基于配气凸轮驱动的全可变液压气门机构气门运动规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当代社会中,汽车已经成为人类生活的重要组成部分。汽车在为人类提供舒适和便捷的同时,也带来了环境污染、能源危机等一系列问题。这些问题都对汽车,特别是其核心——发动机提出了更高的要求。传统发动机的配气机构采用的是固定配气定时,很难兼顾高速和低速时的进气性能,节气门的节流作用使换气过程中的泵气损失增大,导致发动机燃油经济性和排放性恶化。所以,研究气门最大升程、开启持续角和配气相位三者的连续可变的全可变气门机构便有着十分重要的现实意义。
     本文所研究的就是一种发动机全可变液压气门机构(简称SDFVVS)。该机构取消了节气门,由机械-液压机构联合控制气门运动,从而实现气门最大升程和开启持续角的连续可变。本文以K157FMI发动机为样机,从运动学和动力学两方面对SDFVVS机构的气门运动规律进行了研究,主要内容有以下几个方面。
     首先分析SDFVVS机构的基本结构和传动链形式,将结构划分为高压和低压部分或者控制和驱动部分。机构的工作过程主要有气门开启、气门关闭及落座以及挺柱回落等三个阶段,分别阐述其工作原理。另外对机构主要的控制部件——泄油控制器与落座缓冲机构加以分析,同时对液压活塞、气门弹簧、液压挺柱等主要部件加以设计,为后续工作打下基础。
     然后对SDFVVS机构进行运动学分析与设计。介绍了平底液压挺柱及配气凸轮的运动规律,并结合SDFVVS机构的实际情况分析凸轮型线设计的基本思想与要求。将凸轮型线分为缓冲段和工作段两部分,首先选定合适的缓冲段类型并设计其曲线方程,之后利用计算机编程的方法计算得到工作段曲线方程的设计结果并对其准确性加以验证。设计结果表明,通过对SDFVVS机构凸轮型线的合理设计,可以使SDFVVS机构的气门在理想的时刻开启和落座,从而实现理想的气门运动规律。
     最后对SDFVVS机构进行动力学仿真分析。在配气机构单质量动力学模型的基础上建立SDFVVS机构的动力学模型并分析其计算方法,利用ADINA软件建立相应的有限元仿真分析模型并计算得到不同转速和泄油角条件下SDFVVS机构的动力学仿真分析的结果,将该结果与实验测得的气门运动规律加以对比,验证动力学仿真模型的准确性并分析误差产生的原因。仿真分析结果进一步表明,SDFVVS机构可以实现对气门运动规律的直接控制,并在很大范围内改变发动机进气门的最大升程和开启持续角,使气门运动规律能够根据泄油角和转速的不同进行相应的改变,从而实现气门最大升程、开启持续角和配气相位的连续可变。
In modern society, the automobile is becoming an important part of people's life. The automobile brings a series of questions such as the environmental pollution and energy crisis while offers comfort and convenience to people. These questions put forward higher request to the automobile, especially the engine, as the core of the engine. The fixed valve timing which is used by the valve train of traditional engines cannot take into account inlet performance both in the high-speed and low speed condition. The throttling action increases the pumping loss during the gas exchange process, which leads to the deterioration of the fuel economy and the emission, so it makes a great difference to research the fully variable valve train, of which the maximum valve lift, the opening angle and the valve timing are continuously variable.
     A kind of fully variable hydraulic valve system or SDFVVS for short is introduced in this paper. The throttle is removed in this system and the valve is driven by a mechanical-hydraulic system, thus realizing the continuous variability of the maximum valve lift and the opening angle. A K157FMI engine was taken as a prototype in this paper, and the research about the valve movement characteristics was done from both kinematics and dynamics aspects. The main contents are as follow:
     First of all, the basic structure and the transmission chain of SDFVVS were analyzed and the structure was divided into high-pressure and low-pressure section or control and drive section. The working process, including the valve-opening, valve-seating and tappet back stages, was also respectively stated. In addition, the main control units were introduced and designed to lay the foundation for the follow-up work.
