交变电场作用下癌细胞和正常细胞内熵产生的测量和比较
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,电场作用下细胞(特别是癌细胞)的生物学效应和外加电场的参数选择正在成为人们研究的热点。尽管这些研究非常的细致,但是忽略了癌细胞和正常细胞之间存在着巨大的热力学差别。细胞作为一个热力学系统,熵产生是必不可免的。癌细胞和正常细胞结构上存在着巨大的差异,通过理论计算可知在没有外场的作用下,癌细胞内部的熵产生明显高于正常细胞,两者之间的差值大约在2.7×10-16J/(K·s)~2.2×10-14J/(K·s)的范围内。熵流的方向是从癌细胞到正常细胞。但是在一定外场的作用下,正常细胞内部的熵产生高于癌细胞,可能阻止甚至改变熵流的方向。熵流伴随着信息流。这就可能提供了-种治疗癌症的方法。对交变电场作用下细胞内部的熵产生进行理论研究发现细胞内部的熵产生随电场强度的增加单调上升,电场强度在5-40V/cm范围内可能达到治疗要求。由此可见,在实验上研究细胞内部的熵产生是非常重要的。但是由于细胞体积小并且在培养基中,实验上测量细胞内部的熵产生是非常困难的。
     本文利用细胞在电场和环境中温度变化以及此过程中细胞的热量变化,提出一种新的测量细胞熵产生的方法,设计了测量交变电场作用下细胞内部熵产生的实验装置。为了消除不确定因素,实验时间选为300s,并且使用的温度传感器可以满足测量要求,重复实验每次都使用新的细胞,时间上尽量选为连续的两天。
     测量和比较了交变电场作用下两对来自人同一组织的癌细胞(MDA-MB-231人乳腺癌细胞和SMMC-7721人肝癌细胞)和正常细胞(MCF10A人乳腺上皮正常细胞和HL-7702人肝正常细胞)的熵产生。结果表明:这种方法能够非常有效的测量交变电场作用下细胞内部的熵产生。电场强度在5-40V/cm的范围内交变电场引起的癌细胞内部熵产生随着场强的增加单调上升,而正常细胞内部的熵产生是非单调上升的,电场强度在在5-30V/cm的范围内出现了一个峰值。电场强度在在5-25V/cm的范围内,电场引起的癌细胞内部熵产生和正常细胞的比值(MDA-MB-231/MCF10A和SMMC-7721/HL-7702)明显小于1。这对理论估算提供了一定的实验支持,并为进一步研究两类细胞的热力学差别提供依据。
     对实验数据进行了误差分析,单因素方差分析。结果表明:误差远小于实验数据,无电场作用和电场作用下细胞具有明显的统计意义。实验过程中环境温度变化大约为0.8%,在熵产生计算中完全可以忽略。
     我们提供了一个实验上研究细胞热力学性质非常有效的手段,并且可以进一步研究交变电场作用下正常细胞和癌细胞的差异。从实验结果来看,电场强度在5-25V/cm的范围内,交变电场作用下,正常细胞内部的熵产生要高于癌细胞内部的熵产生,并且癌细胞和正常细胞内部交变电场引起的熵产生差值达到了10-14J/(k·s),这已经达到了无外场时癌细胞和正常细胞内部熵产生的差值,这有可能阻止甚至反转癌细胞和正常细胞之间熵流和信息流方向的要求,从而达到治疗的要求,这将为治疗癌症提供了一个新的线索和依据。
     本工作的创新之处包括:提出了一个实验上测量活细胞内部熵产生的方法;测量和比较了交变电场作用下两对来自同一组织的癌细胞和正常细胞内部的熵产生;这将提供了一个实验上研究细胞热力学性质非常有效的手段。
In recent years, many studies were carried out on the biological effects of cells (particularly for the cancerous cells) under electric field, and some works paid close attention to the parameter choice of electric field. Although these studies are detailed and elaborated, the huge thermodynamic difference inherent between the cancerous and the normal cells seems not to be noticed. As a thermodynamic system, the entropy production in the human organism is inevitable. There are many obvious differences between cancerous and healthy cells. It was demonstrated that the entropy production of cancer cells is always higher than that of normal cells if no external field is applied, and estimated that the range of entropy production rate is between2.7×10-16J/(K·s) and2.2×10-14J/(K·s) for normal cells. However, when external energy is input, the rate of entropy production of normal cells may exceed that of cancerous cells. The entropy current is the carrier of information current. It was proposed that the reversal of entropy flow between two kinds of cells may provide a therapeutic approach to cancer. The theoretically study showed that the entropy production in cells monotonically increases with electric field strength at5-40V/cm and may be applied to the cancer therapy. Therefore, the experimental study of entropy production in the human organism is of great significance, particularly in terms of the potential development of novel therapeutic anticancer modalities. However, the entropy production is difficult to measure in a living cell since the volume of cell is small, and it exists in the culture medium.
