化疗药物诱导胃癌SGC7901细胞向肿瘤干细胞转化的EMT机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【背景】
     胃癌是世界上第四高发的肿瘤,在每年因癌症死亡的100万人口中,胃癌致死率位列第二。近年来的研究阐明了肿瘤干细胞(cancer stem cell,CSC)的存在,CSC具有再生肿瘤及自我更新和分化的特殊能力,与组织干细胞具有很多相似的特性,其与肿瘤发生、复发和转移有着重要关系。近些年的研究发现在胃癌细胞中存在有胃癌干细胞。但是由于缺乏特异性标志,不了解调节胃干细胞增殖分化的分子通路,目前还没有理想的分离纯化出人类胃干细胞的技术及其具体作用机制目前尚不完全明确。
     上皮间质转化(epithelial-mesenchymal transition,EMT)赋予上皮细胞间质特征,与肿瘤细胞获取侵犯特征密切相关,是上皮细胞来源肿瘤局部浸润和远处转移的一个重要途径。EMT发生及调控机制对于寻找恶性肿瘤浸润转移的靶点,进行临床干预有重要意义。这种转分化现象同时会伴有干细胞样特性,这说明有一部分不具有分化能力的肿瘤细胞可以通过EMT逆分化为肿瘤干细胞。然而在胃癌中,胃癌干细胞是否能通过EMT对胃癌发生、转移及多药耐药性起关键作用,其中的具体机制尚不清楚,这些问题的研究对我们揭示胃癌干细胞的来源,明确胃癌发生、转移、多药耐药的机制以及胃癌的潜在治疗靶点有着重要意义。
     【目的】
     1.通过化疗药物诱导再经无血清培养法分离鉴定胃癌干样细胞。
     2.研究EMT在胃癌细胞向胃癌干样细胞转化过程中的作用及其分子机制。
     【方法】
     1.胃癌干样细胞的培养及鉴定
     长春新碱体外诱导胃癌SGC7901细胞72小时后无血清培养法分离胃癌干样细胞。对成功分离出的胃癌干样细胞的干细胞特性进行鉴定,包括干细胞表面标记物SOX2、OCT4a、OCT4b,BMI-1检测,通过Matrigel细胞群落外观区分实验及透射电镜观察胃癌干样细胞的分化能力,通过PKH-26标记细胞,观察其增殖、分化情况。通过药物敏感试验和体外成瘤实验验证肿瘤干样细胞耐药性及成瘤能力。
     2.EMT在胃癌细胞向胃癌干样细胞转化过程中的作用研究
     通过实时定量PCR技术分别在蛋白水平和mRNA水平检测胃癌干样细胞中间质标志物Snail、Twist、Vimentin和上皮细胞标志物E-cadherin表达改变。构建Twist重组质粒,转染SGC7901细胞,筛选获得稳定转染株,Western-Blot证实载体的有效性。通过诱导稳定高表答Twist的SGC7901细胞获得新的高表达Twist的肿瘤干样细胞,比较其与化疗药物诱导而来的胃癌干样细胞的干细胞标志物的表达、克隆形成能力、EMT表型、耐药性是否一致。
     3.用ITRAQ技术高通量筛选参与胃癌细胞向胃癌干样细胞转化过程的分子靶点。
     【结果】
     1.成功培养并鉴定胃癌干样细胞
     长春新碱体外诱导胃癌SGC7901细胞并通过无血清培养法成功分离胃癌干样细胞。Western Blot实验显示肿瘤干样细胞较亲本细胞SGC7901其干细胞表面标记物SOX2、OCT4a、OCT4b、BMI-1表达明显升高。用matrigel细胞群落外观区分实验观察到肿瘤干样细胞可以形成二维的管样结构及三维的管腔样结构,其与胃隐窝的分化形式十分相似,通过透射电镜也可观察到的胃癌干样细胞出现干细胞特征。使用PKH-26标记细胞,可以观察到肿瘤干样细胞具有明显的不对称分裂能力。平板克隆实验证明胃癌干样细胞较其亲本细胞有更强的克隆形成能力。药物敏感性实验和异种移植实验证明这种细胞具有多药耐药性和显著地体内致瘤性。.
     2.EMT参与胃癌细胞向胃癌干样细胞的转化
     实时定量PCR实验显示肿瘤干样细胞与亲本细胞SGC7901相比,其间质标志物Snail、Twist、Vimentin表达增强,上皮细胞标志物E-cadherin表达降低。成功构建Twist重组质粒,并通过质粒转染技术获得稳定的Twist高表达的胃癌干样细胞系CSLCsTwist+,实时定量PCR显示CSLCsTwist+较亲本细胞SGC7901高表达间质标志物Snail、Twist、Vimentin,而上皮细胞标志物E-cadherin表达降低,其耐药性,克隆形成能力及干细胞标志物SOX2、OCT4、BMI-1表达均明显增强,结果与化疗药物诱导而来的胃癌干样细胞特征一致。
     3.用iTRAQ高通量技术筛选出了一批胃癌细胞向胃癌干样细胞转化过程中的差异蛋白
     【结论】
     在胃癌SGC7901细胞系中成功用化疗药物诱导获得胃癌干样细胞,此肿瘤干细胞具有明显的自我更新、分化、抵抗化疗药物及高成瘤性。EMT参与胃癌细胞向胃癌干样细胞的转化,具有EMT表型的胃癌细胞有干细胞样特性,胃癌细胞可能通过EMT逆分化为胃癌干样细胞。
With the research going further, people have realized that the properties of malignanttumor, such as genesis, development, metastasis and recurrence were amazingly similar towhat of the normal stem cell.Stem cells are identified as a class of immatureundifferentiated cell populations with self-renewal and differentiation capacity, andreserve the asymmetric replication phenotype. There is now compelling evidence that thebulk of the malignant cells, terned cancer stem-like cells (CSCs). The last decade haswitnessed a transition from a state of assumptions of stem cells in the onset andprogression of cancer to the establishment of actual experimental proof of the isolationand identification of CSCs in most kinds of tumors, including leukemia and solid tumors,such as in gatric cancer. The CSCs are usually associated with the development of drugresistance, tumor dormancy, minimal residual disease, and disease relapse. However, thebehind mechanisms how these peoperties maintained in CSCs are need to be furtherelucidated, especially in gastric cancer.
     The epithelial-mesenchymal transition (EMT) facilitates cancer metastasis andsurvival by transdifferentiation, in which a tumor loses epithelial characteristics andacquires a mesenchymal phenotype. This phenotype transition enriches the subpopulationof CSCs, which have proven tumor seeding, sphere formation and invasive properties.High-throughput experimental methods have thus been adopted to screen for drugs thatkill the rare epithelial cancer stem cells enriched by EMT. The advantages of obtainingCSCs by inducing the EMT are the easy enrichment of CSCs and the relative stability inculture of these cell lines. Because CSCs are generally only small populations withincancer cells,standard high-throughput screening cannot be applied to identify drugs withCSC-specific toxicity invivo. Furthermore, searching for agents that effectively kill CSCsdepends on propagation stability invitro. However, identifying and developing newmethods to induce the EMT for enriching gastric cancer stem cells(GCSCs) is one of thebetter choices for the study of CSC target therapy. Therefore, it is an urgent challenge tounderstand the detail molecular events of these cells from a developmental andevolutionary aspect, and that may be crucial in identifying the aberrant events leadinggastric cancer.
     【Aims】
     1. To isolate and identificate GCSCs in the floatingspheres culture ofchemotherapeutics-preconditioning gatric cancer cells.
     2. To study the function and molecular mechanism of EMT during the transformationof gastric cancer cells into gastric cancer stem cells.
