反胶束水合萃取藻蓝蛋白研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
藻蓝蛋白是螺旋藻的主要组成成分,广泛应用于食品、化妆品、医药等行业。藻蓝蛋白的生理活性如抗氧化、抗肿瘤、抗病毒等特性已被不断证实,使之更具广阔的应用前景。
     反胶束水合萃取技术是将反胶束萃取和水合物生成耦合在一起形成的一项新型、有发展潜力的分离技术,可应用于生物物质的活性控制及提取。反胶束水合萃取藻蓝蛋白在保证藻蓝蛋白活性的同时完成萃取和反萃取过程,操作较为简单。本文构建了CTAB/(正辛烷-正戊醇)反胶束体系,通过研究此体系中水合物生成对其内的藻蓝蛋白的萃取作用及纯化效果,获得反胶束水合萃取藻蓝蛋白的动力学规律以及温度、压力、CTAB浓度和初始含水量W0等对反胶束水合萃取藻蓝蛋白的影响规律,为进一步开展水合物法生物质活性控制及反胶束水合萃取技术的研究提供依据。
     纯水体系和反胶束体系中乙烯水合物对比实验表明:两种体系中水合物生成动力学特性差异较大,乙烯在反胶束体系和纯水体系中溶解度、溶解速率和体系中水含量的差别是造成反胶束体系和纯水体系中乙烯水合物生成动力学特性区别的本质所在。
     藻蓝蛋白的反胶束水合萃取实验表明:乙烯水合物的生成动力学曲线与不含藻蓝蛋白的反胶束中的生成动力学曲线基本相似。研究表明,在初始温度3.0℃,初始压力4.0 MPa,CTAB浓度0.05 mol/L,初始含水量40的条件下,水合萃取藻蓝蛋白的萃取率E可达81.3 %,表明该条件时的萃取效果比较好。由于水合萃取实验中气液比较大,所以在一定范围内初始温度和压力对萃取效果影响不大,属于非显著性因素,而较大的反胶束浓度和初始含水量有利于提高藻蓝蛋白萃取率。
Phycocyanin, as one of the main components in Spirulina platensis, has been applied in food, cosmetic and medicine industries, etcSome important physiological activities such as antioxidant,antitumor and antiviral effect are generally identified,thus phycocyanin has wider application prospect.
     The new and innovative separation technology named as“reverse micellar hydrated extraction technology”, which integrated hydrate separation with reverse micellar extraction, is used for the control of biological activity and extraction of bio-product. The kinetic research was implemented on the extraction of phycocyanin from the reverse micellar system, which was formed by CTAB,n-octane and n-pentanol. Correspondingly,the extraction behavior of phycocyanin from the reverse micellar system as well the effect mechanism of temperature,pressure,CTAB concentration,and initial water content W0 on phycocyanin extraction were acquired. The results contributed new information for the further research on the control of biological activity and reverse micellar hydrated extraction of bio-product.
     Contrast experiments of ethylene hydrate formation in pure water system and reverse micellar system showed that the kinetics of hydrate formation had large difference between two systems,which was caused by the different solubility,dissolution rate of ethylene and the water content of two systems.
     The reverse micellar hydrated extraction experiments showed that, kinetic curves of ethylene hydrate formation in the reverse micellar system containing phycocyanin were similar to those of the reverse micellar system not contained phycocyanin. The maximum extraction yield of 81.3 % was obtained at initial temperature of 3.0℃, initial pressure of 4.0 MPa, CTAB concentration of 0.05 mol/L and initial water content of 40. Because of the large gas liquid ratio for the reverse micellar hydrated extraction experiments,the initial temperature and pressure were non-significant factor effecting extraction yield. And the increased CTAB concentration and initial water content favored the extraction yield of phycocyanin.
引文
[1]姚宝贞.螺旋藻的营养评价及其保健功能[J].食品研究与开发, 1998, 19(2): 41-44.
    [2]何佳,赵启美.螺旋藻藻蓝蛋白稳定性的研究[J].生物学杂志, 1998, 15(5): 171-176.
    [3]殷钢,刘铮,刘飞,等.钝顶螺旋藻中藻蓝蛋白的分离纯化及特性研究[J].清华大学学报(自然科学版), 1999, 39(6): 20-22.
    [4] Li Sun, Shumei Wang,Zhiyong Qiao. Chemical stabilization of the phycocyanin from cyanobacterium Spirulina platensis [J]. J. Biotechnol, 2006, 121: 563-569.
