3种菊科入侵植物的入侵机制及空心莲子草生物防治的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,外来植物入侵引起人们的关注,探索植物的入侵机制逐渐成为研究热点,而入侵地土壤微生物与入侵植物的互作关系是植物入侵机制的重要内容。本研究以紫茎泽兰(Ageratina adenophora)、薇甘菊(Mikania micrantha)、三叶鬼针草(Bidens pilosa)和空心莲子草(Alternanthera philoxeroides)等4种典型的外来入侵植物作为对象,对其入侵机制和防治进行了初步探索。主要研究结果如下:
     在云南紫茎泽兰、薇甘菊和三叶鬼针草等发生较为普遍的区域采集植株根际土壤样品,测量其理化性质和生化活性强度,以此来探讨3种菊科入侵植物的入侵对被入侵地土壤理化性质和生化活性的影响。土壤理化性质测定结果显示,各样品的含水量和PH无显著差异;3种菊科入侵植物入侵地域的土壤样品中有机质、全N、速效K的含量都显著高于本地植物混生地域的土壤样品,其中紫茎泽兰入侵地土壤样品有机质含量最高为30.42 g/1kg,本地植物混生最低,为16.35g/kg。紫茎泽兰入侵地域的土壤样品的各项理化指标都明显高于其他样品;薇甘菊入侵地域的土壤样品的有机质、全N和速效K的含量显著高于三叶鬼针草和本地植物混生地样品;三叶鬼针草入侵地域的土壤样品的有机质、全N、速效N和速效K的含量显著高于本地植物混生地样品。土壤生化活性的测定结果显示:3种菊科入侵植物入侵地域的土壤样品的硝化势和氨化作用强度均高于本地植物混生地域的土壤样品,其中薇甘菊入侵地域的土壤样品的硝化势最高,紫茎泽兰的次之;但紫茎泽兰入侵地域的土壤样品的氨化作用强度最高;三叶鬼针草入侵地域的土壤样品的反硝化作用强度最高,本地植物混生地域的土壤样品比紫茎泽兰和薇甘菊入侵地域的土壤样品的反硝化作用强度要高,紫茎泽兰入侵地域的土壤样品的反硝化作用强度最低。从总体来看,本地植物混生地域的土壤样品的各项理化和生化指标普遍低于被入侵地域的土壤样品。紫茎泽兰、三叶鬼针草和薇甘菊对土壤生态的影响比当地植物混合生长对土壤生态的影响更为显著,外来植物入侵能够引起土壤理化性状的改变,表明外来植物通过改善被入侵地的土壤养分水平,掠夺资源而排挤本地植物。
     利用PCR-DGGE技术研究了薇甘菊和三叶鬼针草在海口和广州两地不同入侵程度土壤中的细菌群落的变化。对DGGE图谱中不同入侵植物样品进行聚类分析显示:薇甘菊海口重度入侵和该地轻度入侵样品中的细菌种类的相似性较高;三叶鬼针草广州未入侵土壤和该地轻度入侵土壤样品中的细菌种类相似性为最高。对DGGE图谱中不同地域样品进行聚类分析显示:在广州,相对于被入侵的区域,本地植物混生区域所采的两个土样的细菌群落最为相近;在海口.薇甘菊重度入侵土壤和薇甘菊轻度入侵样品的细菌群落相似性最高。该两种入侵植物在海口和广州的样品分别聚为一簇,表明地域差别比覆盖植物差别对土壤中细菌种类的影响大。从特异性条带测序和比对的结果可以看出,薇甘菊和三叶鬼针草对广州和海口两地的入侵,可能造成了入侵地芽孢杆菌纲和变形菌纲等细菌群落的改变。上述结果表明:海口和广州两地的薇甘菊和三叶鬼针草根际土壤中的细菌种类在不同入侵程度土壤的差异,可能是由于该两种外来植物通过改变本地植物土壤的原始微生物群落结构来形成利于自身生长的微环境,便于进一步入侵扩张。
     从自然发病的空心莲子草病斑叶片上分离了11株致病真菌,其中1株对空心莲子草具有较强致病性,命名为NT008。在室内、室外条件下,测定了菌株NT008对空心莲子草的致病力、供试除草剂对菌株NT008菌落生长和孢子萌发的抑制作用,以及菌药混用的除草效果。试验结果表明,菌株NT008对空心莲子草具有较强的致病力;不同除草剂、同种除草剂不同浓度之间对空心莲子草NT008病原菌菌丝影响存在差异;根据生产厂家推荐最适浓度(草甘膦200ml/亩,2,4-D二胺盐水剂300mV亩,使它隆50ml/亩)进行试验,草甘膦浓度为2050μg/mL时,抑制率为43.23%,2,4-D二甲铵盐水剂浓度为2867μg/mL时,抑制率达96.30%,使它隆浓度为166.7μg/mL时,抑制率为37.07%。2,4-D二甲铵盐水剂对菌株NT008孢子萌发的抑制作用为20.4%,而草甘膦、使它隆的抑制作用分别为8.1%、3.1%,抑制作用较弱。菌药混用结果表明,草甘膦、使它隆与菌株NT008孢子混用都具有较好的效果,2,4-D二甲铵盐水剂次之。
     以上研究结果表明:外来入侵植物不仅能引起入侵地土壤理化性质的改变,也对土壤微生物群落造成影响。这种改变可能反过来影响入侵植物,从而有利于入侵植物在入侵地的生长和竞争。
In order to investigate the soil physical and chemical properties and biochemical activity invased by three asteraceae plants and their possible invasion mechanisms, we collected soil samples from the rhizosphere of Ageratina adenophora、Mikania micrantha and Bidens pilosa to measure their physical and chemical properties and strength of the biochemical activity in Yunnan Province. From the results, we can find that there are no significant difference on PH and water content. Determination of soil physical and chemical properties showed that the organic matter, total N, available K levels of invased soil samples of three asteraceae invasive plants were significantly higher than that of mixed native plants. And soil samples which invaded by Ageratina adenophora have the highest organic matter content of 30.42g/kg, mixed native plants have the lowest organic matter content of 16.35g/kg. All values of physical and chemical properties of soil samples which invaded by Ageratina adenophora were significantly higher than that of other samples. Organic matter, total N and available K content of soil samples of Mikania micrantha invasion area were significantly higher than that of Mikania micrantha and mixed native