粗糙目标激光散斑统计特性及其微运动检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粗糙目标的激光散斑特征在国防航天以及无损测量等领域倍受关注。激光散斑所携带的散射物体信息是激光雷达目标识别检测、机械视觉三维成像和空间三维度量的重要理论依据。本文研究了激光散斑强度相关函数、概率密度函数以及散斑图像的获取等基本特征;接收孔径对曲面目标散斑统计特性的影响;在不同光学系统中动态散斑的平移与沸腾状态特征分析;应用激光散斑测量目标振动旋转等微小运动等。论文的主要成果如下:
     1.给出了激光散斑强度起伏的概率密度函数分布特征以及粗糙面的散斑强度相关函数和功率谱密度,建立了散斑图像的获取方法;进一步给出了探测器上两个独立散斑图样散斑强度的概率密度函数以及探测器上多个强度相等的散斑积分的统计概率密度分布。
     2.研究了高斯波束照射旋转曲面目标在菲涅耳衍射区产生的动态散斑强度起伏的统计特性。推导了探测孔径尺寸大小不同时,旋转球的散斑强度起伏相关函数依赖于曲率半径的关系;分析了当探测孔径为方形时,粗糙圆柱旋转引起的散斑解相关特征;最后当入射光束照射面积大于圆柱表面尺寸时,从数值计算和实验测量两方面得到了空间相关长度和相关时间与圆柱半径以及旋转速度的变化关系。
     3.在三种光学系统结构(自由空间,单透镜以及双透镜系统)与三种入射光束(平行光,高斯光束以及高斯谢尔模式光束)的五种组合情况下,推导了运动散射目标产生的动态散斑的空间-时间相关函数以及散斑强度起伏的功率谱密度;计算分析了不同光学结构、不同入射光束以及不同目标运动情况下散斑的平移和沸腾两种状态的特性。
     4.推导了目标三维平移运动,正弦振动、角振动以及匀速旋转情况下目标的空间-时间相关函数表达式,数值计算各种运动状态下相关长度以及相关时间的特征,给出了因入射光束腰半径,光学系统参数以及目标运动速度变化时的关系曲线;通过理论和实验方法分析了平面波照射旋转圆柱的散斑强度功率谱密度分布以及旋转速度对接收信号带宽的影响。
     5.研究了距离分辨激光雷达散射截面与激光频率变化引起的散斑强度起伏之间的关系;建立物理模型分析了散斑信号谱密度和被照射目标的距离分辨激光雷达散射截面的自相关函数之间的函数关系;最后应用统计方法给出了散斑波长解相关及距离分辨激光雷达散射截面的相位恢复方法。
The laser speckle characteristics of roughness targets have been intimately noticedby national defense and aerospace fields. Laser speckle that carry information of thetarget was basis for target discrimination with laser radar,3D imaging involvingmachine vision and dimensional metrology. The main achievements are as followings:the physical process and measurement methods of laser speckle, the probability densityfunction of speckle intensity and phase, the receiving aperture’s impact on the statisticalnature of speckle field from curved face objective, The analyzing for the dynamicproperties of two types of speckle motion, boiling and translation in opticalconfiguration and illumination light, the object motion parameters based on laserspeckle. There are main research results as follows:
     1. The physical process of laser speckle is described in detail based on interferencetheory and summation rule of random vectors. A physical model of the instantaneousintensity at any point in scattered field, autocorrelation function and power spectraldensity of the laser speckle from a rough surface is provided separately. Probabilitydensity distribution of speckle intensity is given on receiving screen.
     2. In order to explore the statistical properties of integrated intensity fluctuations ofdynamic speckles produced in the Fresnel diffraction field from a rotating curvatureobject under illumination of a Gaussian beam, the dependence of the curvature radius ofthe rotating diffuse object on the correlation time of the speckle intensity fluctuation isespecially expressed by taking into account the size of the detecting aperture. Indifferent detecting aperture, the correlation distance of the speckle intensity fluctuationis calculated from plane and sphere surface, and the relation of time correlation lengthof the speckle intensity fluctuation with the radius of curvature is given when thecurvature objects are rotating with constant angular velocity. And rotationaldecorrelation feature from a cylindrical on square receiving aperture is considered.Statistical property of dynamic speckles in the Fresnel diffraction field is describedwhen irradiated area is greater than cylinder surface. The changing relationship isobtained on both numerical computation and experimental which the space.timecross.correlation of dynamic speckles intensity fluctuations as cylindrical radius androtation speed.