    [5] Glazer A. N.. A macromolecular complex optimized for light energy transfer [J]. Biochim. Biophys. Acta, 1984, 768: 29-51.
    [6]赵井泉,张建平.用脉冲辐解法研究藻蓝蛋白与羟基自由基反应动力学[J].科学通报, 2000, 45(1): 32-36.
    [7] Tomohiro H., Misako M., Kaoru H., et al. Activation of the human innate immune system by Spirulina: augmentation of interferon production and N K cytotoxicity by oral administration of hot water extract of Spirulina platensis [J]. International Immunopharmacology, 2002, 2(4): 423-434.
    [8]沈海雁,王习霞.螺旋藻藻蓝蛋白对人血癌细胞株HL-60, K-552和L-937生长影响[J].海洋科学, 2000, 24(1): 45-48.
    [9] Anamika P., Sandhya M., Richa P., et al. Purification and characterization of c-phycocyanin from cyanobacterial species of marine and freshwater habitat [J]. Protein. Exp. Purif, 2005, 40(2): 248-255.
    [10]王勇,钱凯先.高纯度藻蓝蛋白分离纯化及光谱特性研究[J].生物化学与生物物理进展, 1999, 26(5): 457-460.
    [11]孟春晓,高政权.钝顶螺旋藻藻蓝蛋白提取和纯化工艺研究进展[J].食品研究与开发, 2007, 9(28): 151-154.
    [12]陈石根,周润琦编著.酶学[M].上海:上海复旦大学出版社, 2001.
    [13]郭晓歌,赵俊廷.反胶束萃取氨基酸的研究进展[J].食品工程, 2007, 4: 12-14.
    [14] Phillips J. B., Nguyen H., John V. T.. Protein recovery from reversed micellar solutions through contact with a pressurized gas phase [J]. Biotechnol. Prog, 1991, 7: 43-48.
    [15]余九九,李宽钰,吴庆余.螺旋藻的藻蛋蛋白提取及稳定性研究[J].海洋通报, 1997, 16(4): 26-28.
    [16] Romay C., Ledon N. and Gonzalez R.. Phycocyanin extract reduces leukotriene B4 levels in arachidonic acid-induced mouse-ear inflammation test [J]. Pharm. Pharmacol, 1999, 51(5): 641-642.
    [17] Rimbau V., Camins A., Pubill D., et al. C-phycocyanin protects ceerbellar granulecells from low potassium/serum deprivation-induced apoptosis [J]. Naunyn Schmiedebergs Arch Pharmocol, 2001, 364(2): 96-104.
    [18] Romay C., Gonzalez R.. Phycocyanin is an antioxidant protector of human erythrocytes against lysis by peorxyl radicals [J]. Pharm. Pharmacol, 2000, 52(4): 367-368.
    [19] Remierz D., Fetnandez V., Tapia G., et al. Influence of C-phycocyanin on hepatocellularparameters related to liver oxidative stress and Kupfer cell functioning [J]. Inflamm. Res, 2002, 51(7): 351-356.
    [20]许宝青.钝顶螺旋藻中荧光藻蓝蛋白的分离纯化[D].浙江:浙江大学, 2003.
    [21]殷钢,李晖.螺旋藻中藻蓝蛋白和多糖的分离纯化及产品特性[J].精细化工, 1999, 16(2): 10-13.
    [22]王勇,钱凯先.高纯度藻蓝蛋白分离纯化及光谱特性研究[J].生物化学与生物物理进展, 1999, 26(5): 457-460.
    [23]张以芳,刘旭川,李琦华.螺旋藻藻蓝蛋白提取及稳定性试验[J].云南大学学报自然科学版, 1999, 21(3): 230- 232.
    [24]张厚森,马海乐.钝顶螺旋藻藻蓝蛋白的稳定性试验研究[J].食品研究与开发, 2005, 26(3): 74-76.
    [25]张建平,张景民,赵井泉,等. R-藻蓝蛋白的分离及其结构表征[J].生物物理学报, 1997, 13(2): 173-178.
    [26]陈新美,王晓华.螺旋藻藻蓝蛋白的稳定性及抗癌活性研究[J].氨基酸和生物资源, 2006, 28(1): 59-62.
    [27]雷婷,田袁,于亚莉,功能性食品添加剂的研究现状与发展趋势[J].食品科学, 2000, 11: 36-39.