plants; Organic matter, total N, available N and available K content of soil samples of Bidens pilosa invaded area were significantly higher than samples of mixed native plants. The results of biochemical activity of soil samples show that:The nitrification potential and ammonification intensity of soil samples of areas invaded by three invasive asteraceae plans were higher than that of mixed native plants soil samples. Ihe nitrification potential of soil sample of Mikania micrantha invasion area has the highest value, followed by Ageratina adenophora, but the ammonification of soil sample invaded by Ageratina adenophora has the highest intensity; the denitrification of soil sample of Bidens pilosa invasion area has the highest intensity, while the sample of mixed native plants area has the second highest intensity and the soil sample of Ageratina adenophora has the lowest denitrification intensity. Overall, the physical and chemical and biochemical parameters of the soil sample of mixed native plants were generally lower than that of the invaded soil samples. Present study suggests that the invasion by Ageratina adenophora、Mikania micrantha and Bidens pilosa had more significant effects on soil ecology than that of local plants. The invasion of alien plants can cause changes in soil physical and chemical properties. Alien plants can also improve the level of soil nutrients in invasion areas, plunder of resources and crowd out native plants.
     Interaction between invasive plant and soil microbial community is an important aspect to understand the plant invasiveness and susceptibility of receptive communities. In present study, PCR-DGGE was conducted to analyze the bacterial community in the rhizospheric soil, which were heavily invaded, newly invaded or non-invaded by two alien invasive weeds, Mikania micrantha and Bidens pilosain in Haikou and Guangzhou city. China. The analysis of DGGE showed some regularity .Firstly, we analysed soil samples invased by different invasive plants. From the samples of Mikania micrantha, we found that the soil samples from heavily invaded site and newly invaded site by Mikania micrantha in Haikou have the highest similarity. From the samples of Bidens pilosa, samples from heavily invaded site and non-invaded site by Bidens pilosa in Haikou have the highest similarity. Secondly, we analysed samples from different invaded sites. From the samples of Guangzhou, we found that the soil samples from non-invaded site by Bidens pilosa and non-invaded site by Mikania micrantha had the highest similarity. From the samples of Haikou, we found that the samples from heavily invaded site and newly invaded site by Mikania micrantha had the highest similarity. From the results of sequencing and alignment of the specific bands, we can infer that invasion of Mikania micrantha and Bidens pilosa in Guangzhou and Haikou may modified soil microbial community composition. The bacteria's quantity of Bacilli、Proteobacteria and some other bacteria in the soil were changed. All those results suggested that the invasion of Mikania micrantha and Bidens pilosa can modify soil microbial community composition, probably creating favorable soil environment to benefit their invasion.