     【Methods】
     1. Isolation and identification of GCSCs.
     SGC7901cells were treated with vincristine for72hours (VCR-induced cancer cells).Toisolate and identificate GCSCs in the floatingspheres culture of VCR-induced cancercells. To investigate co-expression of the embryonic proteins OCT4A, SOX2and OCT4by immunofluorescence in CSLCs. Gastric CSLCs exhibited differentiation ability andself-Renewal ability in Vitro. To study the differentiation of CSLCs of gastric cells, we first used transmission electron microscopy to examine the morphological changes. Thedifferentiation ability of VCR-induced CSLCs was explored in a2D and3D Matrigeldifferentiation assay. To identify the self-renewal property in CSLCs, we employed alipophilic fluorescent dye, PKH-26, which stains the rare quiescent subpopulations, andexamined the asymmetric and symmetric division to identify cancer-initiating cells by theamount of retained dye. Tumorigenicity in vivo was assessed by inoculating CSLCs ortheir parental cells subcutaneously into nude mice.
     2. The study on function and molecular mechanism of EMT during thetransformation of gastric cancer cells into gastric cancer stem cells.
     To identify EMT markers, we examined the expression of Snail、Twist、Vimentin andE-cadherin by real-time PCR. After baeteria transformation,use restrietion enzymetechnique, gel electro phoresis technique and gene sequencing identifieation the Twistsense Plasmid. The SGC7901cells were transfeeted with pcDNA3.I(+)-Twist sensePlasmid by lipofectamine technique,and gained the stable Twist-SGC7901cell modelwith high expression of Twist protein. Serum free culture was used to earn CLSCsTwist+with high expression of Twist protein. Consistency among CLSCsTwist+and VCR-inducedCSLCs for stem cell markers, clone formation, EMT markers and multi-drug resistancewere evaluated.
     3. Screening of different proteins which involved in the transformation of gastriccancer cells into gastric cancer stem cells by iTRAQ.
     Highthroughout techniques can be used to screen the diference relatedproteins andexplore the mechanisms of the transformation of gastric cancer cells into gastric cancerstem cells. After cell lysis, acetone precipitation, denaturation and protein digestion ofSGC7901and CLSCs, the peptide was labeled with iTRAQ reagents and subjected tomass spectrometry.
     【Results】
     1. The were successfully isolated and identificated.
     The GCLSCs were successfully isolated and cultured from Vincristine preconditioned SGC7901cell line. The CSLCs displayed stem cell characteristics,including the up-regulated stem cell markers OCT4A, OCT4and SOX2. Using aMatrigel-based differentiation assay, CSLCs formed2D tube-like and3D complexlumen-like structures, which resembled differentiated gastric crypts. We further showedthat CSLCs could self-renew through significant asymmetric division compared withparent cells by tracing PKH-26label-retaining cells. Drug sensitivity assays and xenograftexperiments demonstrated that the cells developed multi-drug resistance (MDR) andsignificant tumorigenicity in vivo.
     2. The study on function and molecular mechanism of EMT during thetransformation of gastric cancer cells into gastric cancer stem cells.
     The CSLCs displayed mesenchymal characteristics, including the up-regulatedmesenchymal markers Snail, Twist and vimentin, and the down-regulated epithelialmarker E-cadherin. The cell models (Twist-SGC7901) steadily expressing high Twistprotein were obtained. Compared with CLSCs, CLSCsTwist+and SGC7901cells,CLSCsand CLSCsTwist+have the similar characteristics including the up-regulated mesenchymalmarkers Snail, Twist and vimentin, the down-regulated epithelial marker E-cadherin,remarkable Clone Formation and the up-regulated stem cell makers SOX2, OCT4,BMI-1.EMT is an important role playing in the transformation of gastric cancer cells into gastriccancer stem cells.
     4. iTRAQ based screening is useful in discovering different proteins betweenCLSCs and SGC7901.
     【Conclusion】
     The GCLSCs were successfully isolated and cultured from Vincristinepreconditioned SGC7901cell line. Drug sensitivity assays and xenograft experimentsdemonstrated that the cells developed multi-drug resistance (MDR) and significanttumorigenicity in vivo. EMT is an important role playing in the transformation of gastriccancer cells into gastric cancer stem cells.
引文
[1] D.E. Guggenheim, M.A. Shah, Gastric cancer epidemiology and risk factors, J Surg Oncol107(2013)230-236.
    [2] C.T. Jordan, M.L. Guzman, M. Noble, Cancer stem cells, N Engl J Med355(2006)1253-1261.
    [3] T. Reya, S.J. Morrison, M.F. Clarke, I.L. Weissman, Stem cells, cancer, and cancer stem cells,Nature414(2001)105-111.
    [4] Y. Akasaka, Y. Saikawa, K. Fujita, T. Kubota, Y. Ishikawa, A. Fujimoto, T. Ishii, H. Okano, M.Kitajima, Expression of a candidate marker for progenitor cells, Musashi-1, in the proliferativeregions of human antrum and its decreased expression in intestinal metaplasia, Histopathology47(2005)348-356.
    [5] K.D. Bunting, ABC transporters as phenotypic markers and functional regulators of stem cells,Stem Cells20(2002)11-20.
    [6] T. Byun, M. Karimi, J.L. Marsh, T. Milovanovic, F. Lin, R.F. Holcombe, Expression of secretedWnt antagonists in gastrointestinal tissues: potential role in stem cell homeostasis, J Clin Pathol58(2005)515-519.
    [7] T. Lapidot, C. Sirard, J. Vormoor, B. Murdoch, T. Hoang, J. Caceres-Cortes, M. Minden, B.Paterson, M.A. Caligiuri, J.E. Dick, A cell initiating human acute myeloid leukaemia aftertransplantation into SCID mice, Nature367(1994)645-648.
    [8] M. Al-Hajj, M.S. Wicha, A. Benito-Hernandez, S.J. Morrison, M.F. Clarke, Prospectiveidentification of tumorigenic breast cancer cells, Proc Natl Acad Sci U S A100(2003)3983-3988.
    [9] A.T. Collins, P.A. Berry, C. Hyde, M.J. Stower, N.J. Maitland, Prospective identification oftumorigenic prostate cancer stem cells, Cancer Res65(2005)10946-10951.
    [10] C.A. O'Brien, A. Pollett, S. Gallinger, J.E. Dick, A human colon cancer cell capable of initiatingtumour growth in immunodeficient mice, Nature445(2007)106-110.
    [11] M.H. Tabor, M.R. Clay, J.H. Owen, C.R. Bradford, T.E. Carey, G.T. Wolf, M.E. Prince, Head andneck cancer stem cells: the side population, Laryngoscope121(2011)527-533.
    [12] K. Ito, R. Bernardi, A. Morotti, S. Matsuoka, G. Saglio, Y. Ikeda, J. Rosenblatt, D.E. Avigan, J.Teruya-Feldstein, P.P. Pandolfi, PML targeting eradicates quiescent leukaemia-initiating cells,Nature453(2008)1072-1078.
    [13] S.A. Bapat, A.M. Mali, C.B. Koppikar, N.K. Kurrey, Stem and progenitor-like cells contribute tothe aggressive behavior of human epithelial ovarian cancer, Cancer Res65(2005)3025-3029.
    [14] T. Kirchner, S. Muller, T. Hattori, K. Mukaisyo, T. Papadopoulos, T. Brabletz, A. Jung,Metaplasia, intraepithelial neoplasia and early cancer of the stomach are related todedifferentiated epithelial cells defined by cytokeratin-7expression in gastritis, Virchows Arch439(2001)512-522.
    [15] M. Brittan, N.A. Wright, Gastrointestinal stem cells, J Pathol197(2002)492-509.
    [16] M. Tatematsu, T. Tsukamoto, K. Inada, Stem cells and gastric cancer: role of gastric andintestinal mixed intestinal metaplasia, Cancer Sci94(2003)135-141.
    [17] S.J. Leedham, S. Schier, A.T. Thliveris, R.B. Halberg, M.A. Newton, N.A. Wright, From genemutations to tumours--stem cells in gastrointestinal carcinogenesis, Cell Prolif38(2005)387-405.
    [18] I.M. Modlin, M. Kidd, K.D. Lye, N.A. Wright, Gastric stem cells: an update, Keio J Med52(2003)134-137.
    [19] N. Haraguchi, T. Utsunomiya, H. Inoue, F. Tanaka, K. Mimori, G.F. Barnard, M. Mori,Characterization of a side population of cancer cells from human gastrointestinal system, StemCells24(2006)506-513.
