二氧化氯作用下不锈钢和钛的腐蚀行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化氯漂白的纸浆白度高、强度好,废水对环境的污染较小,因此国内一些大型的制浆厂已经采用二氧化氯漂白技术,逐渐代替传统漂白,但二氧化氯对设备的腐蚀问题是影响该技术推广的主要原因。目前在二氧化氯防腐蚀方面,主要是从选择材料的角度来防止设备腐蚀,钛材和玻璃钢等是用的较多的材料,但钛成本高,玻璃钢在设备中的应用又有一定的局限;国内外对二氧化氯制备和漂白过程中设备的腐蚀性,虽有一定研究报导,但并没有系统地分析,大多数企业对其原因方面并不清楚,因此本论文针对常用不锈钢和钛在二氧化氯溶液中的腐蚀性能和机理进行了研究。
     首先采用挂片浸泡测试对普通材料304不锈钢在二氧化氯溶液中的腐蚀形貌进行分析,判断304不锈钢在二氧化氯中的腐蚀特性,利用重量法和深度法对304不锈钢在二氧化氯中的腐蚀性能做出定量评价,通过电化学测试方法分析304不锈钢在二氧化氯溶液中的动力学性能,得到304不锈钢腐蚀速率与二氧化氯溶液浓度呈指数递增关系,与pH呈幂函数递减关系。研究表明,304不锈钢在60℃、pH为4、8g/L和10g/L,60℃、pH为2、4g/L和8g/L,60℃、pH为6的8g/L二氧化氯溶液中,耐蚀性差,不可用于二氧化氯的相关制备和漂白中设备上,电化学性能方面304不锈钢在20℃、碱性的二氧化氯溶液中具有钝化的趋势,但随着浓度、温度、酸性的增强,304不锈钢的钝化电位和钝化电流密度都增大,表现出不易钝化甚至活性溶解的趋势。
     接着采用挂片浸泡法和电化学方法对含有少量钼元素的316L不锈钢在二氧化氯溶液中的腐蚀形貌、腐蚀特性、腐蚀速率、电化学腐蚀性能等方面进行了详细的分析和研究,总结了316L不锈钢在不同二氧化氯溶液中的腐蚀规律;316L不锈钢腐蚀速率与浓度之间存在指数关系,随着二氧化氯溶液浓度的增大,腐蚀速率增加;与pH之间存在幂函数关系,随着pH增大,腐蚀速率降低;溶液中的ClO2、ClO3-、ClO2-等氧化剂的反应活性由于温度的升高而增强,使316L不锈钢腐蚀速率增加;316L不锈钢在60℃、pH为4、浓度8g/L、10g/L,60℃、pH为2、4g/L和8g/L时属于不耐蚀金属外,在其它研究的工艺下316L不锈钢属于耐蚀和尚耐蚀系列。316L不锈钢除了在碱性的二氧化氯溶液中具有钝化的趋势,在低浓、低温的酸性条件下也具有钝化的趋势。
     针对耐蚀的钛进行了挂片浸泡和电化学测试研究,分析钛在不同二氧化氯溶液中的腐蚀性能,得出其在二氧化氯溶液中的腐蚀速率,研究钛在二氧化氯溶液中的电化学性能,总结其耐蚀的的特点。浓度升高、pH减小、温度升高使钛的腐蚀速度增加,除了在60℃、浓度为8g/L和10g/L、pH小于4,属于尚耐蚀外,其它条件下都属于耐蚀系列;钛材在二氧化氯溶液中表现出较好的钝化特性,但在高浓、酸性、高温条件下致钝电流密度增大或致钝电位升高,致钝相比较有些困难。
     基于钛的耐蚀是由于其表面有一层致密氧化保护膜的原因,对304不锈钢和316L不锈钢进行预钝化处理,使其表面预先具有致密的氧化膜,因此首先进行钝化剂的优化选择,确定了30%硝酸溶液和10mol/L硫酸+20g/L硝酸钾混合液两种无机钝化剂,利用蓝点检测法和电镜分析膜的形貌,以及通过钝化后都在3%NaCl溶液中的抗点蚀性能分析,304不锈钢和316L不锈钢在25℃的30%硝酸溶液中钝化30min时所需钝化时间短,钝化温度低,形成的钝化膜致密,抗点蚀能力强,25℃、30%硝酸溶液中钝化30min是不锈钢最佳的预处理工艺。从腐蚀形貌观察和腐蚀速率测试表明,钝化处理的304不锈钢、316L不锈钢在二氧化氯溶液中随着浓度、温度升高、pH值的减小,腐蚀性增加,不锈钢经钝化处理后比未钝化前在二氧化氯溶液中抗腐蚀能力增强,304不锈钢在pH为4、温度为60℃、浓度为10g/L时腐蚀电流密度降幅达到50%,316L不锈钢降幅可达到75%,降幅最大,其它条件下不锈钢的腐蚀速率都有不同程度的下降;钝化316L不锈钢在二氧化氯溶液中的腐蚀表现出孔蚀的特征。
     从微观动力学角度出发,经阻抗谱测试分析,不锈钢预处理前后在二氧化氯溶液中,在高频区和低频区各有一段容抗弧,且钝化后的不锈钢的容抗弧半径大于未钝化的,容抗弧圆心偏离实轴,存在一定的弥散效应。除了在8g/L,pH为10钝化的304不锈钢在低频区未出现“扩散尾”外,其余条件下在低频区显示出有扩散层厚度的扩散阻抗,即表现出Warburg阻抗特征,表明腐蚀过程后期由电化学控制转化为扩散控制。钝化316L不锈钢在4g/L、pH为4和10、20℃,8g/L、pH为10、20℃,pH为4、4g/L和8g/L、60℃二氧化氯溶液,以及未钝化316L不锈钢在4g/L、pH为4和10、60℃二氧化氯溶液中在低频区出现“扩散尾”,表现出Warburg阻抗特征。
     最后对各金属的腐蚀性能进行综合分析,得到在pH为4的二氧化氯溶液中,各金属的耐蚀性为:钛材>钝化处理的316L不锈钢>钝化处理的304不锈钢>316L不锈钢>304不锈钢;304不锈钢经钝化处理后在低浓、低温的二氧化氯溶液中有一定的抗蚀能力,在高浓、高温、酸性的二氧化氯溶液中,钝化后的304不锈钢腐蚀仍较严重。316L不锈钢经钝化处理后在高温、pH为2的二氧化氯溶液中腐蚀较严重。建议在工业设备材料使用上,在较低温度,酸性较弱的二氧化氯溶液中,钝化后的不锈钢可代替钛材使用,在强酸性和高温的二氧化氯溶液中,钛材目前还不能被不锈钢代替。
Pulp bleached by chlorine dioxide have higher brightness and better strength, with lessoutlet water pollution to the environment. Some of pulp mills are gradually adopting chlorinedioxide bleaching instead of traditional ways, and some larger pulp mills have adopted chlorinedioxide for bleaching. However, the corrosion of chlorine dioxide to equipment is a criticalbarrier of its popularity. In terms of anti-corrosion of chlorine dioxide, choosing proper materialslike titanium and glass reinforced plastics (GRP) is a main method of anti-corrosion. Yet titaniumis high-cost while GRP have some limitations in application. Some of domestic and overseasresearchers have engaged in chlorine dioxide preparation and corrosion to equipment during theprocess of bleaching, but systematic analysis of them is less. To make its causes clear toenterprises, this paper did a research on the performance and mechanism of commonly usedstainless steel and titanium in chlorine dioxide solution.
