FDTD网络并行计算及ADI-FDTD方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用区域分解技术将FDTD计算区域分割成多个子域进行分别计算,各个子区域在边界处与其相邻的子区域进行切向场值的数据交换以使整个迭代进行下去。根据FDTD迭代式的特点,相邻子域之间有半个网格的重叠区域。三维FDTD计算域分割方式和二维FDTD计算域分割方式相同,每个子域的编号为其在整个计算域的空间位置。给出了FDTD子域间同步计算的技术,即采用同步消息传递和阻塞函数同步两种手段。并行FDTD中吸收边界、输出边界和总场边界被分配到不同的子域内,对这三大边界的特殊处理,增加了编程的复杂度。
     本文应用基于消息传递(Message Passing)模式的网络并行计算系统来实现FDTD并行计算方法,消息传递的并行计算平台采用PVM (Parallel Virtual Machine)并行系统。并行FDTD计算方法采用主从式的编程模式。并行程序分为主控程序(master)和从程序(slave)两部分。主控程序主要负责进程的生成、初始化、收集并显示计算结果等功能;从程序主要执行实际FDTD计算,其负载由主控程序分配。最后,给出了网络并行程序的流程图,详细的介绍了程序中各个模块的具体功能。
     利用并行FDTD方法分析了二维和三维目标的电磁散射问题。给出了复杂目标(金属机翼和NASA杏仁体)和实用目标(导弹目标)的RCS计算结果。为了更精确的模拟弹头的外形轮廓,采用超椭球(Superspheroid)几何体来模拟导弹弹头的雷达罩。随后,给出了超回转椭球体的参数方程,并确定用来模拟导弹弹头Von Karman外形尺寸的参数设置。计算结果表明,采用一定参数下的超椭球几何体弹头比球冠状弹头有效的减小后向RCS。并行FDTD方法在处理电大尺寸实用目标的电磁散射问题上有更为实际的意义。
     本文给出并行FDTD方法的并行加速比、并行效率和其它性能指标的测试结果。给出并行计算所需内存的估计公式,分析了内存估计结果与测试结果之间存在差异的原因。分析了FDTD并行计算性能与粒度、数据通讯量之间的关系。最后,通过计算三维复杂目标金属机翼目标的RCS,给出并行加速比和并行效率的测试结果。通过分析测试结果,指出网络通信性能和进程间的负载平衡影响并行计算的加速比。
     给出一维Crank-Nicolson时域有限差分(C-N FDTD)方法在分层介质中的应用。给出一维C-N FDTD方法两种迭代求解方式:一种按照Holland编号方式电场和磁场分量交替排列构成三对角条带矩阵方程,一次性将电场和磁场格点的场值求出;另一种是按照交替方向隐式(ADI)差分格式要求仅使电场分量排列构成三对角条带矩阵方程,然后利用求出的空间各处电场分量迭代解出同时刻的磁场分量。随后,分析讨论
Based on a spatial decomposition of the regular grid structure, the FDTD computation space is divided into some sub-domains. Then the fields inside each sub-domain are computed on an individual processor with a small amount of data being communicated from neighboring sub-domains. According to the characteristic of FDTD computation formulas, there is an overlapping region between adjacent sub-domains, so that data communication is needed. The partition for 3D FDTD domain is the same as the one made for 2D FDTD domain. The identifier for each sub-domain is defined as the three-dimensional spatial location in the entire simulation domain. Some synchronization to be performed in all processes is required. Two main pathways that are use of blocking messages and use of barriers can be pursued to achieve the goal. It is worth noting that the domain partition leads to increased complexity in programming while the absorbing boundary, total-field scattered-field boundary and near-to-far field extrapolation boundary are located in different sub-domains.