     In this paper, we put forward a new method that measures the entropy production in cells. It involves heating the sample by alternating electric field and recording the heat flow either into or from the specimen. We designed the experimental setup for measuring entropy production in cells. To eliminate the negative factors, the measurement time was chosen as300s. The temperature transducer we used can measure the temperature variation of cells and culture medium within this time duration. A fresh batch of cells was used for each repeated experiment to avoid differences in viability of the cells by prolonged treatment. The repeated experiments at the same electric field strength were performed during two consecutive days to avoid the larger change of ambient temperature.
     As model systems, two normal cell lines, MCF10A and HL-7702, and corresponding two cancerous cell lines, MDA-MB-231and SMMC-7721, were measured, respectively, and compared. The results show that the method is effective for entropy measurement of living organism. The scaled electroinduced entropy production rate (SEEP) of cancer cells monotonically increases with electric field strength at5-40V/cm, while that of normal cells changes nonmonotonically with electric field strength, reaching a peak at5-30V/cm. For all cell lines, the cancerous-to-normal ratio of field-induced entropy production is obviously smaller than1in a large range of field strength from5to25V/cm. It gives direct experimental support to above theoretical estimates and provides a basis for further study the thermodynamics difference between cancer and normal cells.
     We carried out the error and statistical analysis for experimental data. The results show that the error is much smaller and therefore all differences in temperature variation between cells under alternating electric field and those without electric field exposure are statistically significant. The change of the room temperature is about0.8%during the experimental process and it can be ignored in the calculation of entropy production.
     This work presents a facile and effective strategy for experimentally investigating the thermodynamic properties of the cell and gives deeper insight into the physical difference between normal and cancerous cells under electric field exposure. As the5-25V/cm alternating electric field is applied to both breast and hepatic cell lines, the field-induced entropy production rate for normal cells exceeds that of cancerous cells by about10-14J/(K·s), which is on the order of the total entropy production of a cell without applied field. As a result, the direction of the entropy flow may be reversed between cancerous and normal cells under electric field exposure, providing a novel avenue for the development of anticancer therapies.
     The unique aspects of our work include:(i) we proposed a novel method for the measurement of entropy production of living cells,(ⅱ) we measured and compared the entropy production of two sets of cancer and normal cells from the same tissue under the electric field exposure condition,(ⅲ) we present a facile and effective strategy for experimentally investigating the thermodynamic properties of the cell.
引文
[1]Pakhomova O.N., Khorokhorina V.A., Bowman A.M., et al. Oxidative effects of nanosecond pulsed electric field exposure in cells and cell-free media [J]. Archives of Biochemistry and Biophysics,2012,527:55-64.
    [2]Nesin V., Pakhomov A.G. Inhibition of voltage-gated Na(+) current by nanosecond pulsed electric field (nsPEF) is not mediated by Na(+) influx or Ca(2+) signaling [J]. Bioelectromagnetics,2012,33(6):443-451.
    [3]Nesin V., Bowman A.M., Xiao S., et al. Cell permeabilization and inhibition of voltage-gated Ca(2+) and Na(+) channel currents by nanosecond pulsed electric field [J]. Bioelectromagnetics,2012,33(5):394-404.
    [4]Nesin O.M., Pakhomova O.N., Xiao S., et al. Manipulation of cell volume and membrane pore comparison following single cell permeabilization with 60- and 600-ns electric pulses [J]. Biochimica et Biophysica Acta,2012,1808(3):792-801.
    [5]Mitsutake K., Satoh A., Mine S., et al. Effect of Pulsing Sequence of Nanosecond Pulsed Electric Fields on Viability of HeLa S3 Cells [J]. IEEE Transactions on Dielectrics and Electrical Insulation,2012,19(1):337-342.
    [6]Hua Y.Y., Wang X.S., Zhang Y, et al. Intense picosecond pulsed electric fields induce apoptosis through a mitochondrial-mediated pathway in HeLa cells [J]. Molecular Medicine Reports,2012,5(4):981-987.
    [7]Chen X., Zhuang J., Kolb J.F., et al. Long term survival of mice with hepatocellular carcinoma after pulse power ablation with nanosecond pulsed electric fields [J]. Technology in Cancer Research & 2012,11(1):83-93.
    [8]Matsuki N., Ishikawa T., Imai Y, et al. Low voltage pulses can induce apoptosis [J]. Cancer Letters,2008,269(1):93-100.
    [9]Zhou W., Xiong Z., Liu Y, et al. Low voltage irreversible electroporation induced apoptosis in HeLa cells [J]. Journal of Cancer Research and Therapeutics,2012,8(1):80-85.
    [10]Beebe S.J., Fox P., Rec L., et al. Nanosecond pulsed electric field (nsPEF) effects on cells and tissues:apoptosis induction and tumor growth inhibition [J]. IEEE Transactions on Plasma Science,2002,30(1):286-292.