    [20] H.H. Zhang, A.Z. Cai, X.M. Wei, L. Ding, F.Z. Li, A.M. Zheng, D.J. Dai, R.R. Huang, H.J. Cao,H.Y. Zhou, J.M. Wang, X.J. Wang, W. Shi, H. Zhu, X.Y. Yuan, L. Chen, Characterization ofcancer stem-like cells in the side population cells of human gastric cancer cell line MKN-45, JZhejiang Univ Sci B14(2013)216-223.
    [21]荣黎,吴小翎,胃癌侧群细胞耐药性研究及干细胞相关基因检测,世界科技研究与发展13(2011)1081-1084.
    [22]姜伟,李锦毅,吴婷,胃癌侧群细胞的耐药性及致瘤性的初步研究,临床肿瘤学杂志17(2012)673-677.
    [23] S. Takaishi, T. Okumura, S. Tu, S.S. Wang, W. Shibata, R. Vigneshwaran, S.A. Gordon, Y.Shimada, T.C. Wang, Identification of gastric cancer stem cells using the cell surface markerCD44, Stem Cells27(2009)1006-1020.
    [24] C. Zhang, C. Li, F. He, Y. Cai, H. Yang, Identification of CD44+CD24+gastric cancer stem cells,J Cancer Res Clin Oncol137(2011)1679-1686.
    [25]蔡成,俞继卫,吴巨钢,陆瑞祺,倪晓春,王守练,姜波健, TGF-β1诱导胃癌细胞上皮间质转化及促进干细胞特性获得的研究,国际外科学杂志39(2012)824-829.
    [26] T. Vargo-Gogola, J.M. Rosen, Modelling breast cancer: one size does not fit all, Nat Rev Cancer7(2007)659-672.
    [27] L. Du, H. Wang, L. He, J. Zhang, B. Ni, X. Wang, H. Jin, N. Cahuzac, M. Mehrpour, Y. Lu, Q.Chen, CD44is of functional importance for colorectal cancer stem cells, Clin Cancer Res14(2008)6751-6760.
    [28] G.S. Palapattu, C. Wu, C.R. Silvers, H.B. Martin, K. Williams, L. Salamone, T. Bushnell, L.S.Huang, Q. Yang, J. Huang, Selective expression of CD44, a putative prostate cancer stem cellmarker, in neuroendocrine tumor cells of human prostate cancer, Prostate69(2009)787-798.
    [29] Z. Zhu, X. Hao, M. Yan, M. Yao, C. Ge, J. Gu, J. Li, Cancer stem/progenitor cells are highlyenriched in CD133+CD44+population in hepatocellular carcinoma, Int J Cancer126(2010)2067-2078.
    [30] M.H. Wright, A.M. Calcagno, C.D. Salcido, M.D. Carlson, S.V. Ambudkar, L. Varticovski,Brca1breast tumors contain distinct CD44+/CD24-and CD133+cells with cancer stem cellcharacteristics, Breast Cancer Res10(2008) R10.
    [31] M.E. Han, T.Y. Jeon, S.H. Hwang, Y.S. Lee, H.J. Kim, H.E. Shim, S. Yoon, S.Y. Baek, B.S. Kim,C.D. Kang, S.O. Oh, Cancer spheres from gastric cancer patients provide an ideal model systemfor cancer stem cell research, Cell Mol Life Sci68(2011)3589-3605.
    [32] G.J. Klarmann, E.M. Hurt, L.A. Mathews, X. Zhang, M.A. Duhagon, T. Mistree, S.B. Thomas,W.L. Farrar, Invasive prostate cancer cells are tumor initiating cells that have a stem cell-likegenomic signature, Clin Exp Metastasis26(2009)433-446.
    [33] S. Ma, K.W. Chan, T.K. Lee, K.H. Tang, J.Y. Wo, B.J. Zheng, X.Y. Guan, Aldehydedehydrogenase discriminates the CD133liver cancer stem cell populations, Mol Cancer Res6(2008)1146-1153.
    [34] L.M. Smith, A. Nesterova, M.C. Ryan, S. Duniho, M. Jonas, M. Anderson, R.F. Zabinski, M.K.Sutherland, H.P. Gerber, K.L. Van Orden, P.A. Moore, S.M. Ruben, P.J. Carter,CD133/prominin-1is a potential therapeutic target for antibody-drug conjugates inhepatocellular and gastric cancers, Br J Cancer99(2008)100-109.
    [35] P. Zhao, Y. Li, Y. Lu, Aberrant expression of CD133protein correlates with Ki-67expressionand is a prognostic marker in gastric adenocarcinoma, BMC Cancer10(2010)218.
    [36] J.W. Yu, P. Zhang, J.G. Wu, S.H. Wu, X.Q. Li, S.T. Wang, R.Q. Lu, X.C. Ni, B.J. Jiang,Expressions and clinical significances of CD133protein and CD133mRNA in primary lesion ofgastric adenocacinoma, J Exp Clin Cancer Res29(2010)141.
    [37] O. Krupkova, Jr., T. Loja, I. Zambo, R. Veselska, Nestin expression in human tumors and tumorcell lines, Neoplasma57(2010)291-298.
    [38] J. Frisen, C.B. Johansson, C. Torok, M. Risling, U. Lendahl, Rapid, widespread, and longlastinginduction of nestin contributes to the generation of glial scar tissue after CNS injury, J Cell Biol131(1995)453-464.
    [39] S. Vaittinen, R. Lukka, C. Sahlgren, T. Hurme, J. Rantanen, U. Lendahl, J.E. Eriksson, H.Kalimo, The expression of intermediate filament protein nestin as related to vimentin anddesmin in regenerating skeletal muscle, J Neuropathol Exp Neurol60(2001)588-597.
    [40] J. Dahlstrand, V.P. Collins, U. Lendahl, Expression of the class VI intermediate filament nestinin human central nervous system tumors, Cancer Res52(1992)5334-5341.
    [41] M. Kawamoto, T. Ishiwata, K. Cho, E. Uchida, M. Korc, Z. Naito, T. Tajiri, Nestin expressioncorrelates with nerve and retroperitoneal tissue invasion in pancreatic cancer, Hum Pathol40(2009)189-198.
    [42] W. Kleeberger, G.S. Bova, M.E. Nielsen, M. Herawi, A.Y. Chuang, J.I. Epstein, D.M. Berman,Roles for the stem cell associated intermediate filament Nestin in prostate cancer migration andmetastasis, Cancer Res67(2007)9199-9206.
    [43] C. Liu, B. Chen, J. Zhu, R. Zhang, F. Yao, F. Jin, H. Xu, P. Lu, Clinical implications for nestinprotein expression in breast cancer, Cancer Sci101(2010)815-819.
    [44] S. Dhingra, W. Feng, R.E. Brown, Z. Zhou, T. Khoury, R. Zhang, D. Tan, Clinicopathologicsignificance of putative stem cell markers, CD44and nestin, in gastric adenocarcinoma, Int JClin Exp Pathol4(2011)733-741.
    [45] Z. Song, W. Yue, B. Wei, N. Wang, T. Li, L. Guan, S. Shi, Q. Zeng, X. Pei, L. Chen, Sonichedgehog pathway is essential for maintenance of cancer stem-like cells in human gastric cancer,PLoS One6(2011) e17687.
    [46] Q. Zheng, F. Gong, Y. Xu, T. Zheng, M. Ying, Floating cells with stem cell properties in gastriccell line SGC-7901, Tumori97(2011)393-399.
    [47] T. Chen, K. Yang, J. Yu, W. Meng, D. Yuan, F. Bi, F. Liu, J. Liu, B. Dai, X. Chen, F. Wang, F.Zeng, H. Xu, J. Hu, X. Mo, Identification and expansion of cancer stem cells in tumor tissuesand peripheral blood derived from gastric adenocarcinoma patients, Cell Res22(2012)248-258.