     A parallel algorithm for the FDTD method on a distributed network by using the message-passing module is presented. The parallel platform of PVM system is applied to the implementation of FDTD parallel algorithm. The structure of the parallel program adopts a master-slave organization. Then the parallel program is divided into two parts of master program and slave program. The functions of the master program mainly include the creation of process, the initialization of iterative, the collection and display of the computation results, and so on. Similarly, the functions of the slave program mainly include the execution of FDTD computation, and the load of slave process is distributed by master process. Finally, flow diagrams of the parallel FDTD program are given, and the concrete functions of each module are discussed in detail.
     The EM scattering problems of 2D and 3D objects are analyzed by using the parallel FDTD method. The radar cross sections (RCS) of complex objects of metallic wing and NASA almond and practical object of missile are presented. In order to exactly imitate the contour of the missile warhead in the FDTD modeling, the superspheroid body is successfully applied. Then, the coefficient design of the superspheroidal equation, which can be modeling a number of shapes, such as Von Karman radome available for missile warhead is discussed. The calculated results of the back scattering demonstrate that the
引文
[1] Yee K S, Numerical solution of initial boundary value problems involving Maxwell equations in isotropic media, IEEE Trans. Antennas Propagat. , May 1966, AP-14 (3): 302-307
    [2] Taflove A and Hagness S C, Computational Electrodynamics—The Finite-Difference Time-Domain Method, 2nd ed. Boston, MA: Artech House, 2000.
    [3] Umashankar K R and Taflove A. A novel method of analyzing electromagnetic scattering of complex objects. IEEE Trans. Electromagn. Compat., Nov. 1982, EMC – 24(4):397-405
    [4] Maloney J G., Smith G. S and Scott R, Accurate computation of the radiation from simple antennas using the FDTD method. IEEE Trans. Antennas Propagat., July 1990, AP-38(7):1059-1068
    [5] Sullivan D M, Gandhi O P, and Taflove A, Use of the finite-difference time-domain method for calculation EM absorption in man models, IEEE Trans. Biomedical Engineering, 1988, vol. 35(3): 179-185
    [6] Wang C Q, and Gandhi O P, Numerical simulation of annular phased arrays for anatomically based models using the FDTD method, IEEE Trans, Microwave Theory and Techniques, 1989, vol. 37(1): 118-126
    [7] Sullivan D, 3-D computer simulation in deep regional hyperthermia using the FDTD method. IEEE Trans. Antennas Propagat., July 1990, MTT – 38(2):204-211
    [8] Harms P, Mittra R and Ko W, Implementation of the periodic boundary condition in the finite difference time domain algorithm for FSS structures. IEEE Trans. On AP, 1994, AP-42(9):1317-1324
    [9] Turner G. M and Christodoulou C. FDTD analysis of phased array antennas. IEEE Trans. On AP, 1999, 47(4): 661-667
    [10] Zhang X L, Fang J Y, Mei K K, and Liu Y W, Calculation of the dispersive characteristics of microstrip by the time-domain finite-difference method, IEEE Trans. Microwave Theory and Techniques, 1988, vol. 36(2): 263-267
    [11] Liang G C, Liu Y W, and Mei K K, Full-wave analysis of coplanar waveguide and slotline using the TDFD method, IEEE Trans. Microwave Theory and Techniques, Dec. 1989, vol. 37(12): 1949-1957.
    [12] Wang J G, Chen Y S, Fan R Y, Yu H Q, and Ge D B, Numerical studies on nonlinearcoupling of high power microwave pulses into a cylindrical cavity, IEEE Trans. Plasma Science, Feb. 1996, vol. 24(1): 193-197
    [13] Taflove A, Computational Electrodynamics, Norwood, MA: Artech House, 1995.