     At first, soak test is used to analyze the corrosion morphology of304stainless steel whichis a common material in chlorine dioxide solution to detect its property of corrosion in thesolution, a quantitative evaluation is made with gravimetric method and depth method, anddynamics performance is analyzed with electrochemical test method. After data-analysis, theresults suggest that the corrosive rate of304stainless steel is an exponential relationship withchlorine dioxide solution concentration, a power function relationship with pH; the research oftechnology, the corrosion resistance of304stainless steel is poor in chlorine dioxide solutionwith60℃, pH4,8g/L and10g/L, that with60℃, pH2,4g/L and8g/L, and that with60℃, pH6,8g/L, thus it can’t be application to chlorine dioxide preparation or equipment for bleaching; theelectrochemical performance of304-stainless-steel tend to be passivated in the alkaline solutionof chlorine dioxide with20℃; yet the passivation potential and current density of304stainlesssteel increase with the augmentation of the concentration, temperature and acidity and it tends tobe difficult to passivate and even active dissolution.
     Following this step, soak test and electrochemical test method are employed for analysis ofcorrosion morphology, corrosive property, corrosive rate, electrochemical corrosion performanceand so on of316L stainless steel with a small amount of molybdenum in chlorine dioxidesolution. Then the corrosion law of316L stainless steel in different chlorine dioxide solutions hasbeen gotten. The corrosive rate of316L stainless steel is an exponential relationship with chlorinedioxide solution concentration—corrosive rate becomes higher with the increase of itsconcentration; there is a power function relationship between rate and pH—the corrosive ratebecomes lower with the increase of its pH; the reactivity of some oxidizers in solution like ClO2, ClO3-and ClO2-enhances with higher temperature, leading to higher corrosive rate of316Lstainless steel; despite the fact that316L stainless steel belongs to a kind of corrosion resistantmetal with the condition of60℃, pH4,8g/L and10g/L, and that of60℃, pH2,4g/L and8g/L, itis a prospective anti-corrosion material in other technology;316L stainless steel has the trend ofthe passivation not only in alkaline chlorine dioxide solution but also in the acidic conditions oflow concentration and low temperature.
     In addition, the corrosion resistant titanium is analyzed using soak test and electrochemicaltest method. The corrosive rate of titanium in chlorine dioxide solution has been gotten byanalyzing the corrosive property of titanium in different chlorine dioxide solutions; it also studiesthe corrosion resistant property by analyzing the electrochemical performance of titanium inchlorine dioxide solution. Higher concentration, lower pH and higher temperature result in highercorrosive rate; under the condition of60℃,8g/L and10g/L, and pH <4it is a prospectiveanti-corrosion material, it belongs to an anti-corrosion material in other situations. Titaniumperforms better in passivation in chlorine dioxide solution, but passivation under the condition ofhigh concentration, acid and high temperature becomes relatively more difficult when initiatingpassive current density or initiating passive potential increases.