    [11]Beebe S.J., Fox P.M., Rec L.J., et al. Nanosecond, high-intensity pulsed electric fields induce apoptosis in human cells [J]. FASEB Journal,2003,17(11):1493-1495.
    [12]Mi Y., Yao C.G., Li C.X., et al. Apoptosis Induction Effects of Steep Pulsed Electric Fields (SPEF) on Human Liver Cancer Cell SMMC-7721 in vitro [J]. IEEE Transactions on Dielectrics and Electrical Insulation,2009,16(5):1302-1310.
    [13]Pinero J., Lopez-Baena M., Ortiz T., et al. Apoptotic and necrotic cell death are both induced by electroporation in HL60 human promyeloid leukaemia cells [J]. Apoptosis, 1997,2(3):330-336.
    [14]Nuccitelli R., Tran K., Athos B., et al. Nanoelectroablation therapy for murine basal cell carcinoma [J]. Biochemical and Biophysical Research Communications,2012,424: 446-450.
    [15]Yin D., Yang W.G, Weissberg J., et al. Cutaneous Papilloma and Squamous Cell Carcinoma Therapy Utilizing Nanosecond Pulsed Electric Fields (nsPEF) [J]. PLoS One, 2012,7(8):e43891.
    [16]Yano M., Abe K., Akiyama H., et al. Enhancement of Proliferation Activity of Mammalian Cells by Intense Burst Sinusoidal Electric Fields [J]. IEEE Transactions on Dielectrics and Electrical Insulation,2012,19(1):331-336.
    [17]Mi Y, Yao C.G., Li C.X., et al. Caspase-3 Activation by Exponential Decay Nanosecond Pulsed Electric Fields on Tumor-Bearing BALB/c Nude Mice In Vivo [J]. IEEE Transactions on Plasma Science,2010,38(8):1963-1971.
    [18]Nuccitelli R., Pliquett U., Chen X., et al. Nanosecond pulsed electric fields cause melanomas to self-destruct [J]. Biochemical and Biophysical Research Communications, 2006,343(2):351-360.
    [19]Yao C., Sun C., Mi Y, et al. Experimental studies on killing and inhibiting effects of steep pulsed electric field (SPEF) to target cancer cell and solid tumor [J]. IEEE Transactions on Plasma Science,2004,32(4):1626-1633.
    [20]Yang X.-J., Li J., Sun C.-X., et al. The effect of high frequency steep pulsed electric fields on in vitro and in vivo antitumor efficiency of ovarian cancer cell line skov3 and potential use in electrochemotherapy [J]. Journal of Experimental & Clinical Cancer Research, 2009,28:53.
    [21]Nuccitelli R., Chen X., Pakhomov A.G., et al. A new pulsed electric field therapy for melanoma disrupts the tumor's blood supply and causes complete remission without recurrence [J]. International Journal of Cancer,2009,125(2):438-445.
    [22]Parkins C., Chaplin D. Tumour blood flow changes induced by application of electric pulses [J]. European Journal of Cancer,1999,35(4):672-677.
    [23]Sersa C., Cemazar M., Miklavcic D., et al. Tumor blood flow modifying effect of electrochemotherapy with bleomycin [J]. Anticancer Research,1999,19(5):4017-4022.
    [24]Sersa G, Krzic M., Sentjurc M., et al. Reduced blood flow and oxygenation in SA-1 tumours after electrochemotherapy with cisplatin [J]. British Journal of Cancer,2002, 87(9):1047-1054.
    [25]Stacey M., Stickley J., Fox P., et al. Differential effects in cells exposed to ultra-short, high intensity electric fields:cell survival, DNA damage, and cell cycle analysis [J]. Mutation Research,2003,542(1-2):65-75.
    [26]Ibey B.L., Roth C.C., Pakhomov A.G, et al. Dose-dependent thresholds of 10-ns electric pulse induced plasma membrane disruption and cytotoxicity in multiple cell lines [J]. PLoS One,2012,6(1):e15642.
    [27]Tang L.L., Sun C.X., Liu H., et al. Steep pulsed electric fields modulate cell apoptosis through the change of intracellular calcium concentration [J]. Colloids and Surfaces B: Biointerfaces,2007,57(2):209-214.
    [28]Hair P.S., Schoenbach K.H., Buescher E.S. Sub-microsecond, intense pulsed electric field-applications to cells. show specificity of effects [J]. Bioelectrochemistry,2003,61(1-2): 65-72.
    [29]Hall E.H., Schoenbach K.H., Beebe S.J. Nanosecond pulsed electric fields induce apoptosis in p53-wildtype and p53-null HCT116 colon carcinoma cells [J]. Apoptosis, 2007,12(9):1721-1731.