    [14] Perlik A, Opsahl T, and Taflove A, Predicting scattering of electromagnetic fields using FD-TD on a connection machine, IEEE Trans. Magnetics, 1989, vol.25, pp.2910-2912
    [15] Varadarajan V, and Mittra R, Finite-difference time-domain analysis using distributed computing, IEEE Microwave and Guided Wave Letters, 1994, vol.4, pp. 144-145
    [16] Krumpholz M and Katehi L, MRTD: new time-domain schemes based on multiresolution analysis, IEEE Trans, on MTT., 1996, vol.44(4): 555-571
    [17] Dogaru T and Carin L, Multiresolution time-domain using CDF biorthogonal wavelets, IEEE Trans. On MTT, 2001vol.49(5): 902-912
    [18] Liu Q H, The PSTD algorithm: a time-domain method requiring only two cells per wavelength, Micro. Opt. Technol. Lett. , June 1997 Vol.10(6): 158-165
    [19] Li Q L and Chen Y C, Application of the PSTD for scattering analysis, IEEE Trans. On AP., 2002, vol.50(9): 1317-1319
    [20] Namiki T, A new FDTD algorithm based on alternating-direction implicit method, IEEE Trans. Microwave Theory tech., Oct. 1999, vol. 47: 2003-2007
    [21] Zhen F, Chen Z, and Zhang J, Toward the development of a three-dimensional unconditionally stable finite-difference time-domain method, IEEE Trans. Microwave Theory Tech., Sept. 2000, vol. 48: 1550-1558
    [22] 高本庆,刘波. 电磁场时域数值技术新进展. 北京理工大学学报. 2002,vol. 22 (4) :401-406.
    [23] Krumpholz M, Winful H G and Katehi L P B, Nonlinear time-domain modeling by multiresolution time domain (MRTD), IEEE Trans. On MTT. 1997, 45(3): 385~393
    [24] Tentzeris E M, Robertson R L, Harvey J, and Katehi L P B, Stability and dispersion analysis of Battle-Lemarie based MRTD schemes, IEEE Trans. On MTT., 1999, vol. 47(7): 1004~1013
    [25] Chen Z, and Zhang J, An unconditionally stable 3-D ADI-MRTD method free of the CFL stability condition, IEEE Microwave and Wireless Components Letters, 2001, 44(8): 349~351
    [26] Liu Q H, An FDTD algorithm with perfect matched layers for conductive media, Micro. Opt. Technol. Lett., 1997, vol.10(2): 134~165
    [27] Liu Q H, Large-Scale simulations of electromagnetic and acoustic measurements using the Pseudospectral Time-Domain(PSTD) algorithm, IEEE Trans. On Geosience and Remote Sensing, 1999, vol.37(2): 917~926
    [28] Li Q L, Chen Y C and Ge D B, Comparison study of the PSTD and FDTD methods for scattering analysis, Microwave and Optical Technology Let., 2000, vol.25(3): 220~226
    [29] Li Q L and Chen Y C, Application of the PSTD for scattering analysis IEEE Transactions on Antennas and Propagation, 2002, vol.50(9): 1317~1319
    [30] Gao X, Mirotznik M S, and Prather D W, A method for introducing soft sources in the PSTD algorithm, 个人通信, May, 2003
    [31] Liu Q H, An accurate algorithm for nonuniform fast Fourier transforms (NUFFT’s), IEEE Microwave and Guided Wave Letters, 1998. vol.8(1): 18~20.
    [32] 孙家旭,张林波,迟学斌,汪道柳. 网络并行计算与分布式编程环境. 北京:科学出版社,1996 年 3 月.