     The corrosion resistance of titanium is due to a layer of dense oxidized protective film. Toensure the existence of dense oxidized protective film in the pre-passivation of304stainless steeland316L-stainless-steel, optimization selection of passivator is in the first place. Afterconfirming the usage of two kinds of inorganic passivators—salpeter solution with theconcentration of30%and the mixed liquor of sulfuric acid with10mol/L and potassium nitratewith20g/L, this paper studies the morphology of film through blue-point test and electronmicroscope and analyzes the resistance to pitting corrosion in3%NaCl solution after passivating.304stainless steel and316L stainless steel spend less time, lower temperature on passivation andthe passive film formed tends to be tenser and stronger in pitting corrosion resistance afterpassivating for30minutes in the30%salpeter solution with25℃, thus such a condition is thebest pre-treatment technology of stainless-steel. The analysis of corrosion morphology andcorrosion rate suggests that the passivated304stainless steel and316L stainless steel in chlorinedioxide solution have stronger corrosion with the increase of concentration and temperaturetogether with the decrease of pH; stainless-steel in chlorine dioxide solution has stronger abilityto resist corrosion after passivation than before.304stainless steel, under the condition of60℃,pH4and10g/L, corrosion current density reduces to50%while316L stainless steel reduces to75%as a maximum with the corrosive rate has different decrease in other conditions; thecorrosion of the passivated316L stainless steel in chlorine dioxide solution appears thecharacteristic of pitting.
     From the perspective of micro-kinetics, analyzed by EIS, stainless steel in chlorine dioxidesolution before and after preprocessing present respectively a capacitive reactance arc both inhigh and low frequency regions, and the radius of capacitive reactance arc of the passivatedstainless steel is bigger than that of the un-passiveted with the centre of a circle deviating from real axis similar to dispersion effect. In spite of the situation that the passivated304stainless steelof8g/L and pH10appears no expanded-tail in low frequency region, diffusion impedance with adiffusion layer thickness appears in low frequency region under other conditions. In other words,it appears an impedance characteristic of Warburg, which suggests that it transfers fromelectrochemical control to diffusion control in the later period of corrosion. The passivated316Lstainless steel in chlorine dioxide solution with condition of4g/L, pH4&10,20℃, that of8g/L,pH10,20℃and that of pH4,4g/L&8g/L,60℃appears the expanded-tail in low frequencyregion;so does the un-passiveted316L stainless steel with the condition of4g/L、pH4&10,60℃,emerging the impedance characteristic of Warburg.
     At last, when it comes to the corrosion property of every kind of metal in chlorine dioxidesolution of pH4, titanium> the passivated316L stainless steel> the passivated304stainlesssteel>316L stainless steel>304stainless steel; the passivated304stainless steel presents someresistance to corrosion in chlorine dioxide solution in low concentration and low temperature, butit corrodes seriously in acidic chlorine dioxide solution in high concentration and hightemperature; the passivated316L stainless steel also corrodes seriously in acidic chlorine dioxidesolution of pH2in high temperature. It is suggested that in using industrial equipment materialthe passivated stainless steel can take place of titanium in chlorine dioxide solution with weakcation exchange while it does not work in chlorine dioxide solution with strong cation exchangeand high temperature.
引文
[1]詹怀宇,陈嘉翔.制浆原理与工程(第三版)[M].北京:中国轻工业出版社,2009:260-266..
    [2]罗巨生.二氧化氯的制备方法及我国用于纸浆漂白的现状[J].纸和造纸,2007,26(4):48-50.
    [3]冯拉俊.制浆造纸设备腐蚀与防护[M].北京:化学工业出版社,2003:2-3.
    [4]候宏卫,贺启环.二氧化氯的性质及其相关反应[C].第七届全国二氧化氯技术研讨会论文,2001:76-83.
    [5]贺启环,潘慧云..稳定性二氧化氯的研究进展[J].化工标准计量装置,2003(4):15.
    [6]栾和林,凌波.二氧化氯在水处理上的应用[J].水处理技术,1989,15(3):174-178.
    [7]黄君礼,崔崇威.二氧化氯物理化学性质研究进展[J].哈尔滨建筑大学学报,1999,32(5):47.
    [8]陈小泉,李艳如等.稳定性二氧化氯消毒剂[J].现代化工,1998(9):41-43.
    [9]Kolar J.J., Lindgren B.O.Spectrophotometric Determination of Chlorine Dioxide in the Presence ofChlorine[J]. TAPPI JOURNAL,1983(8):89.
    [10]裴元生,栾兆坤,朱琨,田朝晖.标准状态下水溶性二氧化氯在水溶液中的稳定及歧化[J].环境科学学报,2003,21(1):70-73.
    [11]Huang Junli,Li Chunlan,Wang Xuefeng etal.Effects of Chlorine Dioxide on Removal of PhenolicCompounds from Water[C].Water Quality International18thIAWQ Biennial Conference,1996,5:33-40.
    [12]Walker G.S.,Lee F.P.,Aieta E.M.Chlorine Dioxide Treatment for the Control of Taste andOdour[J].J.AWWA,1986,78(3):84-93.