     From the natural Alternanthera leaves, we obtained 11 strains of pathogenic fungi. Among them, one strain named NT008 has a strong pathogenicity to Alternauthera. Under the control condition, we assayed the virulence of strain NTOO8, testing the influence of herbicides on NT008 mycelia growth and spore germination, and testing the influence of herbicide mixed with the pathogenic fungi. The results show that, strain NT008 has a strong virulence on Alternanthera. Different kinds of herbicides or differernt concentrations of one herbicide produced different virulence to Alternanthera. According to manufacturer's recommendation, optimal concentration of 3 herbicides (glyphosate 200mL/mu. Butyl 2,4-dichlorophenoxy acetate 300mL/mu Starane 50mL/mu) were tested. With concentration of 2050μg/mL glyphosate,2867μg/mL 2,4-D dimethyl ammonium and 166.7μg/mL Starane, the inhibition rate on mycelia growth of strain NT008 were 43.23%,96.30% and 37.07%, respectively. The inhibition rate 2,4-D dimethyl ammoniumon on spore germination of strain NT008 was 20.4%, while the inhibition rate of glyphosate and Starane were 8.1% and 3.1%, respectively. The results of strain NT008 spores mixed with herbicides indicated that glyphosate mixed with strain NT008 spores had a good effect, and 2,4-D dimethyl ammonium agent second.
引文
[1]万方浩,郭建英,王德辉.中国外来入侵生物的危害与管理对策[J].生物多样性,2002,10(1):119-125.
    [2]Pimentel D., Lach L., Zuniga R., Morrison D., Environmental and economic costs of nonindigenous species in the United States[J]. BioScience,2000,50:53-65.
    [3]Wilcove D.S., Rothstein D., Dubow J., Quantifying threats to imperiled species in the United States[J]. Bioscience.1998,48(8):607-615.
    [4]耿宇鹏,张文驹,李博,陈家宽,表型可塑性与外来植物的入侵能力[J].生物多样性.2004,12(4):447-455.
    [5]万方浩,郭建英,王德辉,中国外来入侵生物的现状、管理对策及风险分析体系.见:王德辉,Jeffrey A M主编.生物多样性与外来入侵物种管理国际研讨会论文集.北京:中国环境科学出版社,2002,77-102.
    [6]Elton C.S., The Ecology of Invasions by Animals and Plants[M]. London: Metheun,1958.
    [7]Vila M., Weiner J., Are invasive plant species better competitors than native plant species?-evidence from pair-wise experiments[J].Oikos.2004,105:229-238.
    [8]Rejmanek M., Richardson D.M., What attributes make some plant species more invasive[J]? Ecology.1996,77(6):1655-1661.
    [9]Greene D.E., Johnson E.A., Estimating the mean annual seed production of trees[J]. Ecology.1994,75:642-647.
    [10]马瑞燕,王韧,喜旱莲子草在中国的入侵机理及其生物防治[J].应用与环境生物学报.2005,11(2):246-250.
    [11]赵广琦,张利权,梁霞,芦苇与入侵植物互花米草的光合特性比较[J].生态学报.2005,25(7):1605-1611.
    [12]高雷,李博,入侵植物凤眼莲研究现状及存在的问题[J].植物生态学报.2004,28(6):735-745.
    [13]Radford I.J., Cousens R.D., Invasiveness and comparative life-history traits of exotic and indigenous Senecio species in Australia[J]. Oecologia.2000,125(4): 531-542.
    [14]Hertling U.M., Lubke R.A., Assessing the potential for biological invasion-the case of Ammophila arenaria in South Africa[J]. South African Journal of Science. 2000,96(9-10):520-527.
    [15]Smith C., Walters L.J., Fragmentation as a strategy for Caulerpa species:fates of fragments and implications for management of an invasive weed[J]. Marine Ecology.1999,20(3-4):307-319.
    [16]Marler M.J., Zabinski C.A., Callaway R.M., Mycorrhizae indirectly enhance competitive effects of an invasive forb on a native bunchgrass[J]. Ecology.1999, 80(4):1180-1186.
    [17]Davis M.A., Bier L., Bushelle E., Diegel C., Johnson A., Kujala B., Non-indigenous grasses impede woody succession[J]. Plant Ecology.2005,178: 249-264.