     Then it was introduced that the kinematics analysis and design of SDFVVS. The movement characteristics of the hydraulic tappet and the valve cam were stated and the basic guideline and requirement of the cam profile design were analyzed considering the practical situation of SDFVVS. The cam profile was divided into buffer section and working section. The proper type of the buffer section was selected and the equation of it was designed. Then the equation of working section was calculated by the way of computer programming and the accuracy of the result was also verified. The result showed that the valve of SDFVVS can be opened and closed at the ideal moment to realize the ideal valve movement characteristics by a rational design of the cam profile.
     In the last place, it was introduced that the dynamical simulated analysis of SDFVVS. The dynamical model of SDFVVS was built at the basis of the one-mass dynamic model of the valve train, and the calculation method was also stated. The finite element model of dynamical simulated analysis was built by the software ADINA and the results in variable engine speed and oil drainage angle were obtained. The correctness of the model was checked by comparing with the experimental results and the reasons of the error were also analyzed. The result showed further that SDFVVS can control the valve directly and change the maximum valve lift and the opening angle in a large range, which makes the valve movement characteristics change by the engine speed and oil drainage angle and realizes continuously variability of the maximum valve lift, the opening angle and the valve timing.
引文
[1]陈家瑞.汽车构造[M].北京:机械工业出版社,2004:1-3.
    [2]周龙保.内燃机学[M].第二版.北京:机械工业出版社,2005:1-2,53-55.
    [3]Lin Jiansheng, Xia Shumin, Zhang Baohuan, et al. A New Type of Combustion Chamber in High-Speed Gasoline Engines (Ⅰ) [J]. Journal of Combustion Science and Technology.2003, 9(6):487-490.
    [4]Lin Jiansheng, Zhang Baohuan, Zhang Dianchang, et al.New Type of Combustion Chamber for High-Speed Gasoline Engines (Ⅱ) [J]. Journal of Combustion Science and Technology. 2005,11(4):315-318.
    [5]蔡锐彬,陈暹,段中栋.小型直喷式柴油机新型燃烧室的研究——设计、计算(1)[J].小型内燃机,1995,24(6):56-60.
    [6]丁祥军,刘茂康,陈华.多气门设计对柴油机性能的影响[J].机械制造及研究.2007,(5):66-68.
    [7]谢宗法,程勇,张小印,等.用最大速度位置和最大加速度位置设计高次多项式配气凸轮[J].内燃机学报.2005,23(3):274-278.
    [8]刘成,颜伏伍,罗马吉·李.压缩比与EGR对二甲醚的HCCI特性影响的模拟研究[J].武汉理工大学学报(交通科学与工程版),2008,32(04):649-652.
    [9]谭建伟,葛蕴珊,毕晔,等.基于一维/三维模型耦合仿真的汽车进气谐振器设计[J].汽车工程.2007,29(10):859-864.
    [10]杨妙梁.可变排量发动机技术的发展[J].汽车与配件,2008,(18):32-35.
    [11]陈勤学,崔可润,朱国伟.可变气门系统的研究与发展[J].车用发动机.2002,139(3):1-5.
    [12]安立群.涡轮增压原理和使用方法[J].汽车时代,2006,(1):158-159.
    [13]Kawamoto A, Yukio Takahashi, Takaaki Koike, et al. Variable Geometry System Turbocharger for Passenger Car Diesel Engine[C]. SAE Paper 2001-01-0273,2001.
    [14]张扬军,张树勇,徐建中.内燃机流动热力学与涡轮增压技术研究[J].内燃机学报,2008,26(S1):90-95.
    [15]秦朝举,刘建新,杜慧勇,等.Bosch公司高压共轨喷油系统的研究现状及发展前景[J].拖拉机与农用运输车,2006,33(2):3-5.
    [16]张晓力,王尚勇,张幽彤.柴油机电控共轨喷油系统发展状况[J].内燃机,2002,(3):3-5.
    [17]M. F. Russell, G. Greeves, N. Guerrassi. More Torque, Less Emissions and Less Noise from Diesel Engines[C]. SAE Paper 2000-01-0942,2000.
    [18]朱昌吉,刘忠长,许允,等.废气再循环对车用柴油机性能与排放的影响[J].汽车工程,2006,24(2):145-148.
    [19]Lundqvist, U, Smedler, G, and Stalhammar, P. A Comparison between Different EGR Systems for HD Diesel Engines and Their Effect on Performance, Fuel Consumption and Emissions[C]. SAE Paper 2000-01-0226,2000.