    [33] Chew K C, and Fusco V. A parallel implementation of the FDTD algorithm. Int. Journ. Num. Modeling, Vol. 8, 1995, pp: 293-299
    [34] Guiffaut C and Mahdjoubi K, A parallel FDTD algorithm using the MPI Library, IEEE Ant. Prop. Mag., 2001, Vol. 43(2): 94-103
    [35] Takada, N.; Ito, T.; Motojima, K.; Ideo, M.; Sato, and T.; Kozaki, S., The High-speed Computation On a Distributed Personal Computer Network By Our Distributed FDTD Method, Microwave Conference, 2000 Asia-Pacific , 2000
    [36] Schiavone, G A.; Codreanu I.; Palaniappan R, Wahid P. FDTD Speedups Obtained in Distributed Computing on a Linux Workstation Cluster, Antennas and Propagation Society International Symposium, 2000. IEEE , Volume: 3 , 2000
    [37] Varadarajan V, and Mittra R, Finite-difference time-domain analysis using distributed computing, IEEE Microwave and Guided Wave Letters, 1994, vol. 4(5): 144-145
    [38] Perlik A, Opsahi T, and Taflove A, Predicting scattering of electromagnetic fields using FD-TD on a connection machine, IEEE Trans. Magnetics, vol. 25, 1989, pp. 2910-2912
    [39] Rodohan D P, and Saunders S R, Rapid solutions of the finite difference time domain method using parallel associative techniques, in Proc. Eighth International Conference on Antennas and Propagation, London, U.K.: IEE Press, 1993
    [40] Catarinucci L, Palazzari P, and Tarricone L, Human Exposure to the near-field of radiobase antennas: A full-wave solution using parallel FDTD, IEEE Trans. Micr. TheoryTechn. , 2003, Vol. 51(3): 935-941
    [41] Tinniswood A D, Furse C M, and Gandhi O P, Computations of SAR Distributions for Two anatomically based models of the human head using CAD files of commercial telephones and the parallelized FDTD code, IEEE Trans. On Antennas and Propagation, 1998, Vol.46(6): 829-833
    [42] Gedney S D, FDTD analysis of MW circuit devices in High Performance Vector/Parallel Computers, IEEE Trans. Microwave Theory Techn. , 1995, Vol. 43(10): 2510-2514
    [43] Andersson U, Time-domain Methods for the Maxwell Equations. Doctoral Dissertation, Royal Institute of Technology, Stockholm, 2001.
    [44] Brooks J P, Ghosh K K, Harrigan E, Katz D S, and Taflove A, Progress in Cray-Based algorithms for computational electromagnetics, in Computational Electromagnetics and Supercomputer Architecture, PIERS, vol. 7, T. Cwik and J. Patterson, eds., Cambridge, MA: EMW publishing, 1993, pp. 23-55
    [45] Kümpel W, Effing U, Rittweger M, and Wolff I, Parallel FD-TD simulator for microwave structures, in 23rd European Microwave Conference, Palacio de Congresos, Madrid, 1993.
    [46] Perlik A, Opsahi T, and Taflove A, Predicting scattering of electromagnetic fields using FD-TD on a connection machine, IEEE Trans. Magnetics, vol. 25, 1989, pp. 2910-2912
    [47] Perlik A, and Moraites S A, Electromagnetic wave analysis using FDTD and its implementation on the Connection Machine, in Computational Electromagnetics and Supercomputer Architecture, PIERS, vol. 7, T. Cwik and J. Patterson, eds., Cambridge, MA: EMW Publishing, 1993, pp. 266-308
    [48] Guerrieri R, Tadros K, Gamelin J, and Neureuther A, Massively parallel algorithms for scattering in optical lithography, IEEE Trans. Computer-Aided Design, vol. 10, 1991, pp. 1091-1100
    [49] Rodohan D P, and Saunders S R, Rapid solutions of the finite difference time domain method using parallel associative techniques, in Proc. Eighth International Conference on Antennas and Propagation, London, U.K.: IEE Press, 1993
    [50] Varadarajan V, and Mittra R, Finite-difference time-domain analysis using distributed computing, IEEE Microwave and Guided Wave Letters, vol. 4, 1994, pp. 144-145
    [51] Shen X N, Application of massively parallel architecture to computationalelectromagnetics, Tech Report of Syracuse University, 1994.
    [52] Buchanan W J, Analysis of EM wave propagation using the 3D FDTD method with parallel processing, Napier University. 1996.