     3. The statistical properties of dynamic speckles produced by a moving diffuseobject are reviewed by a deduced space.time correlation function and power spectrumof speckle-intensity fluctuation for five combined cases of both optical configuration and illumination light. Three kinds of geometry (free-space, single-lens, and double-lens)of optical configuration are taken with three kinds of illumination light (Gaussian beam,plane-wave beam, and Gaussian Schell-model beam). Consequently, it is shown that thecross correlation function and the power spectrum are both Gaussian under someassumptions. Two types of speckle motion (boiling and translation) are also evaluatedunder different kinds of motion conditions, optical configuration and illumination lightfrom the dynamic properties.
     4. The expressions of space-time correlation function of speckle.intensityfluctuation are derived when the object translation three.dimensional motion, sinevibration, angular vibratory and rotate at a constant speed are considered. Correlationlength and relative temporal in the different motion states is presented by means ofsimulated calculation. Curves of speckle-intensity fluctuation are drawn with waist sizeof the incident Gaussian beam, the parameter of optical system and the motion targetspeed. The distributional features of averaged power spectrum are analyzed and theimpact of speckle translation and speckle boiling caused by rotation cylinder on thereceived signal bandwidth is concluded.
     5. The relationship between range resolved laser radar cross section and thefluctuating speckle intensity caused by scanning the laser frequency is describedtheoretically. The fundamental relation is established between the spectral density of thespeckle signal and the autocorrelation function of the range-resolved laser radar crosssection of illuminated object. The wavelength dependence of speckle and phaserecovery of range resolved laser radar cross section is presented using a statisticalmethod.
引文
[1] Goodman J W: Statistical properties of laser speckle patterns: Laser Speckle andRelated Phenomena [M]. Heidelberg: Springer Berlin,1975, p:9~75
    [2] Yu F T, Wang E Y: Speckle reduction in holography by means of random spatialsampling [J], Appl. Opt.1973,12(1), p:6561659
    [3] Lihong Ma, Hui Wang, Weimin Jin, Hongzhen Jin: Reduction of speckle noise inthe reconstnicted image of digital holograpm [J], Proc. SPIE, Holography andDiffractive Optics III2008,6832, p:683227
    [4] An S, Lapchuk A, Yurlov V.etal: Speckle suppression in laser display using severalpartially coherent beams [J], Optics Express,2009,17(1), p:92~103
    [5] Shin S C, Yoo S S, Lee S Y: Removal of hot spot speckle on rear projection screenusing the rotating screen system [J], Journal of display technology,2006,2(1),P:79~84
    [6] Frank Chen, Brown G M, Song M: Overview of three.dimensional shape measure.ment using optical methods [J], Optical Engineering,2000,39(1), p:10~22
    [7] Creath Katherine: Phase.shifting speckle interferometry[J], Applied Optics,1985,24(18), p:3053~3058
    [8] Peters W H, Ranson W F: Digital imaging techniques in experimental stressanalysis [J], Optical Engineering,1982,21(3), p:427~431
    [9] Leendertz J A: Interferometric displacement measurement on scattering surfacesutilizing speckle effect [J], Journal of Physics E,1970, p:214~218
    [10] Fercher A F, Briers J D: Flow visualization by means of single.exposure specklephotography [J], Optics Communications,1981,37(5), p:326~330
    [11] Cheng H Y, Luo Q M, Wang Z: Efficient characterization of regional mesentericblood flow by use of laser speckle imaging [J], Appl. Opt,2003,42(28), p:5759~5764
    [12]黄伟:基于激光散斑的跟踪技术和激光扫描显示中散斑机理的研究[D],中国科学技术大学博士学位论文,2003
    [13]孙长库等:激光测量技术[M],2008,天津大学出版社
    [14]杨国光:近代光学测试技术[M],1997,浙江大学出版社
    [15] Miguel Asmad, GuiIIermo Baldwin, CorduIa Maczeyzik: Experimental study ofthe surface roughness in metals with different surface finishing by two dimensionalcorrelation of speckle pattern [C], SPIE,2005,5776, p:530~537
    [16]戴福隆,金观昌等:现代光测力学[M],科学出版社,1990
    [17] Migel Asmad: Experimental study of the surface roughness in metals with differentsurface finishing by two dimensional correlation of speckle pattern [C], EighthInternational Symposium on Laser Metrology edited by R. Rodriguez.Vera,F.Mendoza.Santoyo, Proc.of SPIE, Vol.5776(SPIE, Bellingham, WA,2005)