    [13]陈国青,梁洪军,魏德江等.二氧化氯除酚去臭效果的研究[C].第五届全国二氧化氯技术研讨会论文集,1999:810-820.
    [14]Aieta E M,Berg J D.A review of chlorine dioxide in drinking watertreatment[J].JAWWA,1986,78(1):62-72.
    [15]黄君礼,王学凤等.二氧化氯对水中无机污染物的去除效果研究[J].环境化学,1996,15(1):82-90.
    [16]刘源月.二氧化氯处理中药制药废水的氧化特性研究[D].西南交通大学,2004.
    [17]袁耀平.二氧化氯的制备方法及发生装置[J].林产化工通讯,1999,33(1):17.
    [18]黄君礼.新型水处理剂:二氧化氯技术及其应用[M].北京:化学工业出版社,2000.
    [19]卢云,乔成忠,陈天朗等.二氧化氯制备方法及相关产品在我国的研究进展[J].化学研究与应用,2008,20(4):367-372.
    [20]劳嘉葆.二氧化氯在造纸工业中的应用前景[J].中华纸业,2001,22(8):43-44.
    [21]陈祥衡.二氧化氯制备工艺探讨[J].中国造纸,2009,28(3):41-46.
    [22]Holmstrom U.K.,Sandgren L.,Norell M.,Axegard P.Process for production of chorinedioxde[P].US4,1987:654,678.
    [23]Norell M. Process for production of chorine dioxde[P].US4,1988:770,868.
    [24]侯宏卫,贺启环.常温下反应压力对R5法二氧化氯发生器的性能影响研究[C].首届上海二氧化氯及水处理国际研讨会论文集,2001:159-164.
    [25]刘春峰.二氧化氯的研究[D].贵州大学,2007.
    [26]刘玉婷.二氧化氯的制备工艺及其对纸浆漂白特点研究[J].山东轻工业学院学报,2006,20(4):77-81.
    [27]章艺,李甲孝,刘昱,齐瑞峰.二氧化氯在造纸工业的应用及前景[J].中华纸业.2004,25(12):46-49.
    [28]杨桂花,陈嘉川.二氧化氯制备及其应用[J].山东轻工业学院学报,2004,4:1-4.
    [29]Li Junwen,Xin Zhongtao,et al.Mechanisms of Inactivation of Hepatitis A Virus In Water by ChlorinationDioxide[J].Water Research,2004,38(6):1514-1519.
    [30]Gallard,Hervé,et al.Chlorination of natural organic matter:kinerics of chlorination and of THMformation[J]. Water Research,2002,36(1):65-74.
    [31]孙华林.稳定性二氧化氯开发应用前景广阔[J].江苏氯碱,2001,1:14-17.
    [32]张清文,蒋励,何友兰.二氧化氯的性质及用于对水消毒的优点[J].中国消毒学杂志,2000,17(4):220.
    [33]郑成.新型餐具杀菌洗洁精的研究[J].日用化学工业,2000,5:60-64.
    [34]李会生.二氧化氯在水产养殖业中的应用[J].内陆水产,2001,1:39.
    [35]周少奇,杨志泉,丁伟能.二氧化氯的应用研究[J].环境技术,2002,(6):21-25.
    [36]周茂贤,兰云飞,徐萃声,詹磊,农光再.纸浆漂白行业二氧化氯应用及制备技术国产化[J].造纸科学与技术,2011,(5):12-14.
    [37]陈祥衡.漂白用工业成套ClO2制备装置的研发[J].中国造纸,2005,24(7)34-37.
    [38]曹邦威,劳嘉葆译.造纸工业腐蚀问题集[M].北京:轻工业出版社,1983:27-49.
    [39]Elisabet Alfonsson. Corrosion in Chlorine Dioxide Bleach Environments—Experiences with StainlessSteels and Nickel-Base Alloys[C]. TAPPI Engineering Conference,1993,9:20-23.
    [40]Henriksson S. Field tests with metallic materials in Finnish, Norwegian and Swedish bleach plants[J].Pulpand Paper Industry Corrosion Problems,1983,4:128.
    [41]Tuthill A.H., Avery R.., Garner A. Corrosion be-haviour of stainless steel, nickel-base alloy and titaniumweldments in chlorination and chlorine dioxide bleaching[J]. International Symposium on Corrosion in thePulp&Paper Industry,1992:67.
    [42]Nadezhdin A,Richard J,Coster J,Volpe G.,Thompson C.Corrosion of nickel-base and Ni-Cr-Mo stainlessalloys under chlorination stage con-ditions at various levels of ClO2substitution[J]. Corrosion,1992:320.
    [43]Bardsley D.E. The effect of chlorine dioxide sub-stitution on various metals specifically for mixerapplications[J].International Symposium on Corrosion in the Pulp&Paper Industry,1992:59.
    [44] H. F.Bohner, R.L.Bradley. Corrosivity of Chlorine Dioxide Used as anitizer in Ultrafiltration Systems[J].Journal of Dairy Science,1991,74(10):3348-3352.
