污泥螺旋浓缩电渗透带式振动压榨一体化高干度脱水技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,通用的污泥脱水方法,脱水后的滤饼含水率通常在75%~80%左右,高含水率的滤饼不但不利于运输、堆放,而且会给其后续处理带来一定困难,因此,城市污泥高干度脱水技术的研究就变的十分重要了。
     本课题通过对国内外相关污泥脱水技术的研究,在总结先进污泥脱水技术的基础上,针对滤饼高含水率的原因是胞内水如何释放以及高干度压榨脱水问题,本着经济高效地对污泥进行脱水的原则,提出了“污泥螺旋浓缩电渗透带式振动压榨一体化高干度脱水技术”的研究课题。本文通过研究,首先构建了“污泥螺旋浓缩电渗带式振动压榨过滤脱水模型”;在理论研究的基础上,进行了试验研究,通过试验研究对系统工艺参数进一步优化,初步证明了该方法能够较好的对污泥进行经济、高效、高干度脱水。本文主要研究内容如下:
     第一章绪论。首先阐述了课题来源及研究意义,通过对国内外污泥高干度脱水技术的研究,重点探讨了电渗透脱水技术和带式压榨脱水技术的研究现状和存在问题。通过分析,提出了采用“污泥螺旋浓缩电渗透带式振动压榨一体化高干度脱水的方法”,对污泥进行高干度脱水,进一步确立了本课题主要研究内容。
     第二章方案设计。本章根据课题要求,先后设计了三种“污泥高干度脱水”工艺方案,通过比较分析,以经济高效地对污泥进行脱水的原则,最后确立了一种经济、高效、高干度脱水的工艺方案。
     第三章“污泥高干度脱水模型”的构建。依据确立的“工艺方案”,根据带式压榨过滤和电渗透脱水理论,通过研究,首先从理论上分析了脱水过程中电渗透、带式压榨以及振动压榨等对污泥脱水效果的影响,最终构建了污泥螺旋浓缩电渗透带式振动压榨过滤脱水模型。
     第四章仿真分析。根据所构建的“污泥脱水模型”,然后采用仿真分析软件ADINA对其进行数值仿真。仿真分析结果表明:污泥在电场作用下,其滤液量明显增加(表明胞内水被释放出来了),同时,滤液流速也加快,滤饼含水率显著降低;在振动压榨力作用下滤饼含水率降到较低值(表明污泥中的游离水也得到了进一步降低)。
     第五章试验研究。为了进一步验证该理论方法的真实性、可行性,本课题进行了环境试验,通过试验分别对电极材料、电场强度、压榨力、振动频率、振幅等对污泥脱水效果的影响进行了较为深入的研究,并对系统工艺参数进一步优化,试验证明,当进料浓度含水率93~97%,作用电场强度(6~10V/mm)之间,脱水时间(2~3min)之间,滤带压榨作用力(0.6~0.8MPa),振动频率1000Hz,振幅2~5mm,滤饼含水率在65%~60%之间。
     第六章总结。本章主要是对本文所做的工作进行回顾和总结以及论文主要创新点,探讨了论文存在的问题及该课题今后研究方向等。
     本文主要创新点:
     ⑴率先提出了一种污泥高干度脱水新技术——污泥螺旋浓缩电渗透带式振动压榨脱水技术。
     ⑵构建污泥螺旋浓缩电渗透带式振动压榨过滤脱水模型。
     ⑶对传统带式污泥脱水机进行了改进(增加了螺旋浓缩、电渗透、振动压榨装置),对其进行了环境试验,通过试验对相关参数进行了参数优化,为该技术的实际应用奠定了试验基础。
Currently, the filter cake moisture of dewatered sludge is usually about 75% to 80% after using the traditional methods of dewatering filter. High moisture content filter cake is not only go against transportation and stacking, but also causes difficulties in future. Therefore,research on high degree dewatering of sludge is very important.
