葡萄化感物质的分离、鉴定及其作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验以晚红(V. vinifera L. cv. Red Globe)葡萄组培苗、山河二号(V. amurensis×V. riparia No.2)葡萄组培苗及贝达(V. riparia×V. labrusca cv. Beta)葡萄扦插苗为试材,采用室内葡萄组培苗和室外盆栽苗相结合的生物检测方法,分析了葡萄根系分泌物及腐解物的自毒作用,并对其中的化感物质进行了分离鉴定;采用盆栽试验,研究外源酚酸对葡萄幼苗生长及生理指标的影响,初步探讨了化感物质的作用机制。主要试验结果如下:
     1.根系分泌物和腐解物显著抑制了晚红葡萄组培苗的生长。具体表现为植株高度、生根数、平均根长及地上、地下鲜重降低,随着处理浓度提高,抑制作用增强,0.5 g·mL-1根系分泌物处理后组培苗干枯死亡;0.1 g·mL-1根茬腐解物处理后组培苗生根受到抑制。
     2.根系分泌物对盆栽贝达葡萄扦插苗生长表现为低浓度促进、高浓度抑制的作用趋势。低浓度根系分泌物处理后植株生长势增强,叶片净光合速率和根系呼吸速率提高,叶片可溶性糖、淀粉及蛋白质含量增加,MDA含量降低,而高浓度处理下则表现相反的变化趋势。
     3.添加根茬残体显著抑制了盆栽贝达葡萄扦插苗的生长,添加量越高,抑制作用越强。随着根茬残体添加量的增加,叶片的净光合速率、蒸腾速率和气孔导度下降,可溶性糖、淀粉和蛋白质含量减少,根呼吸速率降低;SOD活性降低,MDA含量增加。
     4.根系分泌物对土壤多酚氧化酶与转化酶活性表现为低浓度促进、高浓度抑制的作用趋势,且高浓度根系分泌物对酶活性的抑制作用显著。添加根茬残体会抑制土壤多酚氧化酶和转化酶活性,其中对土壤转化酶的抑制程度大于对土壤多酚氧化酶活性的影响,说明土壤转化酶对添加根茬残体腐解处理的自毒作用敏感性高。
     5.根系分泌物处理使葡萄根际土壤中微生物数量显著减少,随着根系分泌物浓度的提高,细菌数量逐渐减少,而真菌占微生物总数的比例逐渐升高。添加根茬残体处理使土壤中微生物数量显著增加,但降低了根际土壤的真菌种群多样性,其中有益的木霉菌消失,出现了不利于植株生长的腐霉属、根串珠霉属和束梗孢霉属。
     6. LC-MS检测结果表明葡萄根系分泌物中含有2种酚酸类物质(水杨酸、对羟基苯甲酸);根茬腐解物中含有3种酚酸类物质(苯甲酸、水杨酸和苯丙酸)。组织培养试验表明,四种酚酸类物质具有显著的化感作用。
     7.化感物质苯甲酸、苯丙酸和水杨酸通过干扰植物细胞膜及相关生理过程影响了葡萄的生长。盆栽试验表明,随着酚酸浓度提高、处理时间延长,对盆栽葡萄苗生长的抑制程度增强。除苯甲酸在0.1 mmol·L-1浓度处理时地上、地下鲜重比对照略有所提高外,随着苯甲酸、水杨酸、苯丙酸处理浓度的提高,地上、地下鲜重呈逐渐降低的趋势。同时外源酚酸处理增加了葡萄植株细胞膜透性、降低了SOD活性及植株根系活力,影响了光合作用和叶片物质积累等生理生化过程,致使植株生长发育受到抑制。
Using tissue culture seedling of Red Globe (V.vinifera L. cv.), tissue culture seedling of Shanhe No.2 (V. amurensis×V. riparia) grape and pot seedling of Beta (V. riparia×V. labrusca cv.) as experimental material, tissue cultured seedling of Red Globe in laboratory and cutting seedlings of Beta by pot experiment were used to examine the allelopathy of grape exudates and root decomposing products, and major allelochemicals were determined; Using potted experiment, the effects of phenolic acids on grape seedling growth and physiological index were studied, and the mechanism of allelochemicals was discussed. The major results were as follow:
     1. Grape root exudates and root decomposing products were significantly inhibited tissue culture seedling growth of Red Globe grape. Plant height, root number, average root length, fresh weight of shoot and fresh weight of root decreased. With concentration increasing of root exudates and root decomposing products, the inhibition increased. Grape tissue culture seedling died when 0.5 g·mL-1 root exudates treated; and roots growth of tissue culture seedling was inhibited when 0.1 g·mL-1 root decomposing products treated.