    [48] J. Jiang, Y. Zhang, S. Chuai, Z. Wang, D. Zheng, F. Xu, C. Li, Y. Liang, Z. Chen, Trastuzumab(herceptin) targets gastric cancer stem cells characterized by CD90phenotype, Oncogene31(2012)671-682.
    [49] S. Bhattacharya, A. Das, K. Mallya, I. Ahmad, Maintenance of retinal stem cells by Abcg2isregulated by notch signaling, J Cell Sci120(2007)2652-2662.
    [50] Y. Zen, T. Fujii, S. Yoshikawa, H. Takamura, T. Tani, T. Ohta, Y. Nakanuma, Histological andculture studies with respect to ABCG2expression support the existence of a cancer cellhierarchy in human hepatocellular carcinoma, Am J Pathol170(2007)1750-1762.
    [51] N. Wang, L. Chen, B. Wei, X.Y. Zhao, W.J. Lu, L. Shen,[Expression of ATP-binding cassettetransporter ABCG2in gastric carcinoma and its significance], Zhonghua Wei Chang Wai Ke ZaZhi10(2007)450-453.
    [52] H. Murata, S. Tsuji, M. Tsujii, T. Nakamura, H.Y. Fu, H. Eguchi, K. Asahi, H. Okano, S.Kawano, N. Hayashi, Helicobacter pylori infection induces candidate stem cell markerMusashi-1in the human gastric epithelium, Dig Dis Sci53(2008)363-369.
    [53] J.E. Trosko, From adult stem cells to cancer stem cells: Oct-4Gene, cell-cell communication,and hormones during tumor promotion, Ann N Y Acad Sci1089(2006)36-58.
    [54] M.H. Tai, C.C. Chang, M. Kiupel, J.D. Webster, L.K. Olson, J.E. Trosko, Oct4expression inadult human stem cells: evidence in support of the stem cell theory of carcinogenesis,Carcinogenesis26(2005)495-502.
    [55]钱晖,陈忠,朱伟,王胜,步雪峰,毛飞,曹慧玲,徐学静,许文荣,干细胞标志物ABCG2的检测在胃癌诊断中的意义,临床检验杂志27(2009)341-343.
    [56]宁志丰,王春,刘复兴, hMLH1和干细胞标志物CD44在胃癌的表达及相互问的关系,解剖学研究34(2012)343-346.
    [57] S. Ishigami, S. Ueno, T. Arigami, Y. Uchikado, T. Setoyama, H. Arima, Y. Kita, H. Kurahara, H.Okumura, M. Matsumoto, Y. Kijima, S. Natsugoe, Prognostic impact of CD133expression ingastric carcinoma, Anticancer Res30(2010)2453-2457.
    [58] H.H. Lee, K.J. Seo, C.H. An, J.S. Kim, H.M. Jeon, CD133expression is correlated withchemoresistance and early recurrence of gastric cancer, J Surg Oncol106(2012)999-1004.
    [59]唐毕锋,马立业,翟羽佳,余永伟,张敏峰,刘小康,肿瘤干细胞标志物CD133在胃癌中的表达及其临床意义,临床肿瘤学杂志13(2008)495-498.
    [60]严家来,钱晖,朱伟,严永敏,曹慧玲,许晓蒙,孙靖,徐哲,钱茜,许文荣,肿瘤干细胞标志物CD133检测在胃癌诊断中的意义,临床检验杂志29(2011)112-114.
    [61]邱江锋,张志奇,尤俊,丁毅,蔡建春,林天胜,胃癌组织中Oct4表达及其临床病理意义的探讨,中华肿瘤防治杂志18(2011)342-344.
    [62]陈忠,许文荣,钱晖,朱伟,王胜,步雪峰,毛飞,曹慧玲,徐学静,干细胞标志物Nanog的检测在胃癌诊断中的意义,临床检验杂志27(2009)6-9.
    [63]郝亚琴,王立, Hedgehog信号通路在胃癌中的研究进展,中国肿瘤临床38(2011)536-540.
    [64] S. Ahn, A.L. Joyner, In vivo analysis of quiescent adult neural stem cells responding to Sonichedgehog, Nature437(2005)894-897.
    [65] S. Liu, G. Dontu, M.S. Wicha, Mammary stem cells, self-renewal pathways, and carcinogenesis,Breast Cancer Res7(2005)86-95.
    [66] G. Bhardwaj, B. Murdoch, D. Wu, D.P. Baker, K.P. Williams, K. Chadwick, L.E. Ling, F.N.Karanu, M. Bhatia, Sonic hedgehog induces the proliferation of primitive human hematopoieticcells via BMP regulation, Nat Immunol2(2001)172-180.
    [67] W.J. Nelson, R. Nusse, Convergence of Wnt, beta-catenin, and cadherin pathways, Science303(2004)1483-1487.
    [68] C. Cai, X. Zhu, The Wnt/beta-catenin pathway regulates self-renewal of cancer stem-like cells inhuman gastric cancer, Mol Med Rep5(2012)1191-1196.
    [69] T.C. Hoang, T.K. Bui, T. Taguchi, T. Watanabe, Y. Sato, All-trans retinoic acid inhibits KITactivity and induces apoptosis in gastrointestinal stromal tumor GIST-T1cell line by affecting onthe expression of survivin and Bax protein, J Exp Clin Cancer Res29(2010)165.
    [70] M. McMillan, M. Kahn, Investigating Wnt signaling: a chemogenomic safari, Drug DiscovToday10(2005)1467-1474.
    [71] B. Wang, J. Liu, L.N. Ma, H.L. Xiao, Y.Z. Wang, Y. Li, Z. Wang, L. Fan, C. Lan, M. Yang, L. Hu,Y. Wei, X.W. Bian, D. Chen, J. Wang, Chimeric5/35adenovirus-mediated Dickkopf-1overexpression suppressed tumorigenicity of CD44(+) gastric cancer cells via attenuating Wntsignaling, J Gastroenterol (2012).
    [72] S. Bao, Q. Wu, R.E. McLendon, Y. Hao, Q. Shi, A.B. Hjelmeland, M.W. Dewhirst, D.D. Bigner,J.N. Rich, Glioma stem cells promote radioresistance by preferential activation of the DNAdamage response, Nature444(2006)756-760.
    [73] J.P. Gillet, T. Efferth, J. Remacle, Chemotherapy-induced resistance by ATP-binding cassettetransporter genes, Biochim Biophys Acta1775(2007)237-262.
    [74] J.C. Kiefer, Primer and interviews: The dynamic stem cell niche, Dev Dyn240(2011)737-743.
    [75] A.L. Vescovi, R. Galli, B.A. Reynolds, Brain tumour stem cells, Nat Rev Cancer6(2006)425-436.
    [76] M.F. Clarke, J.E. Dick, P.B. Dirks, C.J. Eaves, C.H. Jamieson, D.L. Jones, J. Visvader, I.L.Weissman, G.M. Wahl, Cancer stem cells--perspectives on current status and future directions:AACR Workshop on cancer stem cells, Cancer Res66(2006)9339-9344.
    [77] D. Bonnet, J.E. Dick, Human acute myeloid leukemia is organized as a hierarchy that originatesfrom a primitive hematopoietic cell, Nat Med3(1997)730-737.
    [78] C.F. Kim, E.L. Jackson, A.E. Woolfenden, S. Lawrence, I. Babar, S. Vogel, D. Crowley, R.T.Bronson, T. Jacks, Identification of bronchioalveolar stem cells in normal lung and lung cancer,Cell121(2005)823-835.
    [79] A. Eramo, F. Lotti, G. Sette, E. Pilozzi, M. Biffoni, A. Di Virgilio, C. Conticello, L. Ruco, C.Peschle, R. De Maria, Identification and expansion of the tumorigenic lung cancer stem cellpopulation, Cell Death Differ15(2008)504-514.
    [80] T. Schatton, G.F. Murphy, N.Y. Frank, K. Yamaura, A.M. Waaga-Gasser, M. Gasser, Q. Zhan, S.Jordan, L.M. Duncan, C. Weishaupt, R.C. Fuhlbrigge, T.S. Kupper, M.H. Sayegh, M.H. Frank,Identification of cells initiating human melanomas, Nature451(2008)345-349.