     The reason of high moisture content filter cake is how to release the bound water and the problem of high degree squeezing dehydration. Through studying high degree dehydration technology of home and abroad and summarizing the advanced technology of sludge dewatering, The Electroosmosis and Vibrating Belt Screw Condense method is introduced into the study of activated sludge dewatering based on the principles dewatered sludge economic and efficiency. This paper firstly builds“High Degree Dewatering of Sludge by Integrating Electroosmosis and Vibrating Belt Screw Condense”mathematics model for activated sludge. On the basis of theoretical study, experimental study was carried out. It initially proved that this method is economic and efficiency for dewatering sludge through optimizing the process parameters The main works of this thesis include the following aspects:
     Chapter One: First of all, it holds out topic source and research significance. Then, through studying high degree dehydration technology of home and abroad, this chapter mainly discusses the research status and existing problems of electroosmosis and vibrating belt condense.It proposes to adopt“Research on High Degree Dewatering of Sludge by Integrating Electroosmosis and Vibrating Belt Condense”to dewatering,and establishes the main research topics.
     Chapter Two: Design.According to the requirements of topic,this part designed three plans on "High Degree Dewatering of Sludge ". Through comparing the schemes, based on the principles dewatered sludge economic and efficiency, it finally established a process program which is economic、efficiency and high degrees dehydration
     Chapter Three: "High Degree Dewatering of Sludge" equation. According to the "process program", this section analyses the role of electroosmotic、pressure and vibrating pressure during dewatering sludge theoretically by coupling the theory of belt filter and electroosmosis. And ultimately, the mathematics model of“High Degree Dewatering of Sludge by Integrating Electroosmosis and Vibrating Belt Screw Condense”is constructed.
     Chapter Four: The Simulation Analysis. According to the mathematics model for activated sludge dewatering, the modal are carried on numerical simulation with the Automatic Dynamic Incremental Nonlinear Analysis software.Results show that: the quantity of filtrate in sludge is obviously increase than the filtrate without imposing electric field(show that the bound water is released in the sludge); Meanwhile, the velocity of filtrate also accelerate and filter cake of moisture content is significantly reduced; Filter cake moisture content dropped to a low value in vibration squeezing force function(show that the free water in sludge also got further reduced).
     Chapter Five: Test Research. In order to further validate the practicability of the theory of the combination of the electroosmosis and vibrating belt screw condense, an environmental experiment of high degree and economical sludge dehydration is introduced in this paper which has studied the electrode materials, field strength, belt pressure, vibration frequency, amplitude and the best dewatering time and made comparative analysis micro-structure of the sludge in the process of dewatering. The results show that: the cake moisture content(93~97%) was significantly lower (60~65%) when combing the method of electroosmosis and vibrating belt screw condense, the field strength is between (6~10V/mm), the best dewatering time is between (2~3min), and the belt pressure is between (0.6~0.8MPa), vibration frequency is 1000Hz, amplitude is between (2~5mm).
     Chapter Six:Summary. This chapter is mainly reviewed and summarized the work of this paper and innovations, then discusses the existing problems and the research orientation of the thesis topic in the future.
     The main innovations of this thesis include the following aspects:
     ⑴Take the lead in putting forward a new technology on high degrees dewatering of sludge——High Degree Dewatering of Sludge by Integrating Electroosmosis and Vibrating Belt Screw Condense.
     ⑵The mathematics model of“High Degree Dewatering of Sludge by Integrating Electroosmosis and Vibrating Belt Screw Condense”is constructed.
     ⑶Improving the traditional belt filter of dewatering sludge(add the devices of screw enrichment, electroosmosis and vibration squeezing).Environmental testing was carried out by testing the parameters of the relevant parameters optimized and it lays the experimental basis for the practical application of this technology.
引文
[1]谷晋川,蒋文举,雍毅.城市污水厂污泥处理与资源化[M].北京:化学工业出版社,2008.
    [2]李军,杨秀山,彭永臻.微生物与水处理工程[M].北京:化学工业出版社, 2002
    [3] Guohua Chen,Po Lock Yue,Arun S Mujumdar.Sludge dewatering and drying[J].Drying Technology,2002,20(4-5):883-916
    [4] Campell H W.Sludge management future issues and trends.Wat Sci Tech,2000,41(8):1-8.
    [5]班福忱,刘明秀,李亚峰,张吉库.城市污水处理厂污泥资源化研究探讨[J].环境科学与管理,2006,31(5):45-47.
    [6]宗永平.国外带式压榨过滤机的发展概况[J].过滤与分离,1999,3:5-8.
    [7]夏彬.电渗透脱水在食品加工中的应用研究[D].中国农业大学硕士论文,2001.
    [8]梁运章,丁昌江.高压电场干燥技术原理的电流体动力学分析[J].北京理工大学学报,2005,25:16-19.
