重构.中国激光,2011,38(5):504001
    [7]Wang Kai, Ding Zhihua, Wu Tong, Wang Chuan, Meng Jie, Chen Minghui, Xu Lei. Development of a non-uniform discrete Fourier transform based high speed spectral domain optical coherence tomography system. Optics express,2009, 17(14):12121
    [8]Ding Zhihua, Wang Chuan, Shen Yi, Huang Liangming, Wu Lan, Du Chixin. Recent advances in optical coherence tomography.2012:85530Q
    [9]Hahn Stefan L. Hilbert transforms in signal processing, ed.:Artech House Boston, MA, USA.1996. p.
    [10]Brychkov IUrii Aleksandrovich, Prudnikov Anatolii Platonovich. Integral transforms of generalized functions, ed.:Gordon and Breach Science Publishers.1989. p.
    [11]Tricomi Francesco G. On the finite Hilbert transformation. The Quarterly Journal of Mathematics,1951,2(1):199
    [12]Zhang Jun, Rao Bin, Yu Lingfeng, Chen Zhongping. High-dynamic-range quantitative phase imaging with spectral domain phase microscopy. Optics letters,2009,34(21):3442
    [13]Wang Lihong, Jacques Steven L, Zheng Liqiong. MCML—Monte Carlo modeling of light transport in multi-layered tissues. Computer methods and programs in biomedicine,1995,47(2):131
    [14]Makita Shuichi, Yasuno Yoshiaki, Endo Takashi, Itoh Masahide, Yatagai Toyohiko. Polarization contrast imaging of biological tissues by polarization-sensitive Fourier-domain optical coherence tomography. Applied optics,2006,45(6):1142
    [15]Gotzinger Erich, Baumann Bernhard, Pircher Michael, Hitzenberger Christoph K. Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography. Optics express,2009, 17(25):22704
    [16]Gotzinger Erich, Pircher Michael, Geitzenauer Wolfgang, Ahlers Christian, Baumann Bernhard, Michels Stephan, Schmidt-Erfurth Ursula, Hitzenberger Christoph K. Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography. Optics express,2008,16(21):16410
    [17]赵庆亮,魏华江,郭周义,杨洪钦,谢树森,李兰权.偏振反射光谱在生物医学光子学中的应用.激光与光电子学进展,2009,46(10):11
    [18]Gotzinger Erich, Pircher Michael, Hitzenberger Christoph K. High speed spectral domain polarization sensitive optical coherence tomography of the human retina. Optics express,2005,13(25):10217
    [19]Baumann Bernhard, Gotzinger Erich, Pircher Michael, Hitzenberger Christoph K. Single camera based spectral domain polarization sensitive optical coherence tomography. Optics express,2007,15(3):1054
    [20]Fan Chuanmao, Wang Yi, Wang Ruikang K. Spectral domain polarization sensitive optical coherence tomography achieved by single camera detection. Optics express,2007,15(13):7950

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700