    [28]章申峰. C-藻蓝蛋白及其亚基的分离纯化和体外抗肿瘤研究[D].浙江:浙江大学, 2005.
    [29] Ricardo Gonzalez, Sandra Rodriguez, Cheyla Romay, et al. Anti-inflammatory activity of phycocyanin extract in acetic acid-induced colitis in rats [J]. Pharmacol. Res, 1999, 39: 55-59.
    [30] Pinero Estrada JE., Bermejo Bescos P., Villar del Fresno A. M.. Antioxidant activity of different fractions of Spirulina platensis protein extract [J]. I1 Farmaco, 2001, 56: 497-500.
    [31] Vadiraja B Bhat, Madyastha K M.. Scavenging of peroxynitriteby phycocyanin and phycocyanobilin from Spirulina platensis: protection against oxidative damage to DNA [J]. Biochem. Biophys. Res. Commun, 2001, 285: 262-266.
    [32] Carmen S. S., Teresa P. N., Roxana O. R., et al. Extraction and purification of phycocyanin from Calothrix s [J]. Process Biochem, 2004, 39: 2047-2052.
    [33]刘杨,王雪青,庞广昌.反胶团萃取分离螺旋藻藻蓝蛋白[J].天津科技大学学报, 2008, 23(2): 30-33.
    [34]张成武,曾昭琪,张嫒贞.钝顶螺旋藻藻蓝蛋白的分离、纯化及其理化特性[J].天然产物研究与开发, 1996, 8(2): 29-34.
    [35]张健,林淑注,黄仿,等.从螺旋藻中提取藻蓝蛋白的初步研究[J].广西化工, 1997, 26(3): 19-20.
    [36]林红卫,覃海错,伍正清,等.钝顶螺旋藻中藻蓝蛋白的提取纯化新工艺[J].精细化工, 1998, 15(1): 18-20.
    [37]陈兴才,李翔,刘杏珠,等.钝顶螺旋藻蛋白质提取工艺参数线性拟合与最优决策[J].福州大学学报:自然科学版, 2002, 30(3): 381-384.
    [38]郑锡光,汪河洲,余振新.藻蓝蛋白构象变化及其对光吸收的影响[J].生物化学与生物物理进展, 1996, 23(5): 433-436.
    [39]陈伟平,陈必链,张艳燕.三种微藻细胞破碎方法的比较[J].生物技术, 2008, 1(22): 55-58.
    [40]韦萍,李环,张成武.极大螺旋藻藻蓝蛋白的提取与纯化[J].南京化工大学学报, 1999, 21(3): 62-65.
    [41]黄峙,杨芳,郑文杰,等.用液相等电聚焦电泳纯化藻蓝蛋白亚基[J].高等学校化学学报, 2006, 6: 1051-1054.
    [42]郑江.藻蓝蛋白的提取纯化研究进展[J].食品科学, 2002, 23(11): 159-161.
    [43]胡一兵,胡鸿钧,李夜光,等.从一种富含藻蓝蛋白的螺旋藻中大量提取和纯化藻蓝白的研究[J].武汉植物学研究, 2002, 20(4): 299-302.
    [44]张建平,张景民,赵井泉,等. R-藻蓝蛋白的分离及其结构表征[J].生物物理学报, 1997, 13(2): 173-178.
    [45] Luisi P. L., Magid L. J.. Solubilization of enzymes and nucleic acids in hydrocarbon micellar solutions [J]. CRC. Crit. Rev. Biochem, 1986, 20(4): 409-474.
    [46] Nishiki T., Muto A., Kataoka T., et al. Back extraction of proteins from reversed micellar to aqueous phase: partitioning behavior and enrichment [J]. J. Eng. Chem, 1995, 59: 297-301.
    [47] Yee L. H., Ungan S. R.. Selective solubilization ofα-lactalbumin andβ-lactoglobulin into reversed micelles from their mixtures [J]. J. Food Sci, 1998, 63(4): 601-605.
    [48]陈复生,赵俊廷,委源功.利用反胶束萃取技术同时分离植物蛋白和油脂[J].食品科学, 1997, 18(8): 43-46.
    [49]陈海光,成坚.反胶束技术及其应用[J].仲凯农业技术学院学报, 2000, 13(4): 52-57.