    [9]李修渠等.不同电场下豆渣的电渗透脱水[J].农业工程学报,2000,16(3):100-103
    [10]王瑞卿.煤的电化学脱水过程及电解槽模拟优化研究[D].太原理工大学硕士论文,2010.
    [11]翁达.电场在微细物料脱水过程中的作用[J].矿冶工程,1987.7(3):63-66.
    [12] Lockhart.N.C.Electro-Osmotic dewatering of fine-tailing from mineral processing[J].Tnt.Miner,1983,10.
    [13] Heath L.W.et.U.S.DOE.Pep(U.S.A)[J].1985,2.
    [14]夏彬,李里特,李修渠,辰已英三.电渗透脱水的发展和应用研究[J].食品技术,2000,5:10-11.
    [15]王稉达.多雨潮湿地区电渗法处理过湿填料技术研究[D].昆明理工大学硕士论文,2007.
    [16]周加祥,佘鹏,刘铮,丁富新.水平电场污泥脱水过程[J].化工学报,2001,52(7):635-638.
    [17]马德刚,张书廷.电场协同污泥热干燥技术的研究[J].中国给水排水,2003,19(12):65-66.
    [18]孙长路,张书廷.生物污泥的电渗透脱水[J].中国给水排水,2004,20(5):32-34.
    [19]马德刚,张书廷,季民,刘磊.污泥电渗透脱水操作条件的优化研究[J].中国给水排水,2005,21(5):36-38.
    [20]芮延年,刘文杰,张志红,李军涛.带式振动浓缩压榨脱水的机理研究[J].中国给水排水,2002,28(2):87-90
    [21]芮延年,汪济香,董玉民,张志伟.带式振动浓缩压榨一体化脱水机理的研究[J].苏州大学学报(工科版),2005,25(4):1-5.
    [22]赵庆祥.污泥资源化技术[M].北京:化学工业出版社,2002.
    [23]曾祥珺.新型螺旋挤压过滤机的研究[D].北京化工大学硕士论文,2010.
    [24]李文岩.螺压脱水机与带式压滤机的比较[J].工业用水与废水,2007,38(4):112-113.
    [25] Silva A J, Varesche M B, Foresti E,etal. Sulphate removal from industrialwastewater using a packed-bed anaerobic reactor[J]. Process Biochem, 2002, 37(9): 927-935.
    [26] Eiichi Ishigaki,Yukitoshi Mitani.Screw Press Apparatus[P].US6615710B.2003.
    [27]喻正浩.滤水混凝土电渗实验研究[D].大连理工大学硕士论文,2006.
    [28]王立.饱和土体电渗机理及基本理论研究[D].浙江大学硕士论文,2004.
    [29]刘程,米裕民.表面活性剂性质理论与应用[M].北京:北京工业大学出版社,2003.
    [30]黄柳宾,王殿生,卢占国.电场作用下多孔介质中单相流体的渗流速度[J].科学技术与工程,2007,7(21):5510-5512.
    [31] Z. Yang, X.F. Peng, D.J. Lee.Electroosmotic flow in sludge flocs[J]. International Journal of Heat and Mass Transfer, 2009 (52): 2992–2999
    [32]孔祥言.高等渗流力学[M].合肥:中国科学技术大学出版社,2010.
    [33]赵扬.滤饼微观结构与压榨理论的研究[D].浙江大学博士学位论文,2006.
    [34]徐曾和,徐小荷,许继军.可变形多孔介质渗透系数的测定方法[J].实验力学,1998,13(3): 314-320
    [35]孔祥言等,热-流-固耦合渗流的数学模型研究[J].水动力学研究与进展,2005,20(2):269-275
    [36]郑晓.油料压榨理论与试验研究[D].武汉理工大学博士论文,2005.
    [37]王强.非饱和土壤渗流问题的数值方法与分析[D].山东大学硕士论文,2003.
    [38]赖远明,吴紫汪,朱元林等.寒区隧道温度场、渗流场和应力场耦合问题的非线性分析[J].岩土工程学报,1999,21(5):529-533.
    [39]岳戈等.ADINA流体与流固耦合功能的高级应用[M].北京:人民交通出版社,2010.
    [40]辛益军.方差分析与实验设计[M].北京:中国财政经济出版社,2001.
    [41]陈魁.试验设计与分析[M].北京:清华大学出版社,2005.
    [42]何少华,文竹青,娄涛.试验设计与数据处理[M].国防科技大学出版社,2002. .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700