    [18]Callaway R.M., Thelen G.C., Rodriguez A., Soil biota and exotic plant invasion[J]. Nature.2004,427:731-733.
    [19]Westover K.M., Bever J.D.. Mechanisms of plant species coexistence: complementary roles of rhizosphere bacteria and root fungal pathogens[J]. Ecology.2001,82:3285-3294.
    [20]Li W.H., Zhang C.B., Jiang H.B., Changes in soil microbial community associated with invasion of the exotic weed, Mikania micrantha H.B.K[J]. Plant and Soil. 2006,281:309-324.
    [21]Augspurger C.K., Kelly C.K., Pathogen mortality of tropical tree seedlings: experimental studies of the effects of dispersal distance, seedling density, and light conditions[J]. Oecologia.1984,61:211-217.
    [22]Ravit B., Ehrenfeld J.G., Haggblom M. A comparison of sediment microbial communities associated with Phragmites australis and Spartina alterniflora in two brackish wetlands of New Jersey[J]. Estuaries.2003,26:465-474.
    [23]Duda J.J., Freeman D.C., Emlen J.M., Belnap J., et al.Differences in native soil ecology associated with invasion of the exotic annual chenopod, Halogeton glomeratus[J]. Biology and Fertility of Soils.2003,38:72-77.
    [24]Kourtev P S, Ehrenfeld J G, Haggblom M. Experimental analysis of the effect of exotic and native plant species on the structure and function of soil microbial communities [J]. Soil Biology and Biochemistry.2003,35:895-905.
    [25]Richardson D.M., Allsopp N., D'Antonio C.M., Plant invasions—the role of mutualisms. Biology Revision Cambridge Philosophy Society.2000,75:65-93.
    [26]张勇,曾明,熊丙全,丛枝菌根体峋生物技术在现代农业体系中的生态意义[J].应用生态学报.2003,14(4):613-617.
    [27]Inderjit, Soil microorganisms:An important determinant of allelopathic activity [J]. Plant and Soil.2005,274:227-236.
    [28]Reinhart K.O., Callaway R.M., Soil biota and invasive plants[J]. New Phytologist. 2006,170:445-457.
    [29]Roberts K.J., Anderson R.C., Effects of garlic mustard (Alliaria petiolata (Beib. Cavara and Grande)) extracts on plants and arbuscular mycorrhizal (AM) fungi [J]. American Midland Nature.2001,146:146-152.
    [30]胡飞,孔垂华,胜红蓟化感作用研究I.水溶物的化感作用及其化感物质分离鉴定.应用生态学报[J].1997,8(3):304-308.
    [31]Vaughn S.F., Berhow M.A., Allelochemicals isolated from tissues of the invasive weed garlic mustard(Alliaria petiolata) [J]. Journal of Chemical Ecology.1999, 25:2495-2504.
    [32]Klironomos J.N., Feedback with soil biota contributes to plant rarity and invasiveness in communities[J]. Nature.2002,417:67-70.
    [33]Callaway R.M., Thelen G., Rodriguez A., Holben W.E., Release from inhibitory soil biota in Europe and positive plant-soil feedbacks in North America promote invasion[J]. Nature.2004,427:731-733.
    [34]Putten W.H. van der, Dijk C.V., Peters B.A.M., Plant-specific soil-brone diseases contribute to succession in foredune vegetation [J]. Nature.1993,362:53-56.
    [35]Beckstead J., Parker I.M., Invasiveness of Ammophila arenaria:release from soil-borne pathogens [J]? Ecology.2003,84(11):2824-2831.
    [36]Knevel I., Menting F., Hertling U.M., Putten W.H., Release from native root herbivores and biotic resistance by soil pathogens in a new habitat both affect the alien Ammophila arenaria in South Africa[J]. Oecologia.2004,141:502-510.
    [37]Thiebaut G., Does competition for phosphate supply explain the invasion pattern of Elodea species[J]? Water Research.2005,39(14):3385-3393.
    [38]Huenneke L., Hamburg S.P., Koide R., Effects of soil resources on plant invasion and community structure in Californian serpentine grassland. Ecology.1990,71(2): 478-491.
    [39]Stampe E.D., Daehler C.C., Mycorrhizal species identity affects plant community structure and invasion:A microcosm study[J]. Oikos.2003,100:362-372.
    [40]Grubb P J. Root competition in soil of different fertility: A paradox resolved[J]? Phytocoenologia.1994,24(10):495-505.
    [41]彭少麟,向言词,植物外来种入侵及其对生态系统的影响[J].生态学报.1999,19(4):560-568.
