SiC颗粒增强钢基表面复合材料的制备及冲蚀磨损性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磨损是机械零部件失效的主要原因,约有80%是由于磨损造成的。随着生产设备的大型化发展,对材料的耐磨性提出了更高的要求,但目前传统金属材料性能提高有限,难以满足这一要求。近几年发展起来的颗粒增强钢铁基复合材料由于既保持了金属热稳定性好、延展性好的优点,同时又具有陶瓷颗粒的耐腐蚀、抗高温氧化和耐磨损等特点而备受瞩目。本文以承受低应力严重冲蚀磨损的泥浆泵、渣浆泵等的易磨损零部件为研究背景,采用负压铸渗法制备SiC/钢基表面复合材料,研究了SiC预制体膏块的组配和负压铸渗工艺参数对SiC/钢复合质量的影响。通过对该复合材料的宏观、微观以及界面结合组织和成分的分析,进而确定了最佳的SiC颗粒/钢基表面复合的负压铸渗制备工艺。在自制的浆料射流式冲蚀磨损试验机上研究了SiC/钢基表面复合材料、Q235钢、高铬铸铁、低铬铸铁等材料的浆料冲蚀磨损性能,并对各自的冲蚀磨损机理进行了分析。
     采用负压铸渗工艺技术,以35钢为基体,600μm~850μm SiC粒子为增强体,2%的高纯粘土为粘结剂和2%氟化钠+2%硼酸为添加剂,通过控制浇铸温度,加以合理的负压铸渗工艺成功制备了SiC/钢基表面复合材料。SiC粒子与钢基体之间形成结合良好的表面铸渗复合层,并存在明显的复合层、过渡区和基体区。
     对负压铸渗过程进行了热力学、动力学分析,推导出铸渗速度和铸渗复合层厚度的表达式。确定了影响负压铸渗速度和深度的主要因素,即:SiC粒子的大小、钢液的表面张力、钢液与SiC粒子间的润湿性、钢液的静压头、铸型的真空度、钢液处于液态的时间和钢液的粘度等。理论上得出钢液浇注过程中SiC粒子一定会分解的热力学依据。提出通过改变试验条件和工艺参数,进而控制反应的动力学过程,可以延缓和阻止碳化硅分解速度。探讨了各种粘结剂、熔剂及其加入量对负压铸渗表面复合质量的影响规律,确定了SiC/钢表面复合材料的最佳制备工艺参数。
     提出了当铸件厚度与预制体厚度之比(λ值)在4~8时,可以获得良好的SiC/钢基表面复合材料的负压铸渗效果和表面质量。
     分析了铸渗表面复合层的微观组织、成分、SiC粒子与钢基体的界面结合状况。SiC/钢表面复合材料复合层组织为SiC粒子+钢基体+石墨,SiC粒子分布均匀、排列比较紧密,无聚集成团现象,界面结合状况良好,其与钢基体之间呈冶金结合,具有较高的结合强度。钢基体主要为铁素体,在一定条件下也可出现珠光体组织。SiC颗粒周围的基体显微硬度值随着与SiC颗粒中心的距离的增加而逐渐减小,SiC颗粒的加入提高了复合材料的整体硬度。由于存在过渡层,从铸渗复合层到基体有一个渐降的硬度梯度,复合层的硬度也呈梯度分布,这种渐降的硬度梯度有利于提高复合材料的冲蚀磨损抗力。
     通过调整SiC预制体的添加物组配,可以既保证钢液的浸渗,又防止SiC粒子的分解。SiC粒子与钢基体界面处的反应产物为氧化物和复杂的复合氧化物。界面反应层的形成改善了SiC颗粒与钢基体的结合强度,并减小由于SiC颗粒与钢基体之间弹性模量和热膨胀系数差异而引起的热应力。
     综合运用机械设计制造、流体力学原理及水工原理等知识,研制了一台造价低廉、操作方便可用于料浆冲蚀磨损试验的料浆冲蚀磨损试验装置。试验表明:该试验机冲蚀磨损数据重现性好,适合于耐磨材料对比选择以及料浆冲蚀磨损机理的研究。
     SiC/钢基表面复合材料的冲蚀磨损试验表明:低角度冲蚀磨损时,SiC/钢基表面复合材料的冲蚀磨损机理和塑性材料的冲蚀磨损机理相似,为切削和犁削,45°冲蚀角下复合材料的相对冲蚀磨损性最好,其冲蚀耐磨性为Q235钢的4.03倍;当冲蚀角在60°~90°之间时,钢基体对SiC颗粒的“支撑效应”和SiC颗粒对钢基体的“保护效应”使复合材料的磨损量随着冲蚀角的增大而降低,冲蚀磨损机理为冲击断裂和切削;850μm SiC粒子要比600μm SiC粒子增强SiC/钢基表面复合材料的冲蚀磨损性能好。随料浆中石英砂冲蚀粒子的增大,SiC/钢基表面复合材料的冲蚀磨损率也随着增大。
     高铬铸铁的冲蚀磨损性能随冲蚀角度的增大先增大后减小,在60时出现峰值,冲蚀磨损机理为脆性断裂和薄片剥落;低铬铸铁在冲蚀角度小于45°时表现出了良好的冲蚀耐磨性,冲蚀磨损机理为切削、犁削;Q235钢的冲蚀磨损耐磨性一般,冲蚀磨损机理为切削磨损和冲击磨损。
Approximately 75%-80% failures of parts are caused by wear in the application, wear is the main reason to result in the failure of components. With the development of huge production equipment, there are more stringent requirements for the wear resistance to the materials. However, it is very limited for the traditional materials to improve the properties, and it is difficult to meet this stringent requirements. Recently, more attentions have been paid to the particles reinforced metal matrix composites since they combine good thermal stability and good ductility of metals with good erosion resistance, high temperature oxidation resistance and wear resistance of ceramic particles. In the present investigation, the research background is that these easily worn components, such as slurry pump and dreg pump, are usually used in