    [20]姚美红,陈燕.电控柴油机泵喷嘴技术[J].拖拉机与农用运输车,2006,(10):3-4.
    [21]丁春雨,薛冬新,宋希庚,等.预喷射技术对柴油机噪声影响的试验研究[J].小型内燃机与摩托车,2009,38(4):5-9.
    [22]David C Arters, Ewa A Bardasz, Elizabeth A, et al. A Comparison of Gasoline Direct Injection and Port-fuel-injection Vehicles:(Part 1) Fuel System Deposits and Vehicle Performance[C]. SAE Paper 1999-01-1498,1999.
    [23]Tilo Landenfeld, Andreas Kufferath, Juergen Ger-hardt. Gasoline Direct Injection-SULEV Emission Concept. SAE Paper 2004-01-0041,2004.
    [24]杨杰民.现代汽车发动机构造[M].上海:上海交通大学出版社,1999:93-95.
    [25]张德惠.现代发动机可变配气系统及电磁气门驱动机构[J].内蒙古民族大学学报(自然科学版).2004,19(3):313-315.
    [26]王韬,秦德.发动机可变气门正时技术的研究[J].小型内燃机与摩托车.2003,32(3):20-22.
    [27]Thomas D. A Review and Classification of Valriable Valve Timing Mechanism. SAE Paper 890674,1989.
    [28]Kellchi M. Development of a Valve Timing Control System. SAE Paper 890680,1989.
    [29]Moro D, et al. Thennodynamic Anilysis of Variable Valve Timing Influence on SI Engine Efficincy[C]. SAE Paper 2001-01-0667,2001.
    [30]Kreuter P, et al. The Meta VVH System- The Advantages of Continuously Mechanical Variable Valve Timing[C], SAE Paper 1999-01-0329,1999.
    [31]Michael B R, Dave F. Fully Variable Valve for SOHC Engines[J]. AutoTechnology,2005, 5(12):52-55.
    [32]王立彪,何邦全,谢辉,等.发动机可变气门技术的研究发展[J].汽车技术,2005,(12):4-8.
    [33]Matsuki M. Development of a Lean Burn Engine with a Variable Valve Timing Mechanism[C]. SAE Paper 960583,1996.
    [34]Richard Stone and Eric Kwan. Variable Valve Actuation Mechanisms and the Potential for their Application[C]. SAE Paper 890673,1989.
    [35]O Masaru, S Tomiyuki. Performance Improvement of a Four-Cylinder Gasoline Engine with Continuous Variable Valve Timing Mechanism Using a Three-Dimensional Cam[C]. SAE Paper 2003-32-0052,2003.
    [36]S Yousuke, S Shinsaku. Development of Accelerator-by-wire System for Variable Valve Lift and Timing Mechanism with Three Dimensional Cam[C]. SAE Paper 2008-32-0015,2008.
    [37]F Bokulich. BMW Returns to Formula One with V10[J]. Automotive Engineering International,2000, (3):42.
    [38]R Flierl, M Allgeier. A Valve Gear Device for the Variable Lift Adjustment of a Gas Exchange Valve in an Internal Combustion Engine. Patent Application DE 10123186,2001.
    [39]R Flierl, M Kluting. The Third Generation of Valvetrains-New Fully Variable Valvetrains for Throttle-Free Load Control [C]. SAE Paper 2000-01-1227,2000.
    [40]黎亚洲.常见可变配气系统全解析[J].汽车维修与保养,2010,(12):56-59.
    [41]严兆大,王希珍,李莉,等.电磁控制全可变气门系统及其仿真[J].内燃机工程,2002,23(04):10-12.
    [42]M Masato, N Kenji, A Tohru,et al. Development of a Lean Bum Engine with a Variable Valve Timing Mechanism[C]. SAE Paper 960583,1996.
    [43]Michael M. Schechter, Michael B. Levin. Camless Engine[C]. SAE Paper 960581,1996.
    [44]J Turner, M Bassett, R Pearson, et al. New Operating Strategies Afforded by Fully Variable Valve Trains, SAE Paper 2004-01-1386,2004.