    [45] Gustaf B ck, Preet M. Singh.Susceptibility of stainless steel alloys to crevice corrosion in ClO2bleachplants[J]. Corrosion Science,2004,46:2159–2182.
    [46]Zhe Zhang,Janet E. Stout, Victor L.Yu, Radisav Vidic.Effect of pipe corrosion scales on chlorinedioxide consumption in drinking water distribution systems[J]. WATER RESEARCH2008,42:129–136.
    [47]CUI Chong-wei,HUANG Jun-li,XU Jing.Study on metal corrosion caused by chlorine dioxide of variouspurities. Journal of Harbin Institute of Technology,2004,11(6):593-596.
    [48]吕少虹,奚旦立,姜佩华,宋鸿.二氧化氯的腐蚀性研究[J].水处理标准与质量,2001,9:33-36.
    [49]康志娟,王奎涛,赵海栋等.常用金属在二氧化氯消毒液中的腐蚀情况[J].腐蚀与防护,2010,31(12):984-985.
    [50]申静静,王志奎,刘燕等.二氧化氯溶液中的金属缓蚀剂[J].腐蚀与防护,2010,31(2):146-148.
    [51]樊军.漂白腐蚀及防腐材料[J].纸和造纸,1994,3:10.
    [52]章穗芳.二氧化氯生产过程中的非金属防腐蚀材料[J].中华纸业,2001,9:43-44.
    [53]詹磊,周茂贤,兰云飞,徐萃声,杨彦.二氧化氯制备系统中钛设备的选材[J].中华纸业,2011,20:52-55.
    [54]许淳淳.化学工业中的腐蚀与防护[M].北京:化学工业出版社,2001.
    [55]刘秀晨,安成强.金属腐蚀学[M].北京:国防工业出版社.2002:7.
    [56]Stern, Geary.STructure of chemically deposited nickels[J].Electrochem.Soc.1957,104:56.
    [57]曹楚南.腐蚀电化学[M].北京:化学工业出版,1994:52-70.
    [58]宋诗哲.腐蚀电化学研究方法[M].北京:化学工业出版,1988:10-24.
    [59] Ch.Cao,ChSong, Y. Wang.Corrosion Science,1989:45,99.
    [60]K.Darowicki.Corrosion rate measurements by non-linear electrochemical impedance spectroscopy[J].Corrosion Science,1995,37(6):913-925.
    [61]David C. Silverman Corrosion prediction in complex environments using electrochemical impedancespectroscopy[J]. Electrochimica Acta,1993,38(14):2075-2078.
    [62]杨德钧,沈卓身,金属腐蚀学[M].北京:冶金工业出版,1999:122-131.
    [63]张德康.不锈钢局部腐蚀[M].北京:冶金工业出版社,1999:79-122.
    [64]李敏.304L不锈钢在石化循环水中局部腐蚀行为的研究[D].北京化工大学,2007.
    [65] D.E.Williams,J.Stewart,D.H.Balkwill,The Nueleation,Growth and Stability of Mieropitsin StainlessSteel[J].Corros.Sci.,1994,36(7):1213-1235.
    [66]J.Stewart,D.E.Williams.The Initiationof Pitting Corrosionon Austeniti Stainless Steel:on the Role andImportance of Su1phide in Clusions[J].Corrosion Sci.,1992,33(3):457-474.
    [67]于福州.金属材料的耐腐蚀性[M].北京:科学出版,1982.
    [68]汪文兵.不锈钢阴极材料表面钝化新工艺及其性能与应用研究[D].昆明理工大学,2006.
    [69]邢益标.双相不锈钢及不锈复合钢管在制浆造纸设备上的应用[J].轻工机械,1990,1:24-28.
    [70]宣征南,陈克复.双相不锈钢SAF2205的性能及其应用前景[J].中华纸业,2002,23(9):43-45.
    [71]陆世英,张廷凯,杨长强.不锈钢[M].北京:原子能出版社,1998:380-385.
    [72]余厚毅.钛和钛合金的腐蚀与防腐[J].包装工程,1986,15(3):1-4.
    [73]郭敏,彭乔.钛的应用开发和腐蚀研究[J].四川化工与腐蚀控制,2000,3(6):28-31.
    [74]Jacobs, J. J.,Gilbert, J. L.,Urban, R. M. Corrosion of metal orthopaedic implants[J]. Journal ofBone and Joint Surgery-Series A,1998,80(2):268-282.
    [75]Torgersen, S.,Gjerdet, N. R. Retrieval study of stainless steel and titanium miniplates and screws used inmaxillofacial surgery[J]. Journal of Materials Science: Materials in Medicine,1994,5(5):256-262.
    [76]Elayaperumal, K.,De, P. K.,Balachandra, J. Passivity OF Type304Stainless Steel Effect of PlasticDeformation[J]. Corrosion,1972,28(7):269-273.
    [77]Salvago, G.,Fumagalli, G.,Sinigaglia, D. The corrosion behavior of AISI304L stainless steel in0.1M HCl atroom temperature-II. The effect of cold working[J]. Corrosion Science,1983,23(5):515-523.
    [78]Baranov, D. A.,Lunichkina, M. A.,Nesterova, A. I. The effect of rolling on the corrosionresistance ofhigh-strength cast iron[J]. Zashchita Metallov,2003,39(4):420-423.