     2. Grape root exudates of low concentration promoted pot cottage seedling growth of Beta grape and high concentration inhibited its growth. Root exudates of low concentration made the growth enhanced; net photosynthetic rate and root respiration rate increased; soluble sugar content, starch content and protein content increased; MDA content decreased, while root exudates of high concentration showed opposite trend.
     3. Decomposition substance from grape root stubble were significantly inhibited the growth of Beta pot cottage seedling. With concentration increasing of root stubble, the stronger inhibition showed. Plant height, stem diameter, fresh weight of shoot and fresh weight of root decreased. Net photosynthetic rate, transpiration rate, stomatal conductance of leaves decreased. Soluble sugar content, starch content, protein content and root respiration rate decreased. SOD activity of leaves decreased, while MDA content increased.
     4. Grape root exudates of low concentration promoted soil PPO activity and invertase activity of Beta grape and high concentration inhibited its activity. Root exudates of high concentration inhibited enzyme activity significantly. Decomposition substance from grape root stubble were significantly inhibited soil PPO activity and invertase activity; the inhibition of soil invertase activity, was greater than soil PPO activity. Description of soil invertase activity had high sensitivity to the allelopathy of decomposition substance from grape root stubble.
     5. With concentration increasing of root exudates, the microbial number of rhizosphere soil was significant decreased, the bacteria number was reduced, and increased the fungus proportion of the total. With concentration increasing of root stubble, the microbial number of rhizosphere soil was significant increased, decreased fungal diversity, made Trichoderma disappeared, the harmful plant growth of Pythium, Thielaviopsis and Stilbellales appeared.
     6. Two phenolic acids (p-hydroxybenzoic acid, salicylic acid) were isolation and identification in grape root exudates by LC-MS, and three phenolic acids (coumaric acid, phenylpropionic acid and benzoic acid) were isolation and identification in grape root decomposing products, and they were important allelochemicals by verification of tissue culture experiment.
     7. It was clear that phenylpropionic acid and salicylic acid inhibited plant growth through disturbing membrane and related physiological process. Based on pot experiment, the results indicated that with phenolic acids concentration increasing and treatment time prolonging, the degree of inhibition increased. With the concentrations rise of benzoic acid, salicylic acid and phenylpropionic acid, fresh weight of shoot and fresh weight of root decreased except benzoic acid under 0.1 mmol·L-1 concentration treatment which fresh weight of shoot and fresh weight of root were higher than control. In addition, phenolic acids enhanced cell membrane permeability, decreased SOD activity and root activity, affected photosynthesis and dry matter accumulation of grape leaves, and resulted in growth vigor weak.
引文
1. 鲍士旦.1992.土壤农化分析.2版.北京:农业出版社.
    2. 柴 强,黄鹏,黄高宝,等.2005.间作对根际微生物和酶活性的影响研究.草业学报,14(5):105-110.
    3. 陈建勋,王晓峰.1999.植物生理学实验指导.广州:华南理工大学出版社,56-57.
    4. 陈龙池,廖利平,汪思龙,等.2002.香草醛和对羟基苯甲酸对杉木幼苗生理特性的影响.应用生态学报,13(10):1291-1294.
    5. 陈龙池,汪思龙.2003.杉木根系分泌物化感作用研究.生态学报,23(2):393-398.
    6. 陈绍莉,周宝利,王茹华,等.2008.嫁接对茄子根系分泌物中肉桂酸和香草醛的调节效应.应用生态学报,19(11):2394-2399.