    [18] Ventura.Chavez, R.A.Martinez.Celorio: Using the wavelet transform for process.ing signals of a counter of speck1e [C], Proc.of SPIE, Vol.5776(SPIE, Bellingham,WA,2005)
    [19] GAyala.Landeros, A.Davila, F.Carion, V.M.Castano: Fractal analysis of vibrationamplitudes[C], Proc.of SPIE, Vol.5776(SPIE,Bellingham, WA,2005)
    [20] Amalia Martine, Raul Cordero: Uncenainty evaluation of displacements measuredby ESPI with divergent wavefronts [C], Proc.of SPIE, Vol.5776(SPIE, Bellingham,WA,2005)
    [21] W. Steinchen, L.X.Yang: Digita1Shearograpohy.Theory and Application of DigitalSpeckle Pattern Shearing Interefrometry [C], SPIE, Press2003, Bellingham,Washington, USA
    [22]陈思颖,晨光,段祝平:数字散斑相关法在高速变形测量中的应用[J],中国激光,2004,31(6), p:735~739
    [23] F.P.Chiang, R.Anastasi: Thermal strain Measurement by one.Beam Laser specklelnterefremetery [J], Applied Optics,1980,19(16), p:2701~2704
    [24]混凝土结构无损检测中的激光散斑干涉计量术[D],东南大学硕士论文,2003
    [25] R.Krupka, AEtterneyer: Brake vibration analysis with three dimensional [J], PulseESPI EXP Techniques,2001,25(2), p:38~41
    [26]王怀文:自适应数字散斑相关方法与铜箔材料断裂中的尺寸效应研究[D],天津大学博士学位论文,2004
    [27]程海英:利用激光散斑成像技术实时监测微循环血流的动态变化[D],华中科技大学博士学位论文,2003
    [28]贾书海:数字散斑振动定量分析新技术研究与应用[D],西安交通大学博士学位论文,2000
    [29]陈炳泉:频闪剪切散斑干涉术的研究[J],光学学报,2004,24(11), p:1566~1570
    [30] Dainty J.Stellar: speckle interferometry, in Laser Speckle and Related Phenomena
    [M], Heidelberg, Springer Berlin,1975
    [31] Fuji H., Asakura T., Shindo Y: Measurement of surface roughness properties bymeans of laser speckle techniques [J], Opt. Cornmun,1976,16(l), p:65~72
    [32] H. H. Arsenault and G. April: Properties of speckle integrated with a finite apertureand logarithmically transformed [J], J. Opt. Soc. Am,1976,66(11), p:1160~1163
    [33] Yamaguchi I: A laser speckle strain gauge [J], Journal of physics(E):Scientificinstruments,1981,14(11), p:1270~1273
    [34] Yamaguchi I and Fujita T: Linear and rotary encoders using electronic specklecorrelation [J], Opt.Eng,1991,30, p:1862~1864
    [35] Ohtsubo, J; Asakura, T: Statistical properties of the sum of partially developedspeckle patterns [J], Applied Optics,1977,16(6), p:1742~1753
    [36] G. Rasigni, M. Rasigni: Statistical parameters for random and pseudorandom roughsurfaces [J], J Opt. Soc. Am. A,1988,5(2), p:99~103.
    [37] Thomas Thumer: Image.plane speckle from rotating, rough objects [J], Opt. Soc.Am.,1985, A2, p:1395~1402
    [38] Gudimetla, V S Rao: Three.point joint density functions for the intensities ofpartially and fully developed monochromatic laser speckle patterns [J], JOSA A,1991,8(12), p:1943~1946
    [39] Gudimetla, Venkata S Rao; Kavaya, Michael J: Special Relativity Corrections forSpace.Based Lidars [J], Applied Optics,1999,38(30), p:6374~6382
    [40] Korotkova, Olga: Generalized Stokes parameters of random electromagneticbeams [J], Optics Letters,2005,30(2), p:198~200
    [41] J.W.Goodman: Speckle phenomena in optics: Theory and application. Robert&Company [M],2006.
    [42] Tchvialeva: Influence of geometry on polychromatic speckle contrast [J], J.Opt.Soc.Am.A,2006,24(1), p:93~97
    [43] Luigi Bruno: A novel operating principle in speckle interferometry: the double–focusing [J], Opt. Express,2007,15(14), p:8787~8796
    [44] Takashi Okamoto: Statistical properties of three.dimensional speckle distributionsproduced by crossed scattered waves [J], J.Opt.Soc.Am.A,2008,25(12), p:3030~3042
    [45] Harold T. Yura: Speckle dynamics resulting from multiple interfering beams [J],J.Opt. Soc. Am. A,2008,25(2), p:318~326
    [46] Goodman, Joseph W: Speckle with a finite number of steps [J], Applied Optics,2008,47(4), p:A111~A118
    [47] Natalia Yaitskova: Probability density function and detection threshold in highcontrast imaging with partially polarized light [J], Opt. Express,2009,34(11),p:1720~1722
    [48] Guillaume Mahé, Sylvain Durand, Anne Humeau: Air movements interfere withlaser speckle contrast imaging recordings [J], Lasers Med Sci,2012,27p:1073~1076
    [49] Stanislav Derevyanko: Nonlinear propagation of an optical speckle field [J], Phys.Rev.2012, A85(5), p:1~10
    [50] Ferenc Domoki, Dániel Z lei, Orsolya Oláh: Evaluation of laser.speckle contrastimage analysis techniques in the cortical microcirculation of piglets [J], Micro.Vascular Research,2012,83(3), p:311~317.