    [53] Song J M, Lu C C, Chew W W and Lee S W, Fast Illinois Solver Code (FISC), IEEE Antennas and Propagation Magazine, June 1998, vol.40 (3): 27~34.
    [54] http://www.feko.co.za/
    [55] Edlund J, A Parallel Iterative Method of Moments and Physical Optics Hybrid Solver for Arbitrary Surfaces, Uppsala University, Sweden, August 2001.
    [56] Pascal H E, Parallel Fast Multipole Method for Maxwell Equations, Universities Pierre et Marie Curie, Laboratoire Jacques-Louis Lions, 2002.
    [57] Li L W, Wang Y J, Li E. MPI-based Parallelized precorrected FFT algorithm for analyzing scattering by arbitrarily shaped three-dimensional objects. Progress In Electromagnetics Research. 2003, PIER 42. pp.247~259
    [58] 文舸一,计算电磁学的进展与展望,电子学报,1995 年 10 期,pp. 62~69.
    [59] 汪杰,丁振宇,洪伟,基于区域分裂法的三维散射并行计算,微波学报,2001年 02 期,pp.7~11.
    [60] 张玉,梁昌洪,并行 UTD 算法及在机载天线分析中的应用,电子学报,2003 年03 期,pp.332~334.
    [61] 卢光辉,孙世新,聂在平,陈瀚,王浩刚,并行处理技术在电大尺寸复杂目标电磁散射中的应用,电子学报,2003 年 06 期,pp.882~885.
    [62] 闫玉波,葛宁,郑美艳,葛德彪,田春明,网络并行 FDTD 方法分析电大目标电磁散射,电子学报,2003 年 06 期,pp.821~824.
    [63] 刘新,李康,孔繁敏,时域有限差分法并行计算中的区域划分及负载平衡,山东电子,网络与计算机技术,2003 年第 4 期.
    [64] 薛正辉,杨仕明,高本庆,张泽杰,FDTD 算法的网络并行运算实现,电子学报,2003 年 12 期,pp.1839~1843.
    [65] 张玉,宋健,梁昌洪,并行共形 FDTD 算法及其在 PBG 结构仿真中的应用,电子学报,2003 年 12A 期.
    [66] Gropp W, Lusk E, and Skjellum A, Using MPI portable parallel programming with the Message-Passing Inteface, MIT Press, Cambridge, Massachusetts, London, England, 1994.
    [67] Pacheco, Peter S, Parallel programming with MPI, San Francisco, CA: Morgan Kaufman, 1997.
    [68] http://www.mcs.anl.gov/mpi/mpich/download.html
    [69] Geist A, Beguelin A, Dongarra J, Jiang W C, Manchek R, Sunderarn V, PVM: Parallel Virtual Machine --- A users’ guide and tutorial for networked parallel computing, MIT Press, Cambridge, Massachusetts, London, England, 1994.
    [70] http://www.epm.ornl.gov/pvm/pvm_home.html
    [71] 葛德彪,闫玉波. 电磁波时域有限差分方法. 西安:西安电子科技大学出版社, 2002.
    [72] Heinrich W, Full-wave analysis of conductor losses on MMIC transmission lines. IEEE Trans. Microwave Theory Tech., Oct. 1990, vol. 38, pp. 1469-1472
    [73] Milanovic V, Ozgur M, Degroot D, Jargon J, Gaitan M, and Zaghloul M. Characterization of broad-band transmission for coplanar waveguides on CMOS silicon substrates, IEEE Trans. Microwave Theory Tech., vol. 46, pp. 632-640, May 1998.
    [74] Peaceman D W, and Rachford H H, The Numerical Solution of Parabolic and Elliptic Differential Equations, J. Soc. Ind. Applicat. Math. , 1955, vol. 42(3): 28-41
    [75] Smith G. D, Numerical solution of Partial Differential Equations. Oxford, U.K.: Oxford Univ. Press, 1965.