    [81] L. Ricci-Vitiani, D.G. Lombardi, E. Pilozzi, M. Biffoni, M. Todaro, C. Peschle, R. De Maria,Identification and expansion of human colon-cancer-initiating cells, Nature445(2007)111-115.
    [82] Z.F. Yang, P. Ngai, D.W. Ho, W.C. Yu, M.N. Ng, C.K. Lau, M.L. Li, K.H. Tam, C.T. Lam, R.T.Poon, S.T. Fan, Identification of local and circulating cancer stem cells in human liver cancer,Hepatology47(2008)919-928.
    [83] S.K. Singh, I.D. Clarke, M. Terasaki, V.E. Bonn, C. Hawkins, J. Squire, P.B. Dirks, Identificationof a cancer stem cell in human brain tumors, Cancer Res63(2003)5821-5828.
    [84] S.K. Singh, C. Hawkins, I.D. Clarke, J.A. Squire, J. Bayani, T. Hide, R.M. Henkelman, M.D.Cusimano, P.B. Dirks, Identification of human brain tumour initiating cells, Nature432(2004)396-401.
    [85] S. Takaishi, T. Okumura, T.C. Wang, Gastric cancer stem cells, J Clin Oncol26(2008)2876-2882.
    [86] B.C. Zhao, B. Zhao, J.G. Han, H.C. Ma, Z.J. Wang, Adipose-derived stem cells promote gastriccancer cell growth, migration and invasion through SDF-1/CXCR4axis, Hepatogastroenterology57(2010)1382-1389.
    [87] T. Nishii, M. Yashiro, O. Shinto, T. Sawada, M. Ohira, K. Hirakawa, Cancer stem cell-like SPcells have a high adhesion ability to the peritoneum in gastric carcinoma, Cancer Sci100(2009)1397-1402.
    [88] J. Sleeman, P.S. Steeg, Cancer metastasis as a therapeutic target, Eur J Cancer46(2010)1177-1180.
    [89] T.R. Geiger, D.S. Peeper, Metastasis mechanisms, Biochim Biophys Acta1796(2009)293-308.
    [90] I.J. Fidler, Critical determinants of metastasis, Semin Cancer Biol12(2002)89-96.
    [91] A. Singh, J. Settleman, EMT, cancer stem cells and drug resistance: an emerging axis of evil inthe war on cancer, Oncogene29(2010)4741-4751.
    [92] J.P. Thiery, H. Acloque, R.Y. Huang, M.A. Nieto, Epithelial-mesenchymal transitions indevelopment and disease, Cell139(2009)871-890.
    [93] H. Acloque, M.S. Adams, K. Fishwick, M. Bronner-Fraser, M.A. Nieto, Epithelial-mesenchymaltransitions: the importance of changing cell state in development and disease, J Clin Invest119(2009)1438-1449.
    [94] D. Shook, R. Keller, Mechanisms, mechanics and function of epithelial-mesenchymal transitionsin early development, Mech Dev120(2003)1351-1383.
    [95] M.A. Nieto, The ins and outs of the epithelial to mesenchymal transition in health and disease,Annu Rev Cell Dev Biol27(2011)347-376.
    [96] G. Ouyang, Z. Wang, X. Fang, J. Liu, C.J. Yang, Molecular signaling of the epithelial tomesenchymal transition in generating and maintaining cancer stem cells, Cell Mol Life Sci67(2010)2605-2618.
    [97] G. Moreno-Bueno, H. Peinado, P. Molina, D. Olmeda, E. Cubillo, V. Santos, J. Palacios, F.Portillo, A. Cano, The morphological and molecular features of the epithelial-to-mesenchymaltransition, Nat Protoc4(2009)1591-1613.
    [98] M. Yilmaz, G. Christofori, Mechanisms of motility in metastasizing cells, Mol Cancer Res8(2010)629-642.
    [99] A. Cano, M.A. Perez-Moreno, I. Rodrigo, A. Locascio, M.J. Blanco, M.G. del Barrio, F. Portillo,M.A. Nieto, The transcription factor snail controls epithelial-mesenchymal transitions byrepressing E-cadherin expression, Nat Cell Biol2(2000)76-83.
    [100] V. Bolos, H. Peinado, M.A. Perez-Moreno, M.F. Fraga, M. Esteller, A. Cano, The transcriptionfactor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: acomparison with Snail and E47repressors, J Cell Sci116(2003)499-511.
    [101] A. Eger, K. Aigner, S. Sonderegger, B. Dampier, S. Oehler, M. Schreiber, G. Berx, A. Cano, H.Beug, R. Foisner, DeltaEF1is a transcriptional repressor of E-cadherin and regulates epithelialplasticity in breast cancer cells, Oncogene24(2005)2375-2385.
    [102] M.H. Yang, D.S. Hsu, H.W. Wang, H.J. Wang, H.Y. Lan, W.H. Yang, C.H. Huang, S.Y. Kao, C.H.Tzeng, S.K. Tai, S.Y. Chang, O.K. Lee, K.J. Wu, Bmi1is essential in Twist1-inducedepithelial-mesenchymal transition, Nat Cell Biol12(2010)982-992.
    [103] J. Ikenouchi, M. Matsuda, M. Furuse, S. Tsukita, Regulation of tight junctions during theepithelium-mesenchyme transition: direct repression of the gene expression of claudins/occludinby Snail, J Cell Sci116(2003)1959-1967.
    [104] O.M. Martinez-Estrada, A. Culleres, F.X. Soriano, H. Peinado, V. Bolos, F.O. Martinez, M.Reina, A. Cano, M. Fabre, S. Vilaro, The transcription factors Slug and Snail act as repressors ofClaudin-1expression in epithelial cells, Biochem J394(2006)449-457.
    [105] P.C. Hermann, S.L. Huber, T. Herrler, A. Aicher, J.W. Ellwart, M. Guba, C.J. Bruns, C. Heeschen,Distinct populations of cancer stem cells determine tumor growth and metastatic activity inhuman pancreatic cancer, Cell Stem Cell1(2007)313-323.
    [106] K. Naka, T. Hoshii, T. Muraguchi, Y. Tadokoro, T. Ooshio, Y. Kondo, S. Nakao, N. Motoyama, A.Hirao, TGF-beta-FOXO signalling maintains leukaemia-initiating cells in chronic myeloidleukaemia, Nature463(2010)676-680.
    [107] E. Quintana, M. Shackleton, M.S. Sabel, D.R. Fullen, T.M. Johnson, S.J. Morrison, Efficienttumour formation by single human melanoma cells, Nature456(2008)593-598.
    [108] J.A. Kennedy, F. Barabe, A.G. Poeppl, J.C. Wang, J.E. Dick, Comment on "Tumor growth neednot be driven by rare cancer stem cells", Science318(2007)1722; author reply1722.
    [109] M.R. Alison, S.M. Lim, L.J. Nicholson, Cancer stem cells: problems for therapy?, J Pathol223(2011)147-161.
    [110] S. Pece, D. Tosoni, S. Confalonieri, G. Mazzarol, M. Vecchi, S. Ronzoni, L. Bernard, G. Viale,P.G. Pelicci, P.P. Di Fiore, Biological and molecular heterogeneity of breast cancers correlateswith their cancer stem cell content, Cell140(2010)62-73.
    [111] M. Shackleton, Normal stem cells and cancer stem cells: similar and different, Semin CancerBiol20(2010)85-92.
    [112] S. Bomken, K. Fiser, O. Heidenreich, J. Vormoor, Understanding the cancer stem cell, Br JCancer103(2010)439-445.
    [113] M. Greaves, Cancer stem cells: back to Darwin?, Semin Cancer Biol20(2010)65-70.
    [114] T. Brabletz, A. Jung, S. Spaderna, F. Hlubek, T. Kirchner, Opinion: migrating cancer stem cells-an integrated concept of malignant tumour progression, Nat Rev Cancer5(2005)744-749.