    [51] Kenneth J. Barnard, Igor Anisimov, John E. Scheihing: Random laser specklebased modulation transfer function measurement of midwave infrared focal planearrays [J], Optical Engineering,2012,51(8), p:083601
    [52]伍小平,李志超等:部分相干光散斑的基本性质和规律研究[J],自然科学进展,1995,5(6), p:725~728
    [53]汪千凯:粗糙表面相关结构对远场散斑相位差统计性质的影响[J],光学学报,1996,16(7), p:963~966
    [54]李继陶:部分偏振散斑引起的像强度中心漂移的理论计算[J],光学学报,1997,17(3), p:314~317
    [55]程传福:高斯相关随机表面及其光散射散斑场的模拟产生和光强概率分析[J],物理学报,1999,48(09),p:1635~1643
    [56]周昕,程新路,黄援朝,谢健:利用激光散斑测量CCD的调制传递函数[J],四川大学学报(自然科学版),1999,36(6), p:1068~1071
    [57]杨连臣,沈忙作,郭永洪:天体目标斑点成象的模拟[J],光子学报,2000,29(12);p:1108~1112
    [58]李大伟,程传福:超快动态散斑相关函数的理论研究[J],山东师范大学学报(自然科学版),2005,20(2), p:34~36
    [59]周灿林,李方,王蕴珊:大位移电子散斑干涉法[J],光电子.激光,2005,16(12), p:1472~1475
    [60]孙平,韩青,王晓凤:载频调制大剪切电子散斑干涉系统[J],应用光学,2006,27(5), p:308~384
    [61]邱建军:像面散斑平均尺寸对激光散斑成像的影响[J],光学学报,2009,29(7),p:1863~1867
    [62]张建伟:三色激光散斑自相关法测量表面粗糙度的分析[J],激光与光电子学进展,2011,48(1), p:010301
    [63]贾大功,武立强:剪切散斑干涉术中剪切量的测量[J],光学精密工程,2012,20(02), p:226.232
    [64]陈小艺,刘曼等:弱散射体产生的菲涅耳极深区散斑场相位涡旋演化的实验研究[J],物理学报,2012,61(7), p:074201
    [65]李金才,黄思训,彭宇行,张卫民:一种用于合成孔径雷达图像相干斑抑制的双边滤波参数配置新方法[J],物理学报,2012,61(11), p:119501
    [66] T.Asakura and N. Takai: Dynamic Laser Speckles and Their Application to velocityMeasurements of the Diffuse Object [J], Appl. Phys,1981. B(25), p:179~194
    [67] N. Takai, T. Iwai, and T. Asakura: An Effect of Curvature of Rotating DiffuseObjects on the Dynamics of Speckles Produced in the Diffraction Field [J], Appl.Phys,1981, B(26), p:185~192
    [68] N. Takai, T.Asakura: Vectorial measurements of speckle displacement by the2.Delectronic correlation method [J], Appl. Opt,1985,24(5), p:660~665
    [69] Nakamura T,Asakura T: Statistical properties of integrated dynamic specklesproduced by a rotating spheroidal object [J], Optics,1993,24(3), p:135~140
    [70] Popov, I.A., N.V. Sidorovsky, L.M. Veselov: Measurement of inplane mechanicalvibration by use of dynamic speckle [J], Optics and Lasers in Engineering,1996,25(4), p:303~310
    [71] J. David Briers: Laser Doppler and time.varying speckle: a reconciliation [J]. J.Opt. Soc. Am. A,1996,13(2), p:345~350
    [72] Andrew Houghton, Graham Rees, Peter Ivey: A method for Processing laserspeckler images to extract high.resolution motion [J], Meas.Sci.Tecahol,1997,8(6),p:611~617
    [73] Astrid Aksnes Dyrseth: Measuring mixing dynamics of transparent fluids withelectronic speckle pattern interferometry[J], Applied Optics,36(25), p:6171~6177
    [74] U. Schnell, J. Piot, and R. Da¨ndliker: Detection of movement with laser specklepatterns: statistical properties [J], J. Opt. Soc. Am. A,1998,15(1), p:207~216
    [75] Maybeck, P.S., T.D. Herrera, R.J. Evans: Target tracking using infraredmeasurements and laser illumination[J], Aerospace and Electronic Systems, IEEETransactions on,1994,30(3), p:758~768
    [76] E. B. Li, A. K. Tieu, K.F.Wang: Dynamic laser speckle method for determining therelative velocity between two objects [J], Optics Communications,2003,219(1),p:1~8
    [77] Sergey E. Skipetrov: Dynamic instability of speckle patterns in nonlinear randommedia [J], J. Opt. Soc. Am. A,2004,2(1), p:168~176
    [78] Semenov, D.V., E. Nippolainen, and A.A. Kamshilin: Fast distance measurementsby use of dynamic speckles [J], Opt. Lett.,2005,30(3), p:248~250.