    7. 丁桔.2008.黄瓜自毒物质和枯萎病的致害及其调控机制研究.浙江大学博士学位论文.
    8. 杜英君,勒月华.1999.连作大豆植株化感作用的模拟研究.应用生态学报,10(2):209-212.
    9. 傅慧兰,战景仁.1997.大豆连作的过氧化氢酶活性与根系分泌物.吉林农业科学,(4):34-36.
    10.高子勤,张淑香.1998.连作障碍与根际微生态研究Ⅰ-根系分泌物及其生态效应.应用生态学报,9(5):549-554.
    11.耿广东,张素勤,程智慧.2009.香草醛对莴苣的化感作用及其作用机制.西北农业学报,18(3):209-212,217.
    12.关连珠.2001.土壤肥料学.北京:中国农业出版社.
    13.关松荫,等.1986.土壤酶及其研究法.北京:农业出版社.
    14.韩丽梅,王树起.2001.大豆根茬腐解液对大豆生长发育的自感效应.吉林农业科学,26(1):24-27.
    15.韩丽梅,王树起,鞠会艳.2000.大豆根分泌物的鉴定及其化感作用的初步研究.大豆科学,19(2):119-125.
    16.韩丽梅,王树起,肖丽华.2005.重迎茬大豆根区土壤有机化合物的GC/MS分析.吉林农业科学,30(4):6-8.
    17.韩晓增,许艳丽.1998.大豆连作减产主要障碍因素的研究Ⅰ-连作大豆根系腐解物的障碍效应.大豆科学,17(3):207-212.
    18.何光训.1992.土壤酚类物质引起植物中毒的植物生理原因.浙江林学院学报,9(3):339-344.
    19.何华勤,林文雄.2001.水稻化感作用潜力研究初报.中国生态农业学报,9(2):47-49.
    20.侯永侠,周宝利,吴晓玲,等.2006.辣椒秸秆腐解物化感作用的研究.应用生态学报,17(4):699-702.
    21.胡元森,吴坤,刘娜,等.2004.黄瓜不同生育期根际微生物区系变化研究.中国农业科学,37(10):1521-1526.
    22.黄 明,彭世清.1998.植物多酚氧化酶研究进展.广西师范大学学报(自然科学版),16(2):65-70.
    23.靳月华,杜英君,王淼,等.1992.红松苗自身抑制模拟试验研究.林业科技通讯,(3):4-7.
    24.孔垂华,徐涛,胡 飞.1998.胜红蓟化感作用研究Ⅱ.主要化感物质的释放途径和活性.应用生态学报,9(3):257-260.
    25.孔垂华,徐效华,梁文举,等.2004.水稻化感品种根分泌物中非酚酸类化感物质的鉴定与抑草活性.生态学报,24(7):1317-1323.
    26.李合生主编.2000.植物生理生化实验原理和技术.北京:高等教育出版社.
    27.李寿田,周健民,王火焰,等.2001.植物化感作用机理的研究进展.农村生态环境,17(4):52-55.
    28.李杨瑞.1993.植物的生化互作现象.土壤,25(5):248-251,259.
    29.雷东锋,冯怡,梅建生,等.2003.烟草中多酚氧化酶的特征分析及应用展望.中国烟草科学,(2):1-4.
    30.林思祖.1999.杉木自毒作用研究.应用生态学报,10(6):661-664.
    31.刘文利,马 琳,黄 岳.2006.连作番茄保护地土壤养分状况研究初报.湖北农业科学,45(6):746-748.
    32.刘秀芬,马瑞霞.1996.根际他感化学物质的分离鉴定与生物活性的研究.生态学报,16(1):1-10.
    33.楼兵干,张炳欣.2005.无致病性腐霉的生防作用和诱导防卫反应.植物保护学报,32(1):93-96.
    34.吕卫光,张春兰.2002.他感物质抑制连作黄瓜生长的作用.中国农业科学,35(1):106-109.
    35.马瑞霞,冯怡,李管.1998.厌氧条件下化感物质对枯草杆菌生长及反硝化作用的影响.化学生态学,(2):187-193.