    [42]Vitousek P.M., Biological invasion by Myrica Faya alters ecosystem development in Hawaii[J]. Science.1987,238:802-804.
    [43]Klein D.A., Paschke M.W., Heskett T.L., Comparative fungal responses in managed plant communities infested by spotted (Centaurea maculosa Lam.) and diffuse (C. diffusa Lam.) knapweed[J]. Applied Soil Ecology.2005,253:165-173.
    [44]Suding K.N., LeJeune K.D., Seastedt T.R., Competitive impacts and reponse of an invasive weed:dependancies on nitrogen and phosphorus availability [J]. Oecologia. 2004,141:526-535.
    [45]Kourtev P.S., Ehrenfeld J.G., Haggelom M., Exotic plant species alter the microbial community structure and function in the soil[J]. Ecology.2002,83(11): 3152-3166.
    [46]Knight B.P., Grath S.P.M., Chaudri A.M., Biomass carbon measurements and substrate utilization patterns of microbial populations from soils amended with cadmium, copper, or zinc[J]. Applied Environment Microbial.1997,63(1):39-43.
    [47]Parkinson M.A.M.D., Changes in structure, organic matter and microbial activity in pine forest soil following the introduction of Dendrobaena octaetra(Oligochaefa Lumbricidae) [J]. Soil Biology and Biochemistry.1997,29(3-4):537-540.
    [48]章家恩,蔡燕飞,高爱霞,朱丽霞,土壤微生物多样性实验研究方法概述[J]. 生态学报.2004,36(4):346-350.
    [49]蔡燕飞,廖宗文,土壤微生物生态学研究方法进展[J].土壤与环境.2002,11(2):167-171.
    [50]Muyzer G, Smalla K.. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology [J]. Applied and Environmental Microbiology.1998,73(1):127-141.
    [51]Delong E.F., Wickham G.S., Pace N.R.. Phylogenetic stains:ribosomal RNA-based probes for the identification of single cells [J]. Science.1989, 243(4896):1360-1363.
    [52]Ferris M.J., Ward D.M. Seasonal distributions of dominant 16S rRNAdefined populations in a hot spring microbial mat examined by denaturing gradient gel electrophoresis [J]. Application Environment Microbiology.1997,63:1375-1381.
    [53]Muyzer G., Brinkhoff T., Santegoeds C., et al. Denaturing gradient gel electrophoresis (DGGE) in microbial ecology [J]. Molecular Microbial Ecology Manual.1997.344:1-27.
    [54]Dordrecht, Don R.H., Cox P.T., et al. 'Touchdown' PCR to circumvent spurious priming during gene amplification [J]. Nucleic Acids Research.1991,19(14): 4008-4008.
    [55]Rochelle P.A., Cragg B.A., Fry J.C., et al. Effect of sample handling on estimation of bacterial diversity in marine sediments by 16S rRNA gene sequence analysis. FEMS Microbiol [J]. Ecology.1994,15:215-226
    [56]Vallaeys T., Topp E., Muyzer G., et al. Evaluation of denaturing gradient gel electrophoresis in the detection of 16S rDNA sequence variation in rhizobia and methanotrophs[J]. FEMS Microbiology Ecology.1997,24:279-285.
    [57]Muyzer G., Waal E.C., Uitterlinden A.G.. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reactionamplified genes encoding for 16S rRNA [J]. Applied Environmental Microbiology.1993,59(3):695-700.
    [58]辜运富,张小平,涂仕华.变性梯度凝胶电泳(DGGE)技术在土壤微生物多样性研究中的应用[J].土壤.2008,40(3):344-350.
    [59]胡元森,吴坤,刘娜,陈红歌,贾新成.2004.黄瓜不同生育期根际微生物区系变化研究[J].中国农业科学.37(10):1521-1526.
    [60]Ramsey P W, Rillig M C, Feris K P, et al. Choice of methods for soil microbial community analysis:PLFA maximizes power compared to CLPP and PCR-based approaches[J]. Pedobiologia.2006,50:275-280.
    [61]邢来君.真菌除草剂的研究现状与展望[J].真菌学报.1995,14(2):153-157.
    [62]菅原二三男.利用植物病原菌微生物开发除草剂[J].农药译从.1992,4(3):40-43.
    [63]余柳青,黄世文,等.微生物除草剂的研究和开发进展[A].喻子牛主编.微生物农药及其产业化[C].北京:科学出版社.2000,256-259.