    [79] Chen Zhichao: The Impact of the PDA Measurement Method in Forward Scatteron The Concentration of Gas.Particle Two Phase Flow [C], Proceedings of the5thInternational Symposium on Measurement Techniques for Multiphase Flows,2006
    [80] V. Rajan, B. Varghese: Speckles in laser Doppler perfusion imaging [J], Opt.Express,2006,31(4), p:468~470
    [81] D.V. Semenov: Statistical properties of dynamic speckles formed by a deflectinglaser beam [J], Opt. Express,2008,16(2), p:1238~1249
    [82] R. S. Hansen and C. Pedersen: All semiconductor laser Doppler anemometer at1:55microm [J], Opt. Express,2008,16(22), p:18288~18295
    [83] Serguei V. Miridonov: Accuracy of measuring systems using dynamic speckles [J]J. Opt. Soc. Am. A,2009,26(4), p:745~752,
    [84] S. L. Yeh, S. T. Lin, and Y. H. Chang: Precise displacement measurement for alocal surface [J], Opt. Lett,2009,34(21), p:3406~3408.
    [85] Shigeo Kubota: Sensitivity evaluation of dynamic speckle activity measurementsusing clustering methods [J], Appl. Opt,2010,49(23), p:4385~4391
    [86] Theis F. Q. Iversen: Speckle.based three.dimensional velocity measurement usingspatial filtering velocimetry [J], Appl. Opt,2011,50(11), p:1523~1533
    [87] Cikalova U, Bendjus B, Schreiber J: Laser.Speckle.Photometry.A Method forNon.Contact Evaluation of Material Damage, Hardness and Porosity [J],MATERIALS TESTING,2012,54(2), p:80~84
    [88]腾树云:菲涅耳衍射区和夫琅和费衍射区的动态部分相干光散斑场特性[J],物理学报,2003,52(2), p:316~323
    [89]张英华:激光散斑过零法测量纳米流体中纳米粒子运动状态的实验研究[D],南京理工大学硕士论文,2010
    [90]李大伟,程传福:超快动态散斑相关函数的理论研究[J],山东大学学报自然科学版,2005,20(2), p:34~36
    [91]李宏升:湍流对大气中传输激光束的影响[D],长春理工大学硕士学位论文,2002
    [92]杨柳,洪威,王川,丁志华:基于光学相干层析散斑的流速测量方法[J],中国激光,2012,39(5), p:0504002
    [93]冯能云:激光散斑信号处理方法研究[D],华中科技大学博士论文,2012
    [94] N. George: Speckle from rough, moving objects [J], J.Opt.Soc.Am,1976,66(11), p:1182~1193
    [95] Bahaa E. A. Saleh: speckle correlation measurement of velocity of a small rotatingrough object [J], Appl. Opt,1975,14(10), p:2344~2346
    [96] Joachim C. Erdmann and Robert I. Gellert: Speckle field of curved, rotatingsurfaces of Gaussian roughness illuminated by a laser light spot [J], J. Opt. Soc.Am.1976,66(11), p:1194~1204
    [97] J.Lynn Smith: Far.field speckle and Doppler shifts for rough laser illuminatedrotating cylinders[J], Appl. Opt,1979,18(6), p:755~756
    [98] N. Takai, T. Iwai, and T. Asakura: An Effect of Curvature of Rotating DiffuseObjects on the Dynamics of Speckles Produced in the Diffraction Field [J], Appl.Phys,1981, B(26), p:185~192
    [99] Churnside, J. H.: Speckle from a rotating diffuse object [J], Appl. Opt. J. Opt. Soc.Am,1982,72(11), p:1464~1469
    [100] Akihiro Hayashi and Yoichi Kitagawa: High.resolution rotation.angle measure.ment of a cylinder using speckle displacement detection [J], Appl.Opt,1983,22(22), p:3520~3525
    [101] Marron J. Moms G. M: Image.plane speckle from rotating rough objects [J]. Opt.Soc. Am,1985, A2, p:1395~1402
    [102] Marron J. Schraeder K.S: Speckle from rough rotating objects [J], Appl. Opt,1988,27(20), p:4279~4285
    [103] Nakamura T, Asakura T: Statistical Properties of Dynamic Speckles Produced by aCurved Surface [J], Opt.Commun,1993,9(8), p:331~340
    [104] Nakamura T, Asakura T: Statistical properties of integrated dynamic specklesproduced by a rotating spheroidal object [J], Optics,1993,24(3), p:135~140
    [105] Steen G. Hanson: Speckles from cylindrical surfaces and the information they canprovide, Proc.SPIE, International Conference on Correlation Optics,1997, Vol.3317, p:121~129
    [106] Yuraht,Hanson S G, Lading L: Laser Doppler velocimetry: analytical solution tothe optical system including the effects of partial coherence of the target [J], J OptSoc Am A,1995,12(9), p:2040~2047
    [107] Germán Da Costa and José Ferrari: Anisotropic speckle patterns in the lightscattered by rough cylindrical surfaces [J], Appl. Opt,1997,36(21), p:5231~5237
    [108] F. Perez Quintián, M.A. Rebollo, R. Berlasso, and N. G. Gaggioli: Optical Methodsfor On Line Surface Wire Testing[C],7th European Conference on Non.DestructiveTesting,1998,5, p:26~29
    [109] F. Perez Quintiaán, M. A. Rebollo, R. Berlasso, and N. G. Gaggioli: Roughnessmeasurement on cylindrical surfaces by optical methods[C], in Proceedings of theInternational Symposium on Laser Metrology for Precision Measurement andInspection in Industry (International Measurement Confederation, Earlangen,Germany,1999), p:5.48~5.57.