    [79]Baranov, D. A.,Leirikh, I. V.,Myznikova, E. S. Corrosion resistance of strained, high-strength cast iron inaqueous media[J]. Protection of Metals,2004,40(3):254-256.
    [80]郭敏,彭乔.钛的应用与腐蚀[J].全面腐蚀控制,2000,14(02):20-24,42.
    [81]侯瑞政.拓宽钛材在造纸工业中的应用[J].中国造纸,1995,2:42-45.
    [82]章穗芳.FRP在造纸工业中的应用[J].广西轻工业,1995,1:39-41.
    [83]章穗芳.二氧化氯生产过程中的非金属防腐蚀材料[J].中华纸业,2001,9:43-44.
    [84]陆士平,陆关兴.二氧化氯漂白系统中FRP设备耐蚀树脂的检测与验证[J].中国造纸,1998,7:7-9.
    [85]晁怀瑞.间苯型不饱和聚酯树脂在二氧化氯水溶液中的耐蚀性研究[J].四川化工与腐蚀控制,1999,2(2):18-22.
    [86]范洪波.新型缓蚀剂的合成与应用[M].北京:化学工业出版社,2004.
    [87]白培万.碳钢的防腐与缓蚀性能研究[D].太原理工大学,2007.
    [88]包月霞.金属腐蚀的分类和防护方法[J].广东化工2010,37(7):199.
    [89]Walsh F.C.Corrosion and protection of metals:Ⅰ.Types of corrosion and protectionMethods[J].Transactions of the Instituted of Metal Finishing,1993,71(3):117-120.
    [90]章穗芳.我国造纸工业使用电化学保护法保护的实例[J].西南造纸,2002,5:46.
    [91]李鑫庆,陈迪勒,余静琴.化学转化膜技术与应用[M].北京:机械工业出版社,2005:1.
    [92]姚寿山,李戈扬,胡文彬.表面科学与技术[M].北京:机械工业出版社,2004:75-77.
    [93]白新德.材料腐蚀与控制[M].北京:清华大学出版社,2005:91-94.
    [94]汪轩义,吴荫顺等.不锈钢钝化膜研究进展[J].材料导报,1999,13(3):13-14.
    [95]陈天玉.不锈钢表面处理技术[M].北京:化学工业出版社,199-200.
    [96]周金保.不锈钢钝化工艺的发展[J].电镀与精饰.1995,14(3):56-61.
    [97]诸震鸣.浅谈不锈钢硝酸钝化法[J].电镀与精饰.1997,199(4):37.
    [98]汪轩义,吴萌顺,张琳等.不锈钢钝化膜表面形貌的表征[J].金属功能材料,1999,6(5):221-224.
    [99]Wallinder D.,Panna J.,leygraf C.ect.EIS and XPS study of surface modification of316LVM stainless steelafter passivation[J].Corrosion Science,1999(41):275-289.
    [100]王成,江峰,王福会.不锈钢在硝酸盐及硫酸溶液中的钝化[J].腐蚀科学与防护技术,2003,15(6):334-336.
    [101]丁宝峰,吴荫顺,汪轩义等.316L不锈钢无铬钝化工艺研究[J].腐蚀与防护,2001,22(12):520-521,534.
    [102] Zhang L,Ding B F,Wu Y S.Electrochemical method for evaluating the passivated state of medicalstainless steel317L[J].Journal of University of Science and Technology Beijing,2000,7(2):135-138.
    [103]张琳,吴荫顺,丁宝峰.医用317L不锈钢钝化工艺的研究[J].材料保护,2000,5:.35-36.
    [104]汪轩义.奥氏体不锈钢的失效行为及钝化膜研究[A].北京科技大学,1999.
    [105]张琳,丁宝峰,吴荫顺.医用317L不锈钢钝化状态的电化学评定方法研究[J].腐蚀与防护,2000,21(6):226-229.
    [106]王凤丽,吴荫顺,张峥嵘.316L不锈钢钝化工艺的电化学研究[R].中国腐蚀与防护学会成立20周年暨99学术年会,1999.
    [107]Chin D.T.,Venkatesh S.A Study of Alternating Voltage Modulation on the Polarization of MildSteel[J].J.Electrochem.Soc.,1979,126:1908-1913.
    [108]Wendt J.L,Chin D T.The Corrosion of Metals Under Alternating Voltage Electric Field(Ⅰ)[J].CorrosionScience,1985,25:889-901.
    [109]Wendt J.L,Chin D T.The Corrosion of Metals Under Alternating Voltage Electric Field(Ⅱ)[J].CorrosionScience,1985,25:901-905.
    [110]常晓元,王旭,曹楚南等.载波钝化改进钝化膜的稳定性研究[R].腐蚀科学开放实验室年报,1988,208-214.
    [111]宋光玲,曹楚南,王友等.交变电场对1Cr18Ni9Ti钝化膜性质的影响[R].中国腐蚀与防护研究所年报,1992,217-222.
    [112]宋光玲,曹楚南,王友等.交变电场对321不锈钢钝化膜性质的影响[J].中国腐蚀与防护学报,1991,11:319-326.