    36.马瑞霞,刘秀芬.1996.小麦根区微生物分解小麦残体产生的化感物质及其生物活性的研究.生态学报,16(6):632-639.
    37.马云华,王秀峰,魏珉,等.2005.黄瓜连作土壤酚酸类物质积累对土壤微生物和酶活性的影响.应用生态学报,16(11):2149-2153.
    38.毛志泉,王丽琴,沈 向,等.2004.有机物料对平邑甜茶实生苗根系呼吸强度的影响.植物营养与肥料学报,10(2):171-175.
    39.秦嗣军,吕德国,赵德英,刘国成.2008.本溪山樱桃根系酚酸类分泌物及其化感效应研究.沈阳农业大学学报,39(2):156-160.
    40.阮维斌,王敬国,张福锁,等.1999.根际微生态系统理论在连作障碍中的应用.中国农业科技导报,(4):53-58.
    41.史刚荣.2004.植物根系分泌物的生态效应.生态学杂志,23(1):97-101.
    42.孙磊,陈兵林,周治国.2007.麦棉套作Bt棉花根系分泌物对土壤速效养分及微生物的影响.棉花学报,19(1):18-22.
    43.王 芳.2003.茄子连作障碍机理研究.中国农业大学博士学位论文.
    44.王光华,许艳丽.1995.大豆根残体对大豆生长的影响.大豆重迎茬研究.哈尔滨:哈尔滨工程大学出版社,84-86.
    45.汪立刚,沈阿林,孙克刚,等.2001.大豆连作障碍及调控技术研究进展.土壤肥料,(5):3-8.
    46.王璞,赵秀琴.2001.几种化感物质对棉花种子萌发及幼苗生长的影响.中国农业大学学报,6(3):26-31.
    47.王倩.2002.西瓜连作障碍中自毒作用及酚酸物质作用机理的研究.中国农业大学博士学位论文.
    48.王树起,杨振明,韩丽梅.2001.大豆残茬腐解液对大豆生长发育的自感效应.大豆科学,20(2):89-92.
    49.韦 琦,曾任森,孔垂华,等.1997.胜红蓟地上部化感作用物的分离与鉴定.植物生态学报,21(4):360-366.
    50.吴凤芝,栾非时,王东凯,等.1996.大棚黄瓜连作对根系活力及其根际土壤活性影响的研究.东北农业大学学报,27(3):255-258.
    51.吴凤芝,潘 凯,马凤鸣,等.2004.苯丙烯酸对黄瓜幼苗光合作用和细胞超微结构的影响.园艺学报,31(2):183-188.
    52.吴 辉,郑试章.2002.根分泌物及其生态效应.生态学杂志,11(6):12.
    53.许莉萍,陈如凯.2000.甘蔗黑穗病及其抗菌素病育种的现状与展望.福建农业大学学报,15(2):26-31.
    54.薛应龙主编.1985.植物生理学实验手册.上海:上海科学技术出版社.
    55.严衍禄主编.1995.现代仪器分析.北京:北京农业大学出版社,51-194.
    56.严昶升.1988.土壤肥力研究法.北京:农业出版社.
    57.杨健,李秀根.2001.果树再植障碍及其控制途径.西北园艺,(4):24-26.
    58.喻景权,杜尧舜.2000.蔬菜设施栽培可持续发展中的连作障碍问题.沈阳农业大学学报,31(1):124-126.
    59.喻景权,松井佳久.1999.豌豆根系分泌物自毒作用的研究.园艺学报,26(3):175-179.
    60.余叔文,汤章诚主编.1998.植物生理与分子生物学科学技术出版社,700-719.
    61.张江红.2005.酚类物质对苹果的化感作用及重茬障碍影响机理的研究.泰安:山东农业大学.
    62.张 琴,张 磊.2005.豆科植物根瘤菌结瘤因子的感知与信号转导.中国农学通报,21(7):233-238.
    63.张淑香,高子勤,刘海玲.2000.连作障碍与根际微生态研究Ⅲ.土壤酚酸物质及其生物学效应.应用生态学报,11(5):741-744.