    [110] F. Perez Quintián, M. A. Rebollo, M. T. Bernal, and C. A. Raffo: Measurements ofHigh Quality Wire Roughness[C], in Proceedings of the International Symposiumon Laser Metrology for Precision Measurement and Inspection in Industry1999,p:5.58~5.64
    [111] Ricardo G. Berlasso, F. Perez Quintia′n, M. A. Rebollo, C. A. Raffo, and N. G.Gaggioli: Study of speckle size of light scattered from cylindrical rough surfaces[J],Appl. Opt.2000,39, p:5811~5819
    [112] Ricardo G. Berlasso, Fernando Perez Quintia′n, Mar′a A. Rebollo: Speckle size oflight scattered from slightly rough cylindrical surfaces [J], Appl. Opt,2002,41(10),p:2020~2027
    [113]王巍巍:散斑干涉技术实验研究及无损检测方面的应用[D],哈尔滨工程大学硕士论文,2008
    [114]郑伟花,朱鸿茂,贾虎:超声散斑相关法测量转角的相关性研究[J],应用声学,2010,29(2), p:141~147
    [115]李继陶,赵东初,苏显渝:漫射表面转动对像面散斑图样的影响[J],四川大学学报(自然科学版),1996,33(6), p:698~701
    [116]周莉莉,赵学增,王伟杰,郑俊丽:旋转柱面产生动态散斑的统计特性分析[J],光电工程,2005,32(2), p:60~63
    [117]王明军,吴振森,李应乐:平动和旋转目标激光散射强度协方差统计特性[J],红外与激光工程,2008,37(5), p:810~813
    [118]刘甲鼎,李忠智,岳成林:激光散斑测量刚体的旋转及工程应用[J],高速摄影与光子学,1982,12(2), p:26~34
    [119]赵哗英,梅家福,奚伟杰:激光散斑干涉法测量力学参数[J],中国激光,1980,7(4), p:32~34
    [120]武颖丽,吴振森,张耿:微粗糙圆柱的各向异性散斑特性研究[J],应用光学,2011,32(10), p:35~39
    [121]武颖丽,吴振森:旋转圆柱目标的动态散斑统计特性[J],强激光与粒子束,2012,24(2), p:331~337
    [122] P.P.Ewald: Theory of X.ray Interference[M], Phys.Zs, p:465~472(1913)
    [123] M.Nieto.Vesperinas: Scattering and Diffraction in Physical Optics[M], NewYork:Wiley (2006)
    [124] E.Wolf and R.P.Porter: On the Physical Contents of Some Integral Equations forInverse Scattering from Inhomogeneous Objects [J], Radio Science,1986,21, p:627~634
    [125] P.C.Sabatier: Basic Methods of Tomography and Inverse Problems[M], Bristol:Adam Hilger,(1987)
    [126] N. George, A. Jain: Space and Wavelength Dependence of Speckle Intensity [J],Appl Phys,1974,4(3), p:201~212
    [127] N.George, AtuI Jain, R. D. S. Melville: Experiments on the Space and WavelengthDependence of Speckle [J], Appl. Phys,1975,7(3), p:157~169
    [128] N. George: The Wavelength Sensitivity of Back.Scattering [J], Opt. Commum,1976,16(3), p:328~333
    [129] N.George, A.C.Livanos, J.A.Roth, C.H.Papas: Remote Sensing of Large Roughen.ed Spheres[J], Opt, Acta,1976,23(10), p:367~387
    [130] N. George: Speckle, Applications of Speckle Phenomena[J], Proc.SPIE,Vol.0243,1980, p:124~140
    [131] C.K.Chan, N.H. Farhat: Frequency Swept Tomographic Imaging of Three.Dimensional Perfectly Conducting Objects [J], IEEE Trans. Antennas Propag.1981,29(2), p:312~319
    [132] J.L. Meyzonnette, G. Saccmani: Imaging CO2Laser Radar, a Comparison of ThreeTechniques:LFM Pulse Compression, FMCW, CW[J], Proc.SPIE, Laser Radar III,Vol.999,1989, p:91~99
    [133] L.J. Sullivan, B.E,Edwards, and W.E.Keicher: The Firepond High Power CarbonDioxide Laser Radar System [J], Proc. Intl. Conf. Radar,1989,89(2), p:353~357
    [134] A.L. Kachelmyer: Range.Doppler Imaging with a Laser Radar[J], Lincoln Lab J.3,1990,3(1), p:87~118
    [135] D.J. Schertler and N. George: Comparison of Wavelength Scanning and Pulse EchoSystems in Remote Sensing [J], Opt. Commun,1990,77(1), p:91~98
    [136] J.C. Marron and T.J. Schulz: Three.Dimensional, Fine.Resolution Imaging UsingLaser Frequency Diversity [J], Opt. Lett,1992,17(4), p:285~287