    [113]常晓元,王旭,林海潮等.载波钝化对不锈钢耐蚀性能的影响[J].腐蚀科学与防护技术,1990,2(2):20-21.
    [114]宋光铃,曹楚南,林海潮等.载波钝化及其后处理对不锈钢钝化膜组成及稳定性的影响[J].中国腐蚀与防护学报,1992,12(1):77-82.
    [115]Zhang Junxi,Yuan Jun,Qiao Yinan etc.The corrosion and passivation of SS304stainless steel under squarewave electric field[J].Materials Chemistry and Physice.2003,79:43-48.
    [116]Citric Acid Passivation of Stainless steel.Products Finishing;May1999;63,8:ABI/INFORM Trade&Industry:45.
    [117]冈毅民.中国不锈钢腐蚀手册[M].北京:冶金工业出版社,1992:8,12-14.
    [118]陆世英,张廷凯.杨长强.不锈钢[M]北京:原子能出版社1995:8,19,61-63.
    [119]柯伟.中国工业与自然环境腐蚀调查[J].全面腐蚀控制,2003,17(1)1-10.
    [120]柯伟.中国工业与自然环境腐蚀调查的进展[J].腐蚀与防护,2004,25(1):1-8.
    [121]Rob Barrett etc.Corrosion news and views[J].British Corrosion Journal,1995,30(2):81-92.
    [122]A.A.Hermas, M.S.Morad.A comparative study on the corrosion behaviour of304austenitic stainless steelin sulfamic and sulfuric acid solutions [J]. Corrosion Science,2008,50:2710-2717.
    [123]304不锈钢[online].百度百科,http://baike.baidu.com/view/973507.htm.
    [124]石淑兰,何福望.制浆造纸分析与检测[M].北京:中国轻工业出版社,2010:
    [125] Atkinson E.S.ClO2generation cuts byproduct sulfuric acid[J].Chem.Eng.1974,2:36.
    [126]崔利凤,张标.水溶液中二氧化氯及系列氧化物的测定[J].北京轻工业学院学报,1998,16(4):75-80.
    [127]曹楚南.腐蚀电化学原理[M].北京:化学工业出版社,2008.
    [128]谢来苏,詹怀宇.制浆原理与工程(第二版)[M].北京:中国轻工业出版社,2006.
    [129]杨玲,高焱仁,陈庚梅,刘勇.纸浆漂白技术及其进展[J].四川理工学院学报,2008,21(2):79-83.
    [130]李海明,杨立宏译.制浆和漂白技术的进展[J].国际造纸,2004,23(6):22-24.
    [131]Martin R., Stefan B. Hot chlorine dioxide bleaching-Amodified approach [J]. Nordic Pulp&PaperRes.J.,2004,19(4):417-419.
    [132]Marcel POURBAIX.Atlas of Electrochemical Equilibria in Aqueous Solutions[M]. National Associationof Corrosion Engineers,1974:590-603.
    [133]胡英,陈学让,昊树森.物理化学中册(第二版)[M].北京:高等教育出版社,1983.
    [134]316L不锈钢[online].百度百科,http://baike.baidu.com/view/1590907.htm.
    [135] Azumi K., Seo M. Changes in electrochemical properties of the anodic oxide film formed on titaniumduring potential sweep[J]. Corros.Sci.,2001,43:533-546.
    [136] Ahn S.J., Kim D.Y., Kwon H.S.[J].Electrochem.Soc.,2006,153:B370.
    [137]Brossia C.S.,Cragnolino G.A. Effect of palladium on the corrosion behavior oftitanium[J].Corros.Sci.,2004,46:1693-1711.
    [138]Mor G.K.,Shankar K.,Paulose M.,Varghese O.K.and Grimes C.A. Use of highly-ordered TiO2nanotubearrays in dye-sensitized solar cells[J]. Nano Letters,2006,6:215-218.
    [139]Cameron P.J.,Peter L.M.,Phys J.Chem.B,2003,107:1394.
    [140]Trasatti S.Electrochimica Acta,2000,45:2377.
    [141]Augustynski J.Electrochim.Acat,1993,38:43.
    [142]Lai Y.,Sun L.,Chen Y.,Zhuang H.,Lin C.,Chin J.W.Electrochem.Soc.,2006,153:123.
    [143]Tryk D.A.,Fujishima A.,Honda K.Electrochim Acat,2000,45:2363.
    [144]TA2[online].百度百科,http://baike.baidu.com/view/3701237.htm.
    [145]曲广杰,于德海,苗艳.钛与其合金的应用及钛的氢脆腐蚀与防护[J].氯碱工业,1996,4:33-38.
    [146]国玉军,贺春林,才庆魁等.不锈钢在硫酸中形成的钝化膜的导电性能[J].材料保护,1999,32(7):1-3.
    [147]林玉华,杜荣归,胡融刚等.不锈钢钝化膜的半导体特性与耐蚀性的关联研究[C].2004年腐蚀电化学及测试方法学术交流会,326-332.
    [148]林昌健,茅禹,田昭武.电化学改性不锈钢钝化膜的耐蚀机理研究Ⅰ.钝化膜的化学组分、结构及表面缺陷特征[J].中国腐蚀与防护学报,1992,12(3):205-212.