    [30]Pakhomov A.G, Shevin R., White J.A., et al. Membrane permeabilization and cell damage by ultrashort electric field shocks [J]. Archives of Biochemistry and Biophysics,2007, 465(1):109-118.
    [31]Zhuang J., Ren W., Jing Y, et al. Dielectric Evolution of Mammalian Cell Membranes after Exposure to Pulsed Electric Fields [J]. IEEE Transactions on Dielectrics and Electrical Insulation,2012,19(2):609-622.
    [32]Andre F.M., Rassokhin M.A., Bowman A.M., et al. Gadolinium blocks membrane permeabilization induced by nanosecond electric pulses and reduces cell death [J]. Bioelectrochemistry,2010,79(1):95-100.
    [33]Ren W., Beebe S.J. An apoptosis targeted stimulus with nanosecond pulsed electric fields (nsPEFs) in E4 squamous cell carcinoma [J]. Apoptosis,2011,16(4):382-393.
    [34]Ren W., Sain N.M., Beebe S.J. Nanosecond pulsed electric fields (nsPEFs) activate intrinsic caspase-dependent and caspase-independent cell death in Jurkat cells [J]. Biochemical and Biophysical Research Communications,2012,421(4):808-812.
    [35]Nomura N., Yano M., Katsuki S., et al. Intracellular DNA Damage Induced by Non-thermal, Intense Narrowband Electric Fields [J]. IEEE Transactions on Dielectrics and Electrical Insulation,2009,16(5):1288-1293.
    [36]Vernier P.T., Sun Y, Marcu L., et al. Calcium bursts induced by nanosecond electric pulses [J]. Biochemical and Biophysical Research Communications,2003,310(2):286-295.
    [37]Vernier P.T., Sun Y, Chen M.T., et al. Nanosecond electric pulse-induced calcium entry into chromaffin cells [J]. Bioelectrochemistry,2008,73(1):1-4.
    [38]Vernier P.T., Sun Y, Marcu L., et al. Nanoelectropulse-induced phosphatidylserine translocation [J]. Biophysical Journal,2004,86(6):4040-4048.
    [39]Vernier P.T., Sun Y, Gundersen M.A. Nanoelectropulse-driven membrane perturbation and small molecule permeabilization [J]. BMC Cell Biology,2006,7(1):37.
    [40]Vernier P.T., Sun Y, Marcu L., et al. Nanosecond pulsed electric fields perturb membrane phospholipids in T lymphoblasts [J]. FEBS Letters,2004,572(1):103-108.
    [41]Vernier P.T., Thu M.M.S., Marcu L., et al. Nanosecond electroperturbation-mammalian cell sensitivity and bacterial spore resistance [J]. IEEE Transactions on Plasma Science, 2004,32(4):1620-1625.
    [42]White J.A., Blackmore P.F., Schoenbach K.H., et al. Stimulation of capacitative calcium entry in HL-60 cells by nanosecond pulsed electric fields [J]. Journal of Biological Chemistry,2004,279(22):22964-22972.
    [43]White J.A., Pliquett U., Blackmore P.F., et al. Plasma membrane charging of Jurkat cells by nanosecond pulsed electric fields [J]. European Biophysics Journal,2011,40(8): 947-957.
    [44]Frey W., White J.A., Price R.O., et al. Plasma membrane voltage changes during nanosecond pulsed electric field exposure [J]. Biophysical Journal,2006,90(10): 3608-3615.
    [45]Schoenbach K.H., Beebe S.J., Buescher E.S. Intracellular effect of ultrashort electrical pulses [J]. Bioelectromagnetics,2001,22(6):440-448.
    [46]Ford W.E., Ren W., Blackmore P.F., et al. Nanosecond pulsed electric fields stimulate apoptosis without release of pro-apoptotic factors from mitochondria in B16f10 melanoma [J]. Archives of Biochemistry and Biophysics,2010,497(1-2):82-89.
    [47]Buescher E.S., Smith R.R., Schoenbach K.H. Submicrosecond intense pulsed electric field effects on intracellular free calcium:mechanisms and effects [J]. IEEE Transactions on Plasma Science,2004,32(4):1563-1572.
    [48]Zhang J., Blackmore P.F., Hargrave B.Y., et al. Nanosecond pulse electric field (nanopulse):a novel non-ligand agonist for platelet activation [J]. Archives of Biochemistry and Biophysics,2008,471(2):240-248.
    [49]Garner A.L., Chen G, Chen N., et al. Ultrashort electric pulse induced changes in cellular dielectric properties [J]. Biochemical and Biophysical Research Communications,2007, 362(1):139-144.
    [50]Garner A. T., Chen N., Yang J., et al. Time domain dielectric spectroscopy measurements of HL-60 cell suspensions after microsecond and nanosecond electrical pulses [J]. IEEE Transactions on Plasma Science,2004,32(5):2073-2084.