    64.张学炜,黄学森,古勤生,等.1993.西瓜连作障碍及其防治方法.中国西瓜甜瓜,(2):21-23.
    65.赵小亮,刘新虎,贺江舟,等.2009.棉花根系分泌物对土壤速效养分和酶活性及微生物数量的影响.西北植物学报,29(7):1426-1431.
    66.甄文超.2003.草莓连作障碍机理与调控措施的研究.河北农业大学博士论文.
    67.甄文超,曹克强,代丽,等.2004.连作草莓根系分泌物自毒作用的模拟研究.植物生态学报,28(6):828-832.
    68.周 凯.2004.菊花自毒作用的初步研究.南京农业大学硕士学位论文.
    69.周玉蝉,潘小平.1997.采后低温诱导菠萝PPO活性升高的机理及其抑制途径.园艺学报,24(3):235-238.
    70.周志红,骆世明,牟子平,等.1997.番茄的化感作用研究.应用生态学报,8(4):445-449.
    71.邹丽芸.2004.西瓜连作障碍中自毒作用的研究.浙江大学硕士学位论文.
    72.邹琦.2000.植物生理学实验指导(第一版).北京:中国农业出版社,60-72、111-127.
    73. Asao T., Hasegawa K., Sueda Y., et al.2003. Autotoxicity of root exudates from taro. Scientia Hortic, 97:389-396.
    74. Bewick T.A., Shilling D.G., Dusky J.A., et al.1994. Effects of celery (Apiumgraveolens) root residue on growth of various crops and weeds. Weed Technol, (8):625-629.
    75. Blum U., Gerig T.M., Weed S.B.1989. Effects of mixtures of phenolic acid on leaf area expansion of cucumber seedlings grown in different pH Portmouth Almaterials. J.Chem.Ecol., (15):2413-2423.
    76. Blum U., Gerig T.M., Worsham A.D., et al.1992. Allelopathic activity in wheat-conventional and wheat notill soils:Development of soil extract bioassays. J. Chem. Ecol, (18):2191-2221.
    77. Brown GE.1991. Changes in phenylalanine ammonia-lyase, soluble phenolics and lignin in injured orange exocarp. Proceedings of the Annual Meeting of the Florida State Horticulture Society,103: 234-237.
    78. Bulen W.A., et al.1952. Sepration of organic acids from plant tissues chromatographic technique. Anal. Chem., (24):187-190.
    79. Chen P.K., Leather GR.1990. Plant growth regulatory activities of artenisinin and its related compounds. J. Chem. Ecol.,16 (6):1867-1876.
    80. Chou C.H., Lin T.J.1976. Autointoxican mechanism of Oryza sativa I. Phytototic effects of decomposing rice residues in soil. J. Chem. Ecol.,2:353-367.
    81. Cruz O.R., Anaya A.L., Hernandez-Bautista B.E, et al.1998. Effects of allelochemical stress produced by sicyos deppei on seedling root ultrastructure of Phaseolus vulgaris and Cucurbita ficifolia. J. Chem. Ecol., (12):2039-2057.
    82. David L.J., Peter R.D.1994. Role of root derived organic acids in the mobilization of nutrients from the rhizosphere. Plant and Soil,166:247-257.
    83. Dilday R.H., Lin J., Yan W.1994. Identification of allelopathy in USDA-ARS rice germplasm. Australian J. Exp. Agric., (34):907-910.
    84. Glass D.M.1974. Influence of phenolic on ion uptake. Plant physiol,54:855-858.
    85. Harsh P.B., Tiffany L.W., Laura GP., et al.2006. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol.,57:233-266A.
    86. Hegde R.S., Miller D.A.1990. Allelopathy and autotoxicity in alfalfa:Characteristic and effects of preceding crops and residue incorporation. Crop Sci, (30):1255-1259.
    87. Kupidlowska K., Kowalec M., Sulkowski G, et al.1994. The effect of coumarins on root enlongation and ultrastructure of meristematic cell protoplast. Annals Botony,73:525-530.
    88. Lawtin M.A., et al.1980. Elicitor modulation of pheylalanine in phaseolus vulgaris. Biochemistry and Biophysiology Acta,633:162-169.