    [137] T.Dresel, G. Hausler. And H. Venzke: Three.Dimensional Sensing of RoughSurfaces by Coherence Radar [J], Appl. Opt,1992,31(7), p:919~925
    [138] M.Takeda, H.Yamamoto: Fourier.Transform Speckle Profilometry Three Dimensio.nal Shape Measurements of Diffuse Objects with Large Height Steps and SpatiallyIsolated Surfaces[J], Appl. Opt,1994,33(34), p:7829~7837
    [139] L.G.Shirley: Speckle Decorrelation Techniques for Remote Sensing of RoughObjects [R], Optical Society of America, Washington,1989, p:208~217
    [140] L.G.Shirley: Speckle Decorrelation [R], Proc. IRIS Targets, Backgrounds, andDiscrimination,1990, p:123~145
    [141] L.G.Shirle: Remote Sensing of Object Shape Using a Wavelength Scanning LaserRadar[R], Optical Society of America, Washington,1991, p:154~159
    [142] L.G.Shirley, E.D. Ariel, G.R. Hallerman, H.C. Payson, and J.R. Vivilecchia:Advanced Techniques for Target Discrimination Using Laser Speckle[R], LincolnLab. J.5,1992, p:367~440
    [143] L.G.Shirley, J.R.Vivilecchia: Target Characterization Using a Wavelength ScanningLaser Radar[R], Proc. Second Annual Automatic Target Recognizer System andTechnology Conf.(1992)
    [144] L.G.Shirley and P.A. Lo: Bispectral Analysis of the Wavelength Dependence ofSpeckle: Remote Sensing of Object Shape[J], Opt. Soc. Am. A.1994,11(3), p:1025~1046
    [145] L.G.Shirley and Gregory R. Hallerman: Nonconventional3D Imaging UsingWavelength.Dependent Speckle[J], The Licoln Laboratory Journal,1996,9(2),p:153~186
    [146] L. G. Shirley and G.R. Hallerman: Application of tunable laser to laser radar and3D imaging[R], in The Lincoln Laboratory,2002
    [147] Ludger Leushacke and Manfred Kirchner: Three.dimensional correlationcoefficient of speckle intensity for rectangular and circular apertures [J], J. Opt.Soc. Am. A,1990,7(5), p:827~832
    [148] S.Christie,F. Kvasnik: Correlation and image recognition with surface.scatteredlight [J], Appl. Opt,1997,36(14), p:3013~3021
    [149] Thomas Maack, Richard Kowarschik, Gunther Notni: Optimum lens aperture inphase.shifting speckle interferometric setups for maximum accuracy of phasemeasurement[J], Appl. Opt,1997,36(25), p:6217~6224
    [150] Walter R. Leeb, Peter J. Winzer, and Klaus H. Kudielka: Aperture dependence ofthe mixing efficiency, the signal.to.noise ratio, and the speckle number in coherentlidar receivers [J], Appl. Opt,1998,37(15), p:3143~3148
    [151] D. R. Grwe and M. A. Plonus: Image restoration of multiple noisy images by useof a priori knowledge of the anisoplanatic point.spread function[J], Opt. Express,1998,23(2), p:83~85
    [152] M. Harris,K.D. Ridley: Decorrelation with wavelength of laser intensityfluctuations after passage through a thermal plume[J], Journal of Modern Optics,2003,50(5), p:771~779
    [153] Martin Schaffer, Marcus Grosse, Richard Kowarschik: High.speed patternprojection for three.dimensional shape measurement using laser speckles[J], Appl.Opt,2010,49(18), p:3622~3629
    [154] C. Trillo A.F. Doval, J. C. López.Vázquez: Three.dimensional Fourier transformevaluation of sequences of spatially and temporally modulated speckleinterferograms[J], Opt. Express,2010,18(14), p:15017~15027