    [51]Chen N., Garner A.L., Chen G, et al. Nanosecond electric pulses penetrate the nucleus and enhance speckle formation [J]. Biochemical and Biophysical Research Communications, 2007,364(2):220-225.
    [52]Stacey M., Fox P., Buescher S., et al. Nanosecond pulsed electric field induced cytoskeleton, nuclear membrane and telomere damage adversely impact cell survival [J]. Bioelectrochemistry,2011,82(2):131-134.
    [53]Xiao D.Y., Tang L.L., Zeng C., et al. Effect of actin cytoskeleton disruption on electric pulse-induced apoptosis and electroporation in tumour cells [J]. Cell Biology International, 2011,35(2):99-104.
    [54]Napotnik T.B., Wu Y.H., Gundersen M.A., et al. Nanosecond electric pulses cause mitochondrial membrane permeabilization in Jurkat cells [J]. Bioelectromagnetics,2012, 33(3):257-264.
    [55]Morotomi-Yano K., Oyadomari S., Akiyama H., et al. Nanosecond pulsed electric fields act as a novel cellular stress that induces translational suppression accompanied by eIF2a phosphorylation and 4E-BP1 dephosphorylation [J]. Experimental Cell Research,2012, 318(14):1733-1744.
    [56]Baldwin W.H., Gregory B.W., Osgood C.J., et al. Membrane Permeability and Cell Survival After Nanosecond Pulsed-Electric-Field Exposure-Significance of Exposure-Media Composition [J]. IEEE Transactions on Plasma Science,2010,38(10): 2948-2953.
    [57]Pucihar G., Kotnik T., Teissie J., et al. Electropermeabilization of dense cell suspensions [J]. European Biophysics Journal,2007,36(3):173-185.
    [58]Pucihar G., Kotnik T., Miklavcic D., et al. Kinetics of transmembrane transport of small molecules into electropermeabilized cells [J]. Biophysical Journal,2008,95(6): 2837-2848.
    [59]Sundararajan R. Nanosecond electroporation:another look [J]. Molecular Biotechnology, 2009,41(1):69-82.
    [60]Pavlin M., Leben V., Miklavcic D. Electroporation in dense cell suspension--Theoretical and experimental analysis of ion diffusion and cell permeabilization [J]. Biochimica et Biophysica Acta (BBA)-General Subjects,2007,1770(1):12-23.
    [61]Weaver J.C. Electroporation of cells and tissues [J]. IEEE Transactions on Plasma Science, 2000,28(1):24-33.
    [62]Gopal R., Narkar A., Mishra K., et al. Electroporation:a novel approach to enhance the radioiodine uptake in a human thyroid cancer cell line [J]. Applied Radiation and Isotopes, 2003,59(5-6):305-310.
    [63]Al-Sakere B., Andre F., Bernat C., et al. Tumor ablation with irreversible electroporation [J]. PLoS One,2007,2(11):el 135.
    [64]Rubinsky B. Irreversible electroporation in medicine [J]. Technology in Cancer Research and Treatment,2007,6(4):255-259.
    [65]Onik G., Mikus P., Rubinsky B. Irreversible electroporation:implications for prostate ablation [J]. Technology in Cancer Research & Treatment,2007,6(4):295-300.
    [66]Davalos R., Mir L., Rubinsky B. Tissue ablation with irreversible electroporation [J]. Annals of Biomedical Engineering,2005,33(2):223-231.
    [67]Campus G.R. Irreversible electroporation:a new ablation modality-clinical implications [J]. Technology in Cancer Research & Treatment,2006,6(1):1-11.
    [68]Weaver J.C. Towards solid tumor treatment by irreversible electroporation:intrinsic redistribution of fields and currents in tissue [J]. Technology in Cancer Research & Treatment,2007,6(4):261-273.
    [69]Andre F., Connault E., Opolon P., et al. A study of the immunological response to tumor ablation with irreversible electroporation [J]. Technology in Cancer Research & Treatment, 2007,6(4):301-305.
    [70]Miller L., Leor J., Rubinsky B. Cancer cells ablation with irreversible electroporation [J]. Technology in Cancer Research & Treatment,2005,4(6):699-705.
    [71]Edd J.F., Horowitz L., Davalos R.V., et al. In vivo results of a new focal tissue ablation technique:irreversible electroporation [J]. IEEE Transactions on Biomedical Engineering, 2006,53(7):1406-1415.
    [72]Joshi R., Hu Q., Schoenbach K., et al. Energy-landscape-model analysis for irreversibility and its pulse-width dependence in cells subjected to a high-intensity ultrashort electric pulse [J]. Physical Review E,2004,69(5):051901.
    [73]Beebe S.J., Blackmore P.F., White J., et al. Nanosecond pulsed electric fields modulate cell function through intracellular signal transduction mechanisms [J]. Physiological Measurement,2004,25(4):1077-1093.