    [64]王晓艳.生防菌株SF-193对空心莲子草的防除作用及应用潜力研究[D].扬州:扬州大学,2007,11.
    [65]李海涛,王金信,杨合同,等.微生物除草剂的研究现状和应用前景[J].山东科学.2005,18(1):29-35.
    [66]陈勇.尖角突脐孢菌作为真菌除草剂防除稗草潜力的研究[D].北京:中国农业科学研究院.2001.
    [67]黄世文.利用稗草病原菌开发微生物除草剂的研究[A].喻子牛主编.微生物农药及其产业化[C].北京:科学出版社.2000,260-266.
    [68]万佐玺,朱晶晶,强胜.链格孢菌毒素对紫茎泽兰的致病机理[J].植物资源与环境学报.2002,10(3):47-50.
    [69]涂永勤,胥秀英,付善权,等.空心莲子草叶斑病菌及谢产物除草活性的研究[J].生物学杂志.2004,.21(3):27-28.
    [70]向梅梅,游明龙.几种除草剂与莲子草假隔链格孢混用防除空心莲子草的初步研究[J].仲恺农业技术学院学报.1999,12(4):11-14.
    [71]向梅梅,曾永三,刘任,等.空心莲子草叶斑病菌代谢产物的除草活性[J].中国生物防治.2002,(02):87-89.
    [72]但汉斌,陈永强,等.从杂草DRB中筛选微生物除草剂的研究[J].微生物学通报.2002,29(4):5-8.
    [73]李海涛,王金信,杨合同.利用麦瓶草病原菌株WP-1开发微生物除草剂初探[J].现代农药.2005,4(3):24-26.
    [74]Kenney D S.Devine.The way it was developed an industrialist's view[J].Weed Science.1986.34:15-16.
    [75]Bowers R C.,Commercialization of Collego:An industrialist's view[J].Weed Science.1986,34:24-25.
    [76]Boyetchko S M.Principles of biological weed control with microorganism[J].Hort Science.1997,32(2):201-205.
    [77]Phatak S C.Knock out Nutsedge[J].American Vegetable Grower.1984.32:44-46.
    [78]Makowski R D,Mortensen K.The first mycoherbicide in Canada:Colletotrichum gloeosporioides f.sp.malvae for round-leaf mallow control [A].Richardson R G (ed.,Proceedings of the 2nd Internantional Weed Congress[C],Melbourne:Weed science society of Victoria.1992,298-300.
    [79]Wall R W,D E Jong M D,Biological control of weed trees[P].U S Platenet.1996,5:587,158.
    [80]Jong M D.The Biochon story:deployment of Chndrostereum puipureum tosuppress stump sprouting in hardwoods[J],Mycologist.2000,14(2):58—68.
    [81]Prasad R.,Kush Waha.Ecologically-based weed management for the 21 st century:Biological control of forest weeds by a mycoherbicide agent,Chonodrostereum purpureum[A].The Proc,Of the 18 th Asian-Pacific Weed Sci.SocConf[C].BEIJING2001,348-352.
    [82]Nishino T.Xanthomonas campestris pv.poae as a causal agent of wilt symptoms on annual bluegrass in Japan[J].Ann Phytopathol Soc Jpn.1995,61:555-561.
    [83]Boon N, Marle C, Top E M, Verstraete W. Comparison of the spatial homogeneity of physico-chemical parameters and bacterial 16S rRNA genes in sediment samples from a dumping site for dredging sludge[J]. Applied Microbiology and Biotechnology.2000,53:742-747.
    [84]Bever J D. Negative feedback within a mutualism:host-specific growth of mycorrhizal fungi reduces plant benefit[J]. Proceeding of Royal Society London B. 2002,269:2595-2601.
    [85]朱丽霞,章家恩,刘文高.根系分泌物与根际微生物相互作用研究综述[J].生态环境.2003,12(1):102-105.
    [86]吕可,潘开文,王进闯,等.花椒叶浸提液对土壤微生物数量和土壤酶活性的影 响[J].应用生态学报.2006,17(9):1649-1654.
    [87]Hinsinger P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes:areview[J]. Plant and soil.2001,237:173-195.
    [88]Paul B H, Bret E O, Jon M W. Effects of the invasive forb Centaurea maculosa on grassland carbon and nitrogen pools in Montana, USA[J]. Ecosytems.2004,7: 686-694.
    [89]刘潮,冯玉龙,田耀华.2007.紫茎泽兰入侵对土壤酶活性和理化性质的影响[J].植物研究.27(6):729-735.