    [50] Van't R. K., Dekker M.. Preliminary investigations on an enzyme liquid-liquid extraction process [R]. Preprint from the proceedings of the 3rd European Congression Biotechnology. Munich, 1984, 16: 10-14.
    [51] Golken K. E., Haton T. A.. Liquid-liquid extraction of low molecular weight proteins by selective solubilization in reversed micelles [J]. Sep. Sci. Tech, 1987, 22(2, 3): 831-841.
    [52]刘杨,史清洪,赵黎明,等.新型混合反胶团萃取溶菌酶的平衡行[J].过程工程学报, 2005, 5(3): 269-272.
    [53] Nguyen H., Phillips J. B., John V. T.. Clathrate hydrate formation in reversed micellar solutions [J]. J. Phys. Chem, 1989, 93: 8123-8126.
    [54] John V. T., Kommareddi N. S., Ayyagari M. S., et al. New directions in hydrate technology: Applications to biotechnology and advanced materials [J]. Annals of the New York Academy of Sciences, 714: 468-480.
    [55] Saji A., Yoshida H., Sakai M.. Fixation of carbon dioxide by clathrate-hydrate [J]. Energy Convers. Manage, 1991, 33(5-8): 643-649.
    [56] Nishikawa N., Morishita M., Uchiyama M.. CO2 clathrate formation and its properties in the simulsted deep ocean [J]. Energy Convers. Manage, 1992, 33(5-8): 651-657.
    [57] Willson R. C., Bulot E., Cooney C. L.. Clathrate hydrates formation enhances near-critical and supercritical solvent extraction equilibria [J]. Chem. Eng. Commun, 1990, 95: 47-55.
    [58] Willson R. C., Bulot E., Cooney C. L.. Use of hydrates for aqueous solution treatment [P]. US: 4678583, July 7, 1987.
    [59] Rao M., Nguyen H., John V. T.. Modification of enzyme activity in reversed micellers through clathrate hydrate formation [J]. Biotechnol. Prog, 1990, 6: 465-471.
    [60] Nagahama K., Noritomi H., Koyama A.. Enzyme recovery from reversed micellar solution through formation of gas hydrates [J]. Fluid Phase Equilibria, 1996, 116: 126-132.
    [61] Barduhn A. J., Towlson H. E., Hu Y. C.. The properties of some new gas hydrates and theirs use in deminerlizing sea water [J]. AIChE J, 8:176-183.
    [62] Sugi J., Saito S.. Concentration and demineralization of sea water by the hydrate process [J].Desalination, 1967, 3: 27-31.
    [63]樊拴狮,程宏远,陈光进,等.水合物法分离技术研究[J].现代化工, 1999, 19(2): 11-14.
    [64] Elliott R. B., Barraclough B. L., Vaoderborgh N. E., et al. Apparatus for recovering gaseous hydrocarbons from hydrocarbon-containing solid hydrates [P]. US: 4424858, 1984.
    [65]蒋硕健,丁有骏,李明谦.有机化学[M].北京:北京大学出版社, 2001: 369-371.
    [66] Moore S., Spackman D. H., Stein W. H.. Analysis of amino acid by chromatography [J]. Anal. Chem, 1958, 30: 1185.
    [67] Wilson K., Walker J.. Principles and Techniques of Practical Biochemistry [J]. 51th ed, Cambridge University Press, 2000: 147-149.
    [68] Frank S. G., Zografi G.. Solubilization of water by dialkyl sodium sulfosuccinates in hydrocarbon solutions [J]. J. Colloid. Interface. Sci, 1969, 29(1): 27-35.
    [69]张少斌,依晓楠,林英,刘慧.螺旋藻藻蓝蛋白不同提取方法的比较[J].吉林农业大学学报, 2007, 29: 381-383.
    [70]董书杰.氨基酸的反胶束水合萃取研究[D].浙江工业大学, 2007.
    [71]徐勇军,叶国兴,杨晓西,等.表面活性剂对水合物生成的影响及应用前景[J].天然气工业, 2002, 22(1): 85-87.
    [72]高亚辉,陈复生,赵俊廷,王海.反胶束萃取大豆蛋白反萃取过程的动力学研究[J].农业工程学报, 2007, 23(7): 206-210.
    [73] Bausch T. E., Plucinski P. K., Nitsh W.. Kinetics of the re-extraction of hydrophilic solutes out of AOT reversed micelles [J]. J. Colloid. Interface. Sci, 1992, 150(1): 226-234.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700