    [74]Pakhomov A.G., Kolb J.F., White J.A., et al. Long-lasting plasma membrane permeabilization in mammalian cells by nanosecond pulsed electric field (nsPEF) [J]. Bioelectromagnetics,2007,28(8):655-663.
    [75]Pakhomov A.G., Phinney A., Ashmore J., et al. Characterization of the cytotoxic effect of high-intensity,10-ns duration electrical pulses [J]. IEEE Transactions on Plasma Science, 2004,32(4):1579-1586.
    [76]Ibey B.L., Xiao S., Schoenbach K.H., et al. Plasma membrane permeabilization by 60- and 600-ns electric pulses is determined by the absorbed dose [J]. Bioelectromagnetics,2009, 30(2):92-99.
    [77]Nuccitelli R., Tran K., Sheikh S., et al. Optimized nanosecond pulsed electric field therapy can cause murine malignant melanomas to self-destruct with a single treatment [J]. International Journal of Cancer,2010,127(7):1727-1736.
    [78]Grosse C., Schwan H.P. Cellular membrane potentials induced by alternating fields [J]. Biophysical Journal,1992,63(6):1632-1642.
    [79]Foster K.R. Thermal and nonthermal mechanisms of interaction of radio-frequency energy with biological systems [J]. IEEE Transactions on Plasma Science,2000,28(1):15-23.
    [80]Schoenbach K.H., Katsuki S., Stark R.H., et al. Bioelectrics-new applications for pulsed power technology [J]. IEEE Transactions on Plasma Science,2002,30(1):293-300.
    [81]Schoenbach K.H., Peterkin F.E., Alden Iii R.W., et al. The effect of pulsed electric fields on biological cells:Experiments and applications [J]. IEEE Transactions on Plasma Science,1997,25(2):284-292.
    [82]Tang L., Yao C., Sun C. Apoptosis induction with electric pulses-a new approach to cancer therapy with drug free [J]. Biochemical and Biophysical Research Communications, 2009,390(4):1098-1101.
    [83]Joshi R., Schoenbach K. Electroporation dynamics in biological cells subjected to ultrafast electrical pulses:A numerical simulation study [J]. Physical Review E,2000,62(1):1025.
    [84]Joshi R., Hu Q., Schoenbach K. Dynamical modeling of cellular response to short-duration, high-intensity electric fields [J]. IEEE Transactions on Dielectrics and Electrical Insulation,2003,10(5):778-787.
    [85]Joshi R.P., Hu Q., Schoenbach K.H. Modeling studies of cell response to ultrashort, high-intensity electric fields-Implications for intracellular manipulation [J]. IEEE Transactions on Plasma Science,2004,32(4):1677-1686.
    [86]Joshi R.P., Nguyen A., Sridhara V., et al. Simulations of intracellular calcium release dynamics in response to a high-intensity, ultrashort electric pulse [J]. Physical Review E: Statistical, Nonlinear, and Soft Matter,2007,75(4 Pt 1):041920.
    [87]Joshi R.P., Sridhara V., Schoenbach K.H. Microscopic calculations of local lipid membrane permittivities and diffusion coefficients for application to electroporation analyses [J]. Biochemical and Biophysical Research Communications,2006,348(2): 643-648.
    [88]Yao C., Mi Y, Li C., et al. Study of transmembrane potentials on cellular inner and outer membrane--frequency response model and its filter characteristic simulation [J]. IEEE Transactions on Biomedical Engineering,2008,55(7):1792-1799.
    [89]Yao C.G., Mo D.B., Li C.X., et al. Study of transmembrane potentials of inner and outer membranes induced by pulsed-electric-field model and simulation [J]. IEEE Transactions on Plasma Science,2007,35(5):1541-1549.
    [90]Yao C.G, Hu X.Q., Mi Y, et al. Window Effect of Pulsed Electric Field on Biological Cells [J]. IEEE Transactions on Dielectrics and Electrical Insulation,2009,16(5): 1259-1266.
    [91]Pavlin M., Miklavcic D. Theoretical and experimental analysis of conductivity, ion diffusion and molecular transport during cell electroporation--Relation between short-lived and long-lived pores [J]. Bioelectrochemistry,2008,74(1):38-46.
    [92]Pavlin M., Pavselj N., Miklavcic D. Dependence of induced transmembrane potential on cell density, arrangement, and cell position inside a cell system [J]. IEEE Transactions on Biomedical Engineering,2002,49(6):605-612.
    [93]Malins D.C., Polissar N.L., Schaefer S., et al. A unified theory of carcinogenesis based on order-disorder transitions in DNA structure as studied in the human ovary and breast [J]. Proceedings of the National Academy of Sciences,1998,95(13):7637.