    [90]万方浩.杂草生物防治的传统方法及理论[J].生物防治通报.1992,,8(3):131-136.
    [91]徐海根,强胜.中国外来人侵物种编目[M].中国环境科学出版社.2004,407-409.
    [92]万方浩,郑小波,郭建英,等.重要农林外来入侵物种的生物学与控制[M].北京:科学出版社.2005:774-774.
    [93]Waterhouse D F. Biological control of weeds:Southeast Asia Prospects[M].Canberra:Quark X Press by K and B Publication.1994:125-126.
    [94]韩诗畴,李开煌,罗莉芬,等.菟丝子致死薇甘菊[J].昆虫天敌.2002,24(1):7-13.
    [95]李丽英,彭统序,刘文惠,等.薇甘菊的天敌--安婀珍蝶[J].昆虫天敌.2002.,24(2):49-52.
    [96]李志刚,韩诗畴,郭明防,等.安婀珍蝶和艳婀珍蝶幼虫对饥饿的耐受能力[J].昆虫知识.2005,42(4):429-430.
    [97]付卫东,杨明丽,丁建清,等.薇甘菊柄锈菌生物学极其寄主专一性[J].中国生物防治.2006,22(1):67-72.
    [98]Haramoto F H.Biology and control of Brevipalpusphoenicis (Geijskes) (Acarina:Tenuipalpidae) [J].Hawaii Agricutural Station Technical Bulletine.1968, 68:1-63.
    [99]李扬汉.中国杂草志[M].北京:中国农业出版社.1998:272-273.
    [100]郝建华,刘倩倩,强胜,等.菊科入侵植物三叶鬼针草的繁殖特征及其与入侵性的关系[J].植物学报.2009,44(6):656-665.
    [101]江贵波,陈少雄,黄丹莹等.几种植物水提液对杂草幼苗生长的化感作用[J].江苏农业学报.2010,26(2):292-295.
    [102]周国庆,官旋,彭友林等.常德市外来物种三叶鬼针草的形态建成与危害研究[J]. 安徽农业科学.2010,2:880-882.
    [103]Shea K, Chesson P. Community ecology theory as a framework for biology invasions[J].Trends in Ecology & Evolution.2002,(17):170-176.
    [104]Sakai A K,Allendorf F W,Holt J S,et al. The population biology of invasive species[J]. Annual Review of Ecology and Systematics.2001,(32):305-332.
    [105]邵玉芳,樊明寿,乌恩,等.植物根际解磷细菌与植物生长发育[J].中国农学通报.2007,23(4):241-244.
    [106]姬广海,张世光.植物病原细菌的分类进展[J].云南农业大学学报.1999,14(1):113-118.
    [107]Yu X.J.,Yu D.,Lu Z.J.,et al.A new mechanism of invader success:Exotic plant inhibits natural vegetation restoration by changing soil microbe community [J]. Chinese Science Bulletin.2005,50 (11):1105-1112.
    [108]相辉,李木旺,赵勇,等.家蚕幼虫中肠细菌群落多样性的PCR-DGGE和16S rDNA文库序列分析[J].昆虫学报.2007,50(3):222-233.
    [109]周剑忠,董明盛,江汉湖,等.PCR-DGGE指纹技术与分离技术结合筛选藏灵菇奶发酵过程的优势菌[J].中国农业科学.2006,39(8):1632-1638.
    [110]刘恩科,赵秉强,李秀英,等.不同施肥制度土壤微生物量碳氮变化及细菌群落16SrDNA V3片段PCR产物的DGGE分析[J].生态学报.2007,27(3):1079-1085.
    [111]龙良鲲,羊宋贞,姚清,等.AM真菌DNA的提取与PCR-DGGE分析[J].菌物学报.2005,24(4):564-569.
    [112]雷娟利,周艳红,丁桔,等.不同蔬菜连作对土壤细菌DNA分子水平多态性影响的研究[J].中国农业科学.2005,38(10):2076-2083.
    [113]周军,肖炜,钦佩.互花米草入侵对盐沼土壤微生物生物量和功能群的影响[J].南京大学学报.2007,43(5):494-500.
    [114]李伟华,韩瑞宏,高桂娟.薇甘菊入侵对土壤微生物生物量和土壤呼吸的影响[J].华南师范大学学报(自然科学版).2008,3:68-74.