    [115] T. Shibue, R.A. Weinberg, Metastatic colonization: settlement, adaptation and propagation oftumor cells in a foreign tissue environment, Semin Cancer Biol21(2011)99-106.
    [116] S.A. Mani, W. Guo, M.J. Liao, E.N. Eaton, A. Ayyanan, A.Y. Zhou, M. Brooks, F. Reinhard, C.C.Zhang, M. Shipitsin, L.L. Campbell, K. Polyak, C. Brisken, J. Yang, R.A. Weinberg, Theepithelial-mesenchymal transition generates cells with properties of stem cells, Cell133(2008)704-715.
    [117] A.P. Morel, M. Lievre, C. Thomas, G. Hinkal, S. Ansieau, A. Puisieux, Generation of breastcancer stem cells through epithelial-mesenchymal transition, PLoS One3(2008) e2888.
    [118] Y. Shimono, M. Zabala, R.W. Cho, N. Lobo, P. Dalerba, D. Qian, M. Diehn, H. Liu, S.P. Panula,E. Chiao, F.M. Dirbas, G. Somlo, R.A. Pera, K. Lao, M.F. Clarke, Downregulation ofmiRNA-200c links breast cancer stem cells with normal stem cells, Cell138(2009)592-603.
    [119] Z. Wang, Y. Li, D. Kong, S. Banerjee, A. Ahmad, A.S. Azmi, S. Ali, J.L. Abbruzzese, G.E.Gallick, F.H. Sarkar, Acquisition of epithelial-mesenchymal transition phenotype ofgemcitabine-resistant pancreatic cancer cells is linked with activation of the notch signalingpathway, Cancer Res69(2009)2400-2407.
    [120] T. Brabletz, F. Hlubek, S. Spaderna, O. Schmalhofer, E. Hiendlmeyer, A. Jung, T. Kirchner,Invasion and metastasis in colorectal cancer: epithelial-mesenchymal transition,mesenchymal-epithelial transition, stem cells and beta-catenin, Cells Tissues Organs179(2005)56-65.
    [121] R.F. Niu, L. Zhang, G.M. Xi, X.Y. Wei, Y. Yang, Y.R. Shi, X.S. Hao, Up-regulation of Twistinduces angiogenesis and correlates with metastasis in hepatocellular carcinoma, J Exp ClinCancer Res26(2007)385-394.
    [122] U. Burk, J. Schubert, U. Wellner, O. Schmalhofer, E. Vincan, S. Spaderna, T. Brabletz, Areciprocal repression between ZEB1and members of the miR-200family promotes EMT andinvasion in cancer cells, EMBO Rep9(2008)582-589.
    [123] M. Korpal, E.S. Lee, G. Hu, Y. Kang, The miR-200family inhibits epithelial-mesenchymaltransition and cancer cell migration by direct targeting of E-cadherin transcriptional repressorsZEB1and ZEB2, J Biol Chem283(2008)14910-14914.
    [124] S.M. Park, A.B. Gaur, E. Lengyel, M.E. Peter, The miR-200family determines the epithelialphenotype of cancer cells by targeting the E-cadherin repressors ZEB1and ZEB2, Genes Dev22(2008)894-907.
    [125] U. Wellner, J. Schubert, U.C. Burk, O. Schmalhofer, F. Zhu, A. Sonntag, B. Waldvogel, C.Vannier, D. Darling, A. zur Hausen, V.G. Brunton, J. Morton, O. Sansom, J. Schuler, M.P.Stemmler, C. Herzberger, U. Hopt, T. Keck, S. Brabletz, T. Brabletz, The EMT-activator ZEB1promotes tumorigenicity by repressing stemness-inhibiting microRNAs, Nat Cell Biol11(2009)1487-1495.
    [126] C.P. Bracken, P.A. Gregory, N. Kolesnikoff, A.G. Bert, J. Wang, M.F. Shannon, G.J. Goodall, Adouble-negative feedback loop between ZEB1-SIP1and the microRNA-200family regulatesepithelial-mesenchymal transition, Cancer Res68(2008)7846-7854.
    [127] P.A. Gregory, A.G. Bert, E.L. Paterson, S.C. Barry, A. Tsykin, G. Farshid, M.A. Vadas, Y.Khew-Goodall, G.J. Goodall, The miR-200family and miR-205regulate epithelial tomesenchymal transition by targeting ZEB1and SIP1, Nat Cell Biol10(2008)593-601.
    [128] D. Iliopoulos, M. Lindahl-Allen, C. Polytarchou, H.A. Hirsch, P.N. Tsichlis, K. Struhl, Loss ofmiR-200inhibition of Suz12leads to polycomb-mediated repression required for the formationand maintenance of cancer stem cells, Mol Cell39(2010)761-772.
    [129] N. Herranz, D. Pasini, V.M. Diaz, C. Franci, A. Gutierrez, N. Dave, M. Escriva, I.Hernandez-Munoz, L. Di Croce, K. Helin, A. Garcia de Herreros, S. Peiro, Polycomb complex2is required for E-cadherin repression by the Snail1transcription factor, Mol Cell Biol28(2008)4772-4781.
    [130] O. Schmalhofer, S. Brabletz, T. Brabletz, E-cadherin, beta-catenin, and ZEB1in malignantprogression of cancer, Cancer Metastasis Rev28(2009)151-166.
    [131] J. Yang, R.A. Weinberg, Epithelial-mesenchymal transition: at the crossroads of developmentand tumor metastasis, Dev Cell14(2008)818-829.
    [132] T. Brabletz, A. Jung, K. Hermann, K. Gunther, W. Hohenberger, T. Kirchner, Nuclearoverexpression of the oncoprotein beta-catenin in colorectal cancer is localized predominantly atthe invasion front, Pathol Res Pract194(1998)701-704.
    [133] A.J. Chien, W.H. Conrad, R.T. Moon, A Wnt survival guide: from flies to human disease, JInvest Dermatol129(2009)1614-1627.
    [134] S. Brabletz, O. Schmalhofer, T. Brabletz, Gastrointestinal stem cells in development and cancer,J Pathol217(2009)307-317.
    [135] W. Goessling, T.E. North, S. Loewer, A.M. Lord, S. Lee, C.L. Stoick-Cooper, G. Weidinger, M.Puder, G.Q. Daley, R.T. Moon, L.I. Zon, Genetic interaction of PGE2and Wnt signalingregulates developmental specification of stem cells and regeneration, Cell136(2009)1136-1147.
    [136] E. Charafe-Jauffret, F. Monville, C. Ginestier, G. Dontu, D. Birnbaum, M.S. Wicha, Cancer stemcells in breast: current opinion and future challenges, Pathobiology75(2008)75-84.
    [137] L. Vermeulen, E.M.F. De Sousa, M. van der Heijden, K. Cameron, J.H. de Jong, T. Borovski, J.B.Tuynman, M. Todaro, C. Merz, H. Rodermond, M.R. Sprick, K. Kemper, D.J. Richel, G. Stassi,J.P. Medema, Wnt activity defines colon cancer stem cells and is regulated by themicroenvironment, Nat Cell Biol12(2010)468-476.
    [138] K.N. Nejak-Bowen, S.P. Monga, Beta-catenin signaling, liver regeneration and hepatocellularcancer: sorting the good from the bad, Semin Cancer Biol21(2011)44-58.
    [139] J.R. Agarwal, W. Matsui, Multiple myeloma: a paradigm for translation of the cancer stem cellhypothesis, Anticancer Agents Med Chem10(2010)116-120.
    [140] R. Wang, J. Liang, H.M. Yu, H. Liang, Y.J. Shi, H.T. Yang, Retinoic acid maintains self-renewalof murine embryonic stem cells via a feedback mechanism, Differentiation76(2008)931-945.
    [141] R.W. Groen, M.E. Oud, E.J. Schilder-Tol, M.B. Overdijk, D. ten Berge, R. Nusse, M. Spaargaren,S.T. Pals, Illegitimate WNT pathway activation by beta-catenin mutation or autocrinestimulation in T-cell malignancies, Cancer Res68(2008)6969-6977.