    [76] Goorjian P M, Finite difference time domain algorithm development for Maxwell equations for computational electromagnetism, in Proc. IEEE Antennas and Propagation Society Int. Symp., 1990, Vol. 1, pp. 878-881.
    [77] Zheng F and Chen Z, Numerical dispersion analysis of the unconditionally stable 3-D ADI-FDTD method, IEEE Trans. Microwave Theory Tech., vol. 49, May 2001, pp. 1006-1009
    [78] Zhao A P, Analysis of the numerical dispersion of the 2-D alternating-direction implicit FDTD method, IEEE Trans. Microwave Theory Tech., vol. 50, Apr 2002, pp. 1156-1164
    [79] Namiki T and Ito K, Investigation of numerical errors of the two-dimensional ADI-FDTD method, IEEE Trans. MTT., 2000, vol.48(11): 1950-1956
    [80] Zhao A P, The influence of the time step on the numerical dispersion error of an unconditionally stable 3-D ADI-FDTD method: A simple and unified approach to determine the maximum allowable time step required by a desired numerical dispersion accuracy, Microwave Opt. Technol. Lett., vol.35, 2002, pp: 60-65
    [81] Zhao A P, Two special notes on the implementation of the unconditionally stable ADI-FDTD method, Microwave Opt. Technol. Lett., vol. 33, 2002, pp: 273-277
    [82] Sun G L, and Trueman C W, Some fundamental characteristics of the one-dimensionalalternate-direction-implicit Finite-Difference Time-Domain method, IEEE Trans. Microwave Theory Tech., 2004, vol. 52(1): 46-52
    [83] Garcia S G, Lee T W and Hagness S C, On the accuracy of the ADI-FDTD method, IEEE Antennas Wireless Propag., 2000, Lett., vol. 10(7): 261-263
    [84] Berenger J P, A perfectly matched layer for the absorption of electromagnetic waves, J. Computational Physics, 1994, vol. 114, pp. 185-200
    [85] Liu G. and Gedney S D, Perfectly matched layer media for an unconditionally stable three-dimensional ADI-FDTD method, 2000, IEEE Microwave Guided Wave Lett., vol.10(7): 261-263
    [86] Charlie C P C, Lee T W, Narayanan Murugesan and S. C. Hagness, Generalized FDTD-ADI: An unconditional stable full-wave Maxwell’s equations solver for VLSI interconnect modeling, IEEE/ACM International Conference on Computer Aided Design 2000, ICCAD-2000, pp. 156-163.
    [87] Lazzi G., Unconditionally stable D_H FDTD formulation with anisotropic PML boundary Conditions, IEEE Microwave Wireless Components Lett., 2001, vol.11(4): 149-151
    [88] Gedney S D, Liu G, Roden J A, and Zhu A, Perfectly matchly layer media with CFS for an unconditionally stable ADI-FDTD method, IEEE Trans. A.P., 2001, vol. 49(11): 1554-1559
    [89] Zhao A P , Uniaxial perfectly matched layer media for an unconditionally stable 3-D ADI-FD-TD method, IEEE Micro. Wireless comp. Lett., 2002, vol.12(12): 497-499
    [90] Zhao A P, The influence of the time step on the numerical dispersion error of an unconditionally stable 3-D ADI-FD-TD method: A simple and unified approach to determine the maximum allowable time step required by a desired numerical dispersion accuracy, Microwave Opt. Technol. Lett., Oct. 2002. vol. 35, pp: 60-65
    [91] Chen Z Z and Ahmed I, A hybrid ADI-FDTD scheme and its comparisons with the FDTD method, IEEE Antennas and Propagation Society International Symposium, 22-27 June 2003, volume: 4, pages: 360-363.