    [45]P John, W Watson, J Russell,et al. Simulation of a Pneumatic Valve Actuation System for Internal Combustion Engine. SAE Paper 2005-01-0771,2005.
    [46]苏炎玲,舒歌群,李志锐.内燃机无凸轮电液驱动配气机构控制技术[J].小型内燃机与 摩托车技术,2004,33(2):36-39.
    [47]GouldL A, Richeson W E, Erickson FL. Performance Evaluation of a Camless Engine Using Valve Actuators with Programmable Timing[C]. SAE Paper 910450,1991.
    [48]孙海亭,祝玉文.用于非发节气门发动机的可变气门研究[J].小型内燃机,1994,23(6):44-49.
    [49]P Antonio, D Davide, E Carmine. The HCCI Concept and Control, Performed with MultiAir Technology on Gasoline Engines, SAE Paper 2011-09-11,2011.
    [50]张文,陈家基UNIAIR新技术对燃油经济性的重大改进(上)[J].轻型汽车技术,2004,(12):30-34.
    [51]张文,陈家基UNIAIR新技术对燃油经济性的重大改进(下)[J].轻型汽车技术,2005,(1):26-30.
    [52]Sher E, Bar-Konany T. Optimization of Variable Valve Timing for Maximizing Performance of an Unthrottled SI Engine- A Theoretical Study[J], Energy,2002,27(8):757-775.
    [53]Moro D, et al. Thermodynamic Anilysis of Variable Valve Timing Influence on SI Engine Efficincy[C], SAE Paper 2001-01-0667,2001.
    [54]O Lang, W Salber, J Hahn. Thermodynamical and Mechanical Approach Towards a Variable Valve Train for the Controlled Auto Ignition Combustion Process[C]. SAE Paper 2005-01-0762,2005.
    [55]王天友,张运泉,王利民,等.无节气门复合控制策略对汽油机性能影响的研究[J].内燃机学报,2009,27(3):224-230.
    [56]谢辉,赵华,朱红国,等.进排气门相位和升程对汽油机HCCI燃烧控制的试验研究[J].内燃机学报,2006,24(1):22-27.
    [57]俞晓璇,常思勤.基于电磁驱动气门的发动机停缸技术研究[J].车用发动机,2011,(2):29-32.
    [58]张登攀,袁银南,崔勇.车用汽油机的停缸节油技术[J].小型内燃机与摩托车,2007,36(6):89-93.
    [59]G Cantore, S Fontanesi, V Gagliardi. CFD Optimisation of the In-Cylinder Flow Patterns in a Small Unit Displacement HSDI Diesel Engine for Off-Highway Applications[C]. SAE Paper 2006-32-0001,2006.
    [60]F Yorihiro, S Hiromi, K Yoshitaka, et al. Evelopment of High Efficiency Miller Cycle Gas Engine[J]. Technical Review,2001,38(3):146-150.
    [61]T Chun, T Tsu-Chin. Increasing Torque Output from a Turbodiesel with Camless Valvetrain[C]. SAE Paper 2002-01-1108,2002.
    [62]Y Yun, P Pyongwan. The Effects of Intake Valve Events on Engine Breathing C.apability[C]. SAE Paper 912470,1991.
    [63]杨连生.内燃机设计[M].第一版.北京:中国农业机械出版社,1981:426-427.
    [64]尚汉冀.内燃机配气凸轮机构:设计与计算[M].第一版.上海:复旦大学出版社,1988:6-11.
    [65]袁兆成.内燃机设计[M].第一版.北京:机械工业出版社,2008:81-82.
    [66]李庆扬,王能超,易大义.数值分析[M].第五版.北京:清华大学出版社,2008:25-26.
    [67]刘树臣.车用发动机连续可变配气系统的设计与动力学分析[D].山东大学硕士学位论文,2009:41-46.
    [68]李庆扬,王能超.数值分析[M].武汉:华中科技大学出版社,1986:73-77.
    [69]Braun M,张鸿林.微分方程及其应用[M].北京:人民教育出版社,1979:110-115.
    [70]曾攀.有限元分析基础教程[M].北京:清华大学出版社,2008:1-6.
    [71]岳戈,陈权,等.ADINA应用基础与实例详解[M].北京:人民交通出版社,2008:1-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700