    [142] E. Jost, J. Schmid, S. Wilop, C. Schubert, H. Suzuki, J.G. Herman, R. Osieka, O. Galm,Epigenetic inactivation of secreted Frizzled-related proteins in acute myeloid leukaemia, Br JHaematol142(2008)745-753.
    [143] C. Zhao, J. Blum, A. Chen, H.Y. Kwon, S.H. Jung, J.M. Cook, A. Lagoo, T. Reya, Loss ofbeta-catenin impairs the renewal of normal and CML stem cells in vivo, Cancer Cell12(2007)528-541.
    [144] F. Takahashi-Yanaga, M. Kahn, Targeting Wnt signaling: can we safely eradicate cancer stemcells?, Clin Cancer Res16(2010)3153-3162.
    [145] P. Wend, J.D. Holland, U. Ziebold, W. Birchmeier, Wnt signaling in stem and cancer stem cells,Semin Cell Dev Biol21(2010)855-863.
    [146] J.I. Yook, X.Y. Li, I. Ota, C. Hu, H.S. Kim, N.H. Kim, S.Y. Cha, J.K. Ryu, Y.J. Choi, J. Kim, E.R.Fearon, S.J. Weiss, A Wnt-Axin2-GSK3beta cascade regulates Snail1activity in breast cancercells, Nat Cell Biol8(2006)1398-1406.
    [147] S. Sekiya, A. Suzuki, Glycogen synthase kinase3beta-dependent Snail degradation directshepatocyte proliferation in normal liver regeneration, Proc Natl Acad Sci U S A108(2011)11175-11180.
    [148] J. Heuberger, W. Birchmeier, Interplay of cadherin-mediated cell adhesion and canonical Wntsignaling, Cold Spring Harb Perspect Biol2(2010) a002915.
    [149] S. Valsesia-Wittmann, M. Magdeleine, S. Dupasquier, E. Garin, A.C. Jallas, V. Combaret, A.Krause, P. Leissner, A. Puisieux, Oncogenic cooperation between H-Twist and N-Myc overridesfailsafe programs in cancer cells, Cancer Cell6(2004)625-630.
    [150] C.G. Pham, C. Bubici, F. Zazzeroni, J.R. Knabb, S. Papa, C. Kuntzen, G. Franzoso, Upregulationof Twist-1by NF-kappaB blocks cytotoxicity induced by chemotherapeutic drugs, Mol Cell Biol27(2007)3920-3935.
    [151] R. Maestro, A.P. Dei Tos, Y. Hamamori, S. Krasnokutsky, V. Sartorelli, L. Kedes, C. Doglioni,D.H. Beach, G.J. Hannon, Twist is a potential oncogene that inhibits apoptosis, Genes Dev13(1999)2207-2217.
    [152] W.S. Wu, S. Heinrichs, D. Xu, S.P. Garrison, G.P. Zambetti, J.M. Adams, A.T. Look, Slugantagonizes p53-mediated apoptosis of hematopoietic progenitors by repressing puma, Cell123(2005)641-653.
    [153] M. Mancini, S. Petta, I. Iacobucci, V. Salvestrini, E. Barbieri, M.A. Santucci, Zinc-fingertranscription factor slug contributes to the survival advantage of chronic myeloid leukemia cells,Cell Signal22(2010)1247-1253.
    [154] J.K. Rho, Y.J. Choi, J.K. Lee, B.Y. Ryoo, Na, II, S.H. Yang, C.H. Kim, J.C. Lee, Epithelial tomesenchymal transition derived from repeated exposure to gefitinib determines the sensitivity toEGFR inhibitors in A549, a non-small cell lung cancer cell line, Lung Cancer63(2009)219-226.
    [155] C.J. Creighton, X. Li, M. Landis, J.M. Dixon, V.M. Neumeister, A. Sjolund, D.L. Rimm, H.Wong, A. Rodriguez, J.I. Herschkowitz, C. Fan, X. Zhang, X. He, A. Pavlick, M.C. Gutierrez, L.Renshaw, A.A. Larionov, D. Faratian, S.G. Hilsenbeck, C.M. Perou, M.T. Lewis, J.M. Rosen, J.C.Chang, Residual breast cancers after conventional therapy display mesenchymal as well astumor-initiating features, Proc Natl Acad Sci U S A106(2009)13820-13825.
    [156] C.L. Chaffer, J.P. Brennan, J.L. Slavin, T. Blick, E.W. Thompson, E.D. Williams,Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis: role of fibroblastgrowth factor receptor-2, Cancer Res66(2006)11271-11278.
    [157] S. Spaderna, O. Schmalhofer, F. Hlubek, G. Berx, A. Eger, S. Merkel, A. Jung, T. Kirchner, T.Brabletz, A transient, EMT-linked loss of basement membranes indicates metastasis and poorsurvival in colorectal cancer, Gastroenterology131(2006)830-840.
    [158] T. Kirchner, T. Brabletz, Tumor patterning: analogies of neoplastic morphogenesis withembryogenesis, Verh Dtsch Ges Pathol84(2000)22-27.
    [159] E.D. Hay, A. Zuk, Transformations between epithelium and mesenchyme: normal, pathological,and experimentally induced, Am J Kidney Dis26(1995)678-690.
    [160] A. Boutet, C.A. De Frutos, P.H. Maxwell, M.J. Mayol, J. Romero, M.A. Nieto, Snail activationdisrupts tissue homeostasis and induces fibrosis in the adult kidney, EMBO J25(2006)5603-5613.
    [161] M. Zeisberg, J. Hanai, H. Sugimoto, T. Mammoto, D. Charytan, F. Strutz, R. Kalluri, BMP-7counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renalinjury, Nat Med9(2003)964-968.
    [162] D. Kimelman, J.L. Christian, R.T. Moon, Synergistic principles of development: overlappingpatterning systems in Xenopus mesoderm induction, Development116(1992)1-9.
    [163] M. Oft, J. Peli, C. Rudaz, H. Schwarz, H. Beug, E. Reichmann, TGF-beta1and Ha-Rascollaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells,Genes Dev10(1996)2462-2477.
    [164] M.H. Yang, M.Z. Wu, S.H. Chiou, P.M. Chen, S.Y. Chang, C.J. Liu, S.C. Teng, K.J. Wu, Directregulation of TWIST by HIF-1alpha promotes metastasis, Nat Cell Biol10(2008)295-305.
    [165] K.A. Brown, M.E. Aakre, A.E. Gorska, J.O. Price, S.E. Eltom, J.A. Pietenpol, H.L. Moses,Induction by transforming growth factor-beta1of epithelial to mesenchymal transition is a rareevent in vitro, Breast Cancer Res6(2004) R215-231.
    [166] K.M. Downs, The enigmatic primitive streak: prevailing notions and challenges concerning thebody axis of mammals, Bioessays31(2009)892-902.
    [167] C. Scheel, E.N. Eaton, S.H. Li, C.L. Chaffer, F. Reinhardt, K.J. Kah, G. Bell, W. Guo, J. Rubin,A.L. Richardson, R.A. Weinberg, Paracrine and autocrine signals induce and maintainmesenchymal and stem cell states in the breast, Cell145(2011)926-940.
    [168] P.B. Gupta, T.T. Onder, G. Jiang, K. Tao, C. Kuperwasser, R.A. Weinberg, E.S. Lander,Identification of selective inhibitors of cancer stem cells by high-throughput screening, Cell138(2009)645-659.
    [169] C.L. Chaffer, I. Brueckmann, C. Scheel, A.J. Kaestli, P.A. Wiggins, L.O. Rodrigues, M. Brooks,F. Reinhardt, Y. Su, K. Polyak, L.M. Arendt, C. Kuperwasser, B. Bierie, R.A. Weinberg, Normaland neoplastic nonstem cells can spontaneously convert to a stem-like state, Proc Natl Acad SciU S A108(2011)7950-7955.
    [170] M. Shackleton, Moving targets that drive cancer progression, N Engl J Med363(2010)885-886.