    [94]Thornton B. Inversion of Raman spectra of living cells indicates dielectric structure related to energy control [J]. Physics Letters A,1984,106(4):198-202.
    [95]Polevaya Y., Ermolina I., Schlesinger M., et al. Time domain dielectric spectroscopy study of human cells:II. Normal and malignant white blood cells [J]. Biochimica et Biophysica Acta (BBA)-Biomembranes,1999,1419(2):257-271.
    [96]Feldman Y., Ermolina I., Hayashi Y. Time domain dielectric spectroscopy study of biological systems [J]. IEEE Transactions on Dielectrics and Electrical Insulation,2003, 10(5):728-753.
    [97]Haemmerich D., Staelin S., Tsai J., et al. In vivo electrical conductivity of hepatic tumours [J]. Physiological Measurement,2003,24:251.
    [98]Barsamian S., Reid B., Thornton B. Origin of dielectric discretness during the development of Dacus tryoni and its reversal by a carcinogen [J]. IRCS Medical Science, 1985,13:1103-1104.
    [99]Barsamian S., Thornton B. Dielectric structure of cells indicated from dc polarization methods [J]. Physics Letters A,1985,107(8):414-418.
    [100]Kayser K., Kosjerina Z., Goldmann T., et al. Lung carcinoma-associated atypical adenomatoid hyperplasia, squamous cell dysplasia, and chromosome alterations in non-neoplastic bronchial mucosa [J]. Lung Cancer,2005,47(2):205-214.
    [101]Kayser K., Trott J., Bohm G., et al. Localized fibrous tumors (LFTs) of the pleura:Clinical data, asbestos burden, and syntactic structure analysis applied to newly defined angiogenic/growth-regulatory effectors [J]. Pathology-Research and Practice,2005, 201(12):791-801.
    [102]Tisdale M.J. Pathogenesis of cancer cachexia [J]. The Journal of Supportive Oncology, 2003,1(3):159-168.
    [103]Rossignol R., Gilkerson R., Aggeler R., et al. Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells [J]. Cancer Research,2004,64(3):985.
    [104]Maximo V., Sobrinho-Simoes M. Hiirthle cell tumours of the thyroid. A review with emphasis on mitochondrial abnormalities with clinical relevance [J]. Virchows Archiv, 2000,437(2):107-115.
    [105]Schrodinger E. What is life? Physical Aspects of Living Cell [M]. Cambridge:Cambridge Univ Pr,1948.
    [106]Luo Liaofu, Molnar J., Ding Hui, et al. Physicochemical attack against solid tumors based on the reversal of direction of entropy flow:an attempt to introduce thermodynamics in anticancer therapy [J]. Diagnostic Pathology,2006,1:43.
    [107]Luo Liao-Fu. Entropy production in a cell and reversal of entropy flow as an anticancer therapy [J]. Frontiers of Physics in China,2009,4(1):122-136.
    [108]Reickl L. A Modern Course in Statistical Physics [M]. Texas:Uni-versity of Texas Press, 1980.
    [109]Gardiner C.W. Handbook of Stochastic Method [M].2nd ed.:Springer,1985.
    [110]Glansdorff P., Prigogine I. Thermodynamic Theory of Structure, Stability and Fluctuations [M]. New York:Wiley-Interscience,1978.
    [111]Luo Liaofu, Molnar J., Ding Hui, et al. Ultrasound absorption and entropy production in biological tissue:a novel approach to anticancer therapy [J]. Diagnostic Pathology,2006, 1:35.
    [112]Ding Changjiang, Luo Liaofu. A Proposal on Anticancer Therapy Based on Reversal of Entropy Flow through Magnetic Field [C]. Proceedings of the First International Conference on BioMedical Engineering and Informatics (BMEI 2008), Sanya, China, 2008:483-487.
    [113]Pavlin M., Kanduser M., Rebersek M., et al. Effect of cell electroporation on the conductivity of a cell suspension [J]. Biophysical Journal,2005,88(6):4378-4390.
    [114]Pavlin M., Miklavcic D. Effective conductivity of a suspension of permeabilized cells:a theoretical analysis [J]. Biophysical Journal,2003,85(2):719-729.
    [115]Pavlin M., Slivnik T., Miklavcic D. Effective conductivity of cell suspensions [J]. IEEE Transactions on Biomedical Engineering,2002,49(1):77-80.
    [116]Qin Y., Lai S., Jiang Y., et al. Transmembrane voltage induced on a cell membrane in suspensions exposed to an alternating field:A theoretical analysis [J]. Bioelectrochemistry, 2005,67(1):57-65.
    [117]Kang T.W., Rhim H., Kim E.Y., et al. Percutaneous radiofrequency ablation for the hepatocellular carcinoma abutting the diaphragm:assessment of safety and therapeutic efficacy [J]. Korean Journal of Radiology,2009,10(1):34.