    [149]胡融刚,林昌健.电化学改性不锈钢钝化膜的研究[C].第四届中国青年腐蚀与防护学术研讨会暨第六届全国青年腐蚀与防护科技论文讲评会:142-146.
    [150]巫云龙.化工腐蚀与防护[M].石家庄:河北科学技术出版社,1994:55
    [151]夏浩,周栋,丁毅,马立群.304不锈钢环保型酸洗钝化工艺及其性能研究[J].表面技术,2009,38(4):47-49.
    [152]B.R.W.Hinton,N.E.Ryan,P.N.Trathen,The inhibition of corrosion and stress corrosion in high strengthaluminum alloy by surface-active agents[A].Proc.9th Int.Congress Met.Corrosion[C].Toronto:NRCCPublication,1984,4:144.
    [153]杨武.金属的局部腐蚀[M].北京:化学工业出版社,1995:20-28,46,51-55.
    [154] Noh J.S., Layeoek N.J., Gao W.Effeets of nitric acid passivation on the pitting resistance of316stainlesssteel[J].Corrosion Science,2000,42:2069-2084.
    [155]Virtanen S., surber B.,P-Nylund.Influence of MoO42-anion in the electrolyte on passivity breakdown ofiron[J].Corrosion Science,2001,43:1165-1177.
    [156]Πevbare, G.O., Burstein G.T.The role of alloyed molybdenum in the inhibition of Pitting corrosion instainless steels[J].Corrosion Seienee,2001,43:485-513.
    [157]Pettersson R.F.A.J..APPlication of Pitting resistance equivalent concept to some highly alloyedaustenitic[J].J ElectrochemSoe,1998,145:1462-1465.
    [l58]梁成浩.金属腐蚀学导论[M].北京:机械工业出版社,1999:72-77.
    [159]孙跃,胡津.金属腐蚀与控制[M].哈尔滨:哈尔滨工业大学出版社,2003:75-82.
    [160]Uhlig H.H.,Revie R.W.Corrosion and Corrosion Control:An Introduetion to Corrosion Science andEngineering[M].A wiley-imterscience Publiction Iohn Wiley&Sons,1985(Third Edition)
    [161]Hong T,Nagumo M..Effect of surface roughness on early stages of Pitting corrosion of type301stainlesssteel[J].Corrosion Science,1997,39(9):1665-1672.
    [162]Fregoness M., Idrissi H., Mazille H.Initiation and propagation steps in Pitting corrosion of austeniticstainless steels:monitoring by acoustic emission[J].Corrosion Science,2001,43:627-641.
    [163]谈华平.不锈钢化学转化膜耐蚀性能的研究[D].西北工业大学航空学院,2004.
    [164]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2004.
    [165]Bastidas J M,Lòpez M F,Gutiérrez A,et al.Chemical analysis of passive films on type AISI304stainlesssteel using soft X-ray absorption spectroscopy[J].Corros.Sci.,1998,40:43-438.
    [166]CarmezimaM J,Simōesb A M,Montemorb M F,et al.Capacitance behavior of passive films on ferritic andaustenitic stainless steel[J].Corros.Sci.2005,47:581-591.
    [167]Pérez F J,Gutierrezb A A,Lòpez M F,et al.Surface modification of ion-implantcd AISI304stainless steelafter oxidation process:X-ray absorption spectroscopy analysis[J].Thin Solid Films.,2002,415:258-265.
    [168]张胜寒,檀玉,梁可心.电化学阻抗谱法对304不锈钢孔蚀生长和再钝化阶段的原位研究[J].中国腐蚀与防护学报,2011,31(2):130-134.
    [169] Büchler M,Schmuki P,B hni H,et al.Comparison of the semiconductive properties of sputter-depositediron oxides with the passive film on iron[J].J.Electrochem.Soc,1998,145:378-385.
    [170]Hitzing J,Jüttner K,Lorenz W J,et al.AC-impedance measurements on corroded porous aluminum oxidefilms[J].J.Electrochem.Soc.,1986,133:887-892.
    [171]Jüttner K,Lorenz W J,Paatsh W,et al.The role of surface inhomogeneities in corrosionprocesses-electrochemical impedance spectroscopy (EIS) on different aluminum oxidefilms[J].Corros.Sci.,1989,29:279-288.
    [172]朱日彰等.金属腐蚀学[M].北京:冶金工业出版社,1989:14.
    [173]Pou T E,etc.[J].Electrochem.Soc.,1984,131:1243.
    [174]Bastidas J M,López M F,Gutiérrez A,et al.Chemical analysis of passive films on type AISI304stainlesssteel using soft X-ray absorption spectroscopy[J].Corros.Sci.,1998,40:435-438.
    [175]Carmezima M J,Simōesb A M,Montemorb M F,et al.Capacitance behavior of passive films on ferritic andaustenitic stainless steel[J].Corros.Sci.2005,47:581-591.
    [176]Pérez F J,Gutierrezb A A,López M F,et al.Surface modification of ion-implanted AISI304stainless steelafter oxidation process:X-ray absorption spectroscopy analysis[J].Thin Solid Films.,2002,415:258-265.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700