    [171] Ishii H, Iwatsuki M, Ieta K, Ohta D, Haraguchi N, Mimori K, Mori M: Cancer stem cells andchemoradiation resistance. Cancer Sci2008;99:1871-1877.
    [172] Reya T, Morrison SJ, Clarke MF, Weissman IL: Stem cells, cancer, and cancer stem cells. Nature2001;414:105-111.
    [173] Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S,Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, PappinDJ: Multiplexed protein quantitation in saccharomyces cerevisiae using amine-reactive isobarictagging reagents. Mol Cell Proteomics2004;3:1154-1169.
    [174] Rocco A, Liguori E, Pirozzi G, Tirino V, Compare D, Franco R, Tatangelo F, Palaia R,D'Armiento FP, Pollastrone G, Affuso A, Bottazzi EC, Masone S, Persico G, Nardone G: Cd133and cd44cell surface markers do not identify cancer stem cells in primary human gastrictumors. J Cell Physiol2012;227:2686-2693.
    [175] Pircher A, Kahler CM, Skvortsov S, Dlaska M, Kawaguchi G, Schmid T, Gunsilius E, Hilbe W:Increased numbers of endothelial progenitor cells in peripheral blood and tumor specimens innon-small cell lung cancer: a methodological challenge and an ongoing debate on the clinicalrelevance. Oncol Rep2008;19:345-352
    [176] Otto WR: Lung epithelial stem cells. J Pathol2002;197:527-535.
    [177] Engelhardt JF: Stem cell niches in the mouse airway. Am J Respir Cell Mol Biol2001;24:649-652.
    [178] Giangreco A, Shen H, Reynolds SD, Stripp BR: Molecular phenotype of airway side populationcells. Am J Physiol Lung Cell Mol Physiol2004;286:L624-L630.
    [179] Chen H, Thiagalingam A, Chopra H, Borges MW, Feder JN, Nelkin BD, Baylin SB, Ball DW:Conservation of the drosophila lateral inhibition pathway in human lung cancer: a hairy-relatedprotein (hes-1) directly represses achaete-scute homolog-1expression. Proc Natl Acad Sci U S A1997;94:5355-5360.
    [180] Zheng Q, Qin H, Zhang H, Li J, Hou L, Wang H, Zhang X, Zhang S, Feng L, Liang Y, Han H, YiD: Notch signaling inhibits growth of the human lung adenocarcinoma cell line a549. Oncol Rep2007;17:847-852.
    [181] Hu XB, Feng F, Wang YC, Wang L, He F, Dou GR, Liang L, Zhang HW, Liang YM, Han H:Blockade of notch signaling in tumor-bearing mice may lead to tumor regression, progression, ormetastasis, depending on tumor cell types. Neoplasia2009;11:32-38
    [182] Firulli AB. A HANDful of questions: the molecular biology of the heart and neural crestderivatives (HAND)-subclass of basic helix-loop-helix transcription factors. Gene2003;312:27-
    [183] Sosic D, Richardson JA, Yu K, Ornitz DM, Olson EN. Twist regulates cytokine gene expressionthrough a negative feedback loop that represses NF-kappaB activity. Cell2003;112:169-180.
    [184] Pham CG, Bubici C, Zazzeroni F, et al. Upregulation of Twist-1by NF-kappaB blockscytotoxicity induced by chemotherapeutic drugs. Mol Cell Biol2007;27:3920-3935.
    [185] Chang L, Go ldman RD. Intermediate filaments mediate cytoskeletal crosstalk. Nat RevMol CellBio,l2004,;601-613.
    [186] L iu T, Gueva ra OE, W arburton RR, et al. Regulation o f vimentin intermediate filaments inendo the lia l cells by hypoxia. Am J Physio l Cell Phys io,l2010,299C363~C373.
    [187] Kalluri R, Weinberg RA The basics of epithelial-mesenchymal transition. J Clin Invest2009;119(6):1420–1428
    [188] Thiery JP, Acloque H, Huang RY, Nieto MA,et al. Epithelialmesenchymal transitions indevelopment and disease. Cell2009;139(5):871–890.
    [189] Sánchez-Tilló E, Liu Y, de Barrios O,EMT-activating transcription factors in cancer: beyondEMT and tumor invasiveness. Cell Mol Life Sci.2012Oct;69(20):3429-56.
    [190] Godsel LM, Hobbs RP, Green KJ. Intermediate filament assem-bly: Dynamics to disease. TrendsCell Biol2008;18(1):28-37.
    [191] Vijayaraj P, Kr ger C, Reuter U, Windoffer R, Leube RE, MaginTM. Keratins regulate proteinbiosynthesis through localizationof GLUT1and-3upstream of AMP kinase and Raptor. J CellBiol2009;187(2):175-84.
    [192] Fortier AM, van Themsche C, Asselin E, Cadrin M. Akt isoformsregulate intermediate filamentprotein levels in epithelial carci-noma cells. FEBS Lett2010;584(5):984-8.
    [193] Mashukova A, Oriolo AS, Wald FA, Casanova ML, Kroger C,Magin TM, et al. Rescue ofatypical protein kinase C in epitheliaby the cytoskeleton and Hsp70family chaperones. J CellSci2009;122(Pt14):2491-503.
    [194] Toivola DM, Strnad P, Habtezion A, Omary MB. Intermediatefilaments take the heat as stressproteins. Trends Cell Biol2010;20(2):79-91.
    [195] Rolli CG, Seufferlein T, Kemkemer R, Spatz JP. Impact of tumorcell cytoskeleton organizationon invasiveness and migration: A microchannel-based approach. PLoS One2010;5(1): e8726.
    [196] Toivola DM, Nakamichi I, Strnad P, Michie SA, Ghori N, HaradaM, et al. Keratinoverexpression levels correlate with the extentof spontaneous pancreatic injury. Am J Pathol2008;172(4):882-92.
    [197] Gao HW, Yu CP, Jin JS, Lee HS. Expression of Keratin7in theboundary epithelial cells ofcolorectal neoplasm. J Med Sci2008;28(6):239-44.
    [198] Depianto D, Kerns ML, Dlugosz AA, Coulombe PA. Keratin17promotes epithelial proliferationand tumor growth by polarizingthe immune response in skin. Nat Genet2010;42(10):910-4.
    [199] Casanova ML, Bravo A, Martinez-Palacio J, Fernandez-AceneroMJ, Villanueva C, Larcher F, etal. Epidermal abnormalities andincreased malignancy of skin tumors in human epidermalkeratin8-expressing transgenic mice. FASEB J2004;18(13):1556-8.
    [200] Yamashiro Y, Takei K, Umikawa M, Asato T, Oshiro M, Uechi Y,et al. Ectopic coexpression ofkeratin8and18promotes invasionof transformed keratinocytes and is induced in patients withcuta-neous squamous cell carcinoma. Biochem Biophys Res Commun2010;399(3):365-72.
    [201] Obermajer N, Doljak B, Kos J. Cytokeratin8ectoplasmic do-main binds urokinase-typeplasminogen activator to breast tumorcells and modulates their adhesion, growth andinvasiveness. MolCancer2009;8(1):1-10.
    [202] Mani SA, Guo W, Liao MJ, et al. The epithelial-mesenchymal transition generates cells withproperties of stem cells. Cell2008;133:704-715.
    [203] Vesuna F, Lisok A, Kimble B, Raman V. Twist modulates breast cancer stem cells bytranscriptional regulation of CD24expression. Neoplasia2009;11:1318-1328.
    [204] Battula VL, Evans KW, Hollier BG, et al. Epithelial-mesenchymal transition-derived cellsexhibit multilineage differentiation potential similar to mesenchymal stem cells. Stem Cells2010;28:1435-1445.
    [205] Qian Q, Young X, Tao H, et al. Normal and disease-related biological functions of Twist1andunderlying molecular mechanisms. Cell Research2012;22:90-106
    [206] Magdalena K, Aleksandra M, Anna J. Epithelial-Mesenchymal Transition: A Hallmark inMetastasis Formation Linking Circulating Tumor Cells and Cancer Stem Cells. Pathobiology2012;79:195–208

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700