    [115]于兴军,于丹,卢志军,等.一个可能的植物入侵机制:入侵种通过改变入侵地土壤微生物群落影响本地种的生长[J].科学通报.2005,50(9):896-903.
    [116]王紫娟,刘万学,万方浩,等.不同环境因子对紫茎泽兰根系分泌物化感作用的影响[J].植物保护科学.2007,23(8):351-357.
    [117]郑承民.植物人侵对土壤微生物影响的种群适应性生长模型[J].新疆师范大学学报(自然科学版).2009,28(2):23-29.
    [118]李会娜,刘万学,戴莲,等.紫茎泽兰入侵对土壤微生物、酶活性及肥力的影响[J].中国农业科学,2009,42(11):3964-3971.
    [119]黄曦,许兰兰,黄荣韶,等.枯草芽孢杆菌在抑制植物病原菌中的研究进展[J].生物技术通报.2010,1:24-29.
    [120]李双东,曹克强.枯草芽孢杆菌EB-28对马铃薯晚疫病菌的抑菌作用及防病效果[J].安徽农业科学.2009,37(24):11376-11378.
    [121]张秀玉,孔凡玉,王静,等.枯草芽孢杆菌SH7抑菌蛋白的分离纯化及对烟草青枯病菌的抑制作用[J].中国烟草科学.2010,31(1):13-15.
    [122]Lenz T I, Moyle-croft M, Facelli J M. Direct and indirect effects of exotic annual grasses on species composition of a South Australian grassland[J]. Austral ecology.2003,28:23-32.
    [123]Inderjit, Mallik A U. Can Kalmia angustifolia interference to black spruce(Picea mariana) growth be explained by allelopathy[J]? Forest ecology and management. 2002,160:75-84.
    [124]陈龙池,汪思龙,衬楚莹.杉木人工林衰退机理探讨[J].应用生态学报.2004,1(2):97-106.
    [125]沈国军,徐正浩,俞谷松.空心莲子草的分布、危害与防治对策[J].植物保护.2005,31(3):14-18.
    [126]江荣昌,姚秉琦.化学防除技术手册[M].上海:上海科学技术出版社.1989:4-8.
    [127]强胜主编.杂草科学[M].北京:中国农业出版社.2001:194-195.
    [128]姚东瑞,李贵,陈杰,等.农达对水花生的防除试验报告[J].杂草科学.1997,(4):27.
    [129]戴润平.使用使它隆除草剂的常见问题[J].湖南农业.2008(8):15.
    [130]孔祥菊.使它隆防除空心莲子草试验观察[J].湖北植保.1998,(5):32.
    [131]王晓燕.生防菌株SF-193对空心莲子草的防除作用及应用潜力研究[C].2007(5):11.
    [132]Wilson F.The biological control of weeds. Annual [J] Review of Entomology.1964,(9):225-244.
    [133]林冠伦,孙进东,王远,等.美国、澳大利亚空心莲子草的生物防治研究[J].生物 防治通报.1988.4(2):94-96.
    [134]Buckin gham G R,DrinonB,Russell F T.Reintroduction of the allegatorweed flea beetle(Agasicles hygrophila) J.J A quat[J]. Plant Manage.1983.21(2):101-102.
    [135]李宏科,李萌.空心莲子草及其生物防治[J].世界农业.2000,(2):36.
    [136]Bowers R S.Commercialization of Collego-An industrialist's View[J].Weed Sci.1986.34:24-25.
    [137]陈志谊,王晓艳,罗楚平.空心莲子草病原真菌的分离筛选及其菌株SF.193种的鉴定[J].中国生物防治.2007,23(4):353-357.
    [138]郑燕梅,王源超,乔广行,等.水花生病原真菌的筛选与生防潜力的研究[J].南京农业大学学报.2006,29(2):57-60.
    [139]袁树忠,何平平,廉吉衷,等.一种镰刀菌对空心莲子草的致病力与寄专一性测定[J].中国生物防治.2006,2:137—141.
    [140]陈志谊,王晓艳,刘永峰,刘邮洲.生防菌SF-193对空心莲子草的致病力和田阳生物防除效果[J].江苏农业科学.2007,23(3):243-250.
    [141]王春明,韩青梅,黄丽丽等.3种杀菌剂对小麦黑胚病菌的毒力测定及病害防治作用[J].西北农林科技大学学报.2006,34(7):56-59.
    [142]娄远来,邓渊钰,沈纪冬,等.我国空心莲子草的研究现状[J].江苏农业科学.2002,4:46-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700