    [92] Wang B Z, Wang Y J, Yu W H and Mittra R. A hybrid 2-D ADI-FDTD subgridding scheme for modeling on-chip interconnects. IEEE Trans. Advanced Packaging, 24(4), 528-533
    [93] González G S, A. Rubio Bretones, M. A. Hernández-López, and R. Gómez Martin, A new hybrid method combining the ADI-FDTD and the MoMTD techniques,Electromagnetics, 2003, 23(4): 103-118.
    [94] 郑奎松,葛德彪,闫玉波. 三维物体电磁散射的网络并行 FDTD 计算. 2003 海峡两岸三地无线科技研讨会论文集. 中国桂林:广西师范大学出版社,2003.10:434-437.
    [95] 郑奎松,葛德彪,葛宁. 三维电磁散射的网络并行 FDTD 计算及加速比分析. 2003年研究生学术年会论文集[C]. 西安:西安电子科技大学出版社,2003.11:7-13~7-16.
    [96] Luciano T and Alessandra E, Grid computing for electromagnetics, Artech House, Inc. Boston: London, pp: 89-119.
    [97] Woo A C, Wang H T G, and Schuh M J, Benchmark radar targets for the validation of computational electromagnetics programs, IEEE Antennas Propagat., 1993, l35:84-89.
    [98] Barr A H, Superquadrics and angle preserving transformations, IEEE Computer Graph. Appl., 1981, vol.1, pp: 11~23.
    [99] Overfelt P I, Two-dimensional radome modeling: a boundary perturbation apoorch, in 1984 IEEE Int. Symp. Dig. Antennas Propagat., June 1984, pp. 201~205.
    [100] Overfelt P L, Superspheroids: A New Family of Radome Shapes. IEEE Trans. Antennas Propagat., 1995, 43:215-220.
    [101] http://www.ajiadi.com/military/
    [102] 郑奎松,葛德彪,魏 兵,导弹目标的 FDTD 建模与 RCS 计算,系统工程与电子技术,2004,26(7): 896-899.
    [103] Barry Wilkinson, Michael Allen. 并行程序设计——技术与应用(影印版)[M]. 北京:高等教育出版社,2002.26-32.
    [104] 郑奎松,葛德彪,葛宁,三维电磁散射的网络并行 FDTD 计算和加速比分析,电波科学学报,2004,19(6): 767-771.
    [105] Holland, Finite-Difference Time-Domain (FDTD) Analysis of Magnetic Diffusion, IEEE Transactions on Electromagnetic Compatibility, Feb 1994. Vol.EMC-36(1): 32-39.
    [106] Harrison C W, Houston M L, King R W P, and Wu T T. The propagation of electromagnetic fields into a cavity by two imperfectly conducting sheets. IEEE Trans. A.P.. Vol.13, Jan. 1965, 149-158
    [107] Akira I. Electromagnetic Wave Propagation, Radiation, and Scattering. New Jersey: prentice Hall, 1991
    [108] Tang W, Jiao P N , Li L W, Li Q L, and Wu Z S, An Improved Analysis of One-Dimensional PBG Structure Using the ADI-FDTD Method, Microwave and Optical Technology Letters, September 5 2003, Vol. 38(5): 348-352.
    [109] Kong J A, Electromagnetic Wave Theory, John Wiley & Sons, New York, 1986.
    [110] 科恩 G A、科恩 T M, 数学手册(周民强等译), 北京:工人出版社, 1987
    [111] 王辉,李永平. 用特征矩阵法计算光子晶体的带隙结构. 物理学报. 2001, Vol. 50 (11): 2172-2178
    [112] 赵延文, 聂在平. UPML 媒质中无条件稳定的二维 ADI-FDTD 方法, 电波科学学报, 2002, 17(6): 586-589
    [113] Harrington R F, Time-Harmonic Electromagnetic Fields, McGraw-Hill , New York, 1961(孟侃译,正弦电磁场,上海科技出版社,1964), 251-256.
    [114] 闫玉波,石守元,葛德彪. 用于 FDTD 的复杂目标的建模,西安电子科技大学学报,1998,25(3):389-392.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700