    [118]Jaroszeski M.J., Gilbert R., Heller R. Electrochemotherapy:an emerging drug delivery method for the treatment of cancer [J]. Advanced Drug Delivery Reviews,1997,26(2-3): 185-197.
    [119]Gothelf A., Mir L.M., Gehl J. Electrochemotherapy:results of cancer treatment using enhanced delivery of bleomycin by electroporation [J]. Cancer Treatment Reviews,2003, 29(5):371-387.
    [120]Rodriguez-Cuevas S., Barroso-Bravo S., Almanza-Estrada J., et al. Electrochemotherapy in Primary and Metastatic Skin Tumors:Phase II Trial Using Intralesional Bleomycin [J]. Archives of Medical Research,2001,32(4):273-276.
    [121]Giardino R., Fini M., Bonazzi V., et al. Electrochemotherapy a novel approach to the treatment of metastatic nodules on the skin and subcutaneous tissues [J]. Biomedicine & Pharmacotherapy,2006,60(8):458-462.
    [122]Buescher E.S., Schoenbach K.H. Effects of submicrosecond, high intensity pulsed electric fields on living cells-intracellular electromanipulation [J]. IEEE Transactions on Dielectrics and Electrical Insulation,2003,10(5):788-794.
    [123]Deng J., Schoenbach K.H., Stephen Buescher E., et al. The effects of intense submicrosecond electrical pulses on cells [J]. Biophysical Journal,2003,84(4): 2709-2714.
    [124]Maor E., Ivorra A., Leor J., et al. Irreversible electroporation attenuates neointimal formation after angioplasty [J]. IEEE Transactions on Biomedical Engineering,2008, 55(9):2268-2274.
    [125]Maor E., Ivorra A., Rubinsky B. Non thermal irreversible electroporation:novel technology for vascular smooth muscle cells ablation [J]. PloS One,2009,4(3):e4757.
    [126]Breton M., Mir L.M. Microsecond and nanosecond electric pulses in cancer treatments [J]. Bioelectromagnetics,2012,33(2):106-123.
    [127]Wang J., Guo J., Wu S., et al. Synergistic effects of nanosecond pulsed electric fields combined with low concentration of gemcitabine on human oral squamous cell carcinoma in vitro [J]. PLoS One,2012,7(8):e43213.
    [128]Ding Chang-Jiang, Luo Liao-Fu. Experimental Study of Entropy Production in Cells under Alternating Electric Field [J]. Chinese Physics Letters,2012,29(8):088701.
    [129]宋志刚,谢蕾蕾,何旭洪.SPSS16实用教程[M].北京:人民邮电出版社,2008.
    [130]Zar J.H. Biostatistical analysis [M].4th ed. New Jersey:Prentice Hall, Upper Saddle River, 1999.
    [131]Gweon B., Kim M., Kim D.B., et al. Differential responses of human liver cancer and normal cells to atmospheric pressure plasma [J]. Applied Physics Letters,2011, 99:063701.
    [132]Pilat M., Christman J., Brooks S. Characterization of the estrogen receptor transfected MCF10A breast cell line 139B6 [J]. Breast Cancer Research and Treatment,1996,37(3): 253-266.
    [133]Martin S.S., Leder P. Human MCF10A mammary epithelial cells undergo apoptosis following actin depolymerization that is independent of attachment and rescued by Bcl-2 [J]. Molecular and Cellular Biology,2001,21(19):6529-6536.
    [134]Wu M., Wu Z.F., Kumar-Sinha C., et al. RhoC induces differential expression of genes involved in invasion and metastasis in MCF10A breast cells [J]. Breast Cancer Research and Treatment,2004,84(1):3-12.
    [135]Zientek-Targosz H., Kunnev D., Hawthorn L., et al. Transformation of MCF-10A cells by random mutagenesis with frameshift mutagen ICR191:A model for identifying candidate breast-tumor suppressors [J]. Molecular Cancer,2008,7(1):51.
    [136]Nicolis G., Prigogine I. Self-organization in nonequilibrium systems [M]. New York:John Wiley & Sons,1977.
    [137]Berg H. Elctrostimulation of cell metabolism by low frequency electric and electromagnetic fields [J]. Bioelectrochemistry and Bioenergetics,1993,31(1):1-25.
    [138]Berg H. Possibilities and problems of low frequency weak electromagnetic fields in cell biology [J]. Bioelectrochemistry and Bioenergetics,1995,38(1):153-159.
    [139]Berg H., Zhang L. Electrostimulation in cell biology by low-frequency electromagnetic fields [J]. Electromagnetic Biology and Medicine,1993,12(2):147-163.
    [140]Warburg O. On the origin of cancer cells [J]. Science,1956,123(3191):309-314.
    [141]Warburg O., Wind F., Negelein E. The metabolism of tumors in the body [J]. The Journal of General Physiology,1927,8(6):519-530.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700