    [155] Peng Lee, Wanrong Gao, and Xianling Zhang: Speckle properties of thelogarithmically transformed signal in optical coherence tomography [J], J. Opt. Soc.Am. A,2011,28(4), p:517~522
    [156] Nien.An Chang, Nicholas George: Speckle in the4F optical system [J], Appl. Opt.2008,47(4), A13~A20
    [157] Nien.An Chang, Nicholas George, Wanli Chi: Wavelength decorrelation of specklein propagation through a thick diffuser [J], J. Opt. Soc. Am. A,2011,28(2),p:245~254
    [158] Oliver Thompson, Michael Andrews, Evan Hirst: Correction for spatial averagingin laser speckle contrast analysis[J], Biomedical Optics Express,2011,2(4),p:1021~1029
    [159] Zeinab Hajjarian, Seemantini K. Nadkarni: Evaluating the Viscoelastic Propertiesof Tissue from Laser Speckle Fluctuations [J], Scientific Reports,2012,16(2),p:1~8
    [160] Y.H. Huang, S.Y.Hung, FarrokhJanabi.Sharifi, W.Wangd, Y.S.Liu: Quantitativephase retrieval in dynamic laser speckle interferometry [J], Optics and Lasers inEngineering,2012,50(4), p:534~539
    [161]蒋立辉,赵春晖,王骐:用非线性加权均值多方向形态滤波算法抑制散斑噪声[J];中国激光;2004,31(1), p:81~84
    [162]郭冠军:激光散斑效应对激光雷达探测性能的影响[J],物理学报,2004,53(7),p:2089~2093
    [163]郭冠军:地面对激光雷达信号散射的统计研究[J],物理学报,2002,51(2),p:228~233
    [164]周莉莉,赵学增,郑俊丽:基于散斑强度相关函数的表面粗糙度测量方法[J],光电工程,2004,31(7), p:50~53
    [165]邱建军,张红艳,骆卫华,李鹏程,骆清铭:像面散斑平均尺寸对激光散斑成像的影响[J],光学学报,2009,29(7), p:1863~1867
    [166]张建伟,袁纵横,张艳华:三色激光散斑自相关法测量表面粗糙度的分析[J],激光与光电子学进展,2011,48(1), p:3011~3015
    [167]刘立人:基于散斑抑制的合成孔径激光成像雷达的结构和工作模式[J],光学学报,2011,31(10), p:234~240
    [168]宋凝芳,杨德钊:散斑噪声对相干激光雷达系统性能的影响[J],中国激光,2011,38(10), p:94~100
    [169] Lester I.Goldfischer: Autocorrelation Function and Power Spectral Density ofLaser.Produced Speckle Patterns [J], J.Opt.Soc.Am,1965,55(3), p:247~253
    [170] J.Uozumi and T.Asakura: First.order intensity and phase statistic of Gaussianspeckle produced in the diffraction region [J], Appl.Opt,1981,20(8), p:1454~1466
    [171] Hirofumi Kadono and Toshimitsu Asakura: Statistical properties of the specklephase in the optical imaging system [J], J.Opt. Soc. Am,1985,2(10), p:1787~1792
    [172] V.S.Rao Gudimetla, J.F.Holmes, Richard A.Elliott: Two.point joint.density function of the intensity for a laser.generated speckle field after propagation through theturbulence atmosphere [J], J.Opt.Soc.Am.A,1990,7(6), p:1008~1013.
    [173] L. Allen, D. G. C. Jones: An analysis the granularity of scattered optical maser light[J], Physics Letters,1963,7(5), p:321~323
    [174] JonY.Wang: Lidar signal fluctuations caused by beam translation and scan [J], Appl.Opt,1986,25(17), p:2878~2885
    [175] Lymnm J, Smith: Far.field speckle and Doppler shifts for rough laser.illuminatedrotating cylinders [J], Appl. Opt,1979,18(6), p:755~756
    [176] Nikias, C.L: Bispectrum estimation: A digital signal processing framework [J],Proceedings of the IEEE,1987,75(7), p:869~891
    [177] Mendel, J.M: Tutorial on higher.order statistics (spectra) in signal processing andsystem theory: theoretical results and some applications [J], Proceedings of theIEEE,1991,79(3), p:278~305
    [178]高昭,基于空间平均静态及动态散斑法表面粗糙度测量技术研究[D],哈尔滨工业大学博士论文,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700