    89. Leyva A., et al.1995. Low temoerature induces the accumulation of Phenylalanine ammonia-lyase and chalcone synthase mRNA of Arabidopsis thaliana in a light-dependent manner. Plant Physiology, 108(1):39-46.
    90. Marschner P., Crowley D.E., Higashi R.M.1997. Root exudation and physiological status of a root-colonizing fluorescent pseudomonad in mycorrhizal and non-mycorrhizal pepper (Capsicum annuumL). Plant and Soil,189:11-20.
    91. Meharg A. A., Killham K.1995. Loss of exudates from the roots of perennial ryegrass inoculated with a range of micro-organisms. Plant and Soil,170:345-349.
    92. Patterson D.T.1981. Effects of allelopathic chemicals on growth and physiological processes of soybean (Glycine max). Weed Science society of America,29:53-59.
    93. Politycka B.1998. Phenolics and the activities of phenylalanine ammonia-lyase, phenol-beta-glucosyltransferase and beta-glucosidase in cucumber roots as affected by phenolic allelochemicals. Acta Physiol Plantarum,20 (4):405-410.
    94. Putnam A.R., Duke W.B.1974. Biological suppression of weeds:Evidence for allelopathy in accessions of cucumber. Science, (185):370-372.
    95. Ren Sen Zeng, Shi Ming Luo, Yue Hong Shi, et al.2001. Physiological and biochemical mechanism of allelopathy of secalonic acid on higher plants. Agron Journal,93 (1):72-79.
    96. Rice E.L.1984. Allelopathy. Academic Press, Orlando, FL,1-50.
    97. Singh U.P., Chauhan V.B., Wagner K.G., et al.1992. Effect of ajoene, a compound derived from garlic (Allium sativum), on Phytophthora drechsleri f. sp. cajani. Mycologia,34 (1):105-108.
    98. Syuntaro H., Sayaka M., Akihiro F., et al.2005. Plant growth inhibition by cis-cinnamoyl glucosides and cis-cinnamic acid. J. Chem. Ecol.,31:591-601.
    99. Szajdak L.1994. Phenolic acids in brown soils under continuous cropping of rye and crop rotation. Polish Journal of Soil Science,27:113-121.
    100. Tang C.S., Takenaka T.1983. Quantitation of a bioactive metabolite in undisturbed rhizosphere-benzyl isothiocyanate from Carica Papayal. J. Chem. Ecol, (9):1247-1253.
    101. Tang C.S., Yang C.C.1982. Collection and identification of allelopathic compounds from the undisturbed root system of biganlta limpograss (Hemarthria altissima). Plant Physiology,69(1): 155-160.
    102. Travis S.W., Harsh P.B., Erich G., et al.2003. Root Exudation and Rhizosphere Biology. Plant Physiology, (132):44-51.
    103. Vance G.F., et al.1985. Extraction of phenolic compounds from a spodosol profile:an evaluation of three extractants. Soil Sci.,140 (6):412-420.
    104. Vaughan D., Ord B.G 1991. Extraction of potential allelochemicals and their effects on root morphology and nutrient content. Plant Root Growth. London:Blackwell Scientific Publications, 399-421.
    105. Williamson G.B., Richardson D.R.1988. Bioassays for allelopathy:Measuring treatment responses with independent controls. J. Chem. Ecol.,14(1):181-187.
    106. Williamw C., Gary A.1976. Chemotaxis of Rhizobium spp. to Plant Root Exudates. Plant physiol,57: 820-823.
    107. Yu J.Q., et al.1994. Phytotoxic substances in root exudates of Cucumber. J. Chem. Ecol.,20(1): 21-30.
    108. Yu J.Q., Matsui Y.1997. Effects of root exudates of cucumber and allelochemicals on ion up take by cucumber seeding. J. Chem. Ecol., (23):817-827.
    109. Yu J.Q., Yoshihisa M.1993. Extraction and identification of phytotoxic substances accumulated in nutrient solution for hydroponic culture of tomato. Soil Sci.,39 (4):691-700.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700