working conditions with low stress and erosion wear. The SiC particle reinforced steel matrix surface composite was prepared by expandable pattern casting and casting infiltration process, the effect of the constituents of prefabricated SiC loaf and the parameters of expandable pattern casting and infiltration on the compound quality of SiC/steel is studied. The optimum vacuum evaporative pattern casting (V-EPC) infiltration preparation technology of the SiC particle reinforced steel matrix surface composite was determined through the analysis of the macro/micro-structure, bonding interface structure and composition. The slurry erosion wear performances of the SiC particles reinforced steel matrix surface composite, Q235 steel, high chromium as-cast iron and low chromium as-cast iron were studied on the self-made slurry inject erosion wear machine, and their erosion and wear mechanisms were analyzed.
     The SiC particles reinforced steel matrix surface composite was prepared successfully by the vacuum evaporative pattern casting (V-EPC) infiltration technology on the substrate of 35 steel with the SiC particle 600μm to 850μm in diameter, 2wt% high purity clay as adhesive, and additives of 2wt%NdF and 2wt% boric acid, and through controlling casting temperature and proper vacuum evaporative pattern casting (V-EPC) infiltration. The good surface casting-infiltration layers are formed between SiC ceramic particles and substrate, there are obvious composite layers, transitional zone and substrate zone.
     The expression of casting-infiltration velocity and casting-infiltration layer thickness was deduced from the analysis of thermodynamic and kinetics of casting-infiltration process. The main factors affecting vacuum casting-infiltration velocity and depth are the size of SiC particles, surface tension of molten steel, wettiability between molten steel and SiC particle, the static pressure of molten steel, the mold vacuum, the holding time of molten steel and the viscosity of steel et al. The thermodynamic evidence that SiC must be decomposed during the pouring process of molten steel was obtained from theory. It is proposed that the reaction kinetics process can be controlled by changing experimental conditions and technological parameters, thus retard the decomposition rate of SiC. The effect of various adhesives, flux and the addition contents on the quality of vacuum casting infiltration surface composite was investigated, and the optimum preparation parameters of the SiC particle reinforced steel matrix surface composite was determined.
     The necessary condition of preparing SiC particles reinforced steel matrix surface composite by vacuum evaporative pattern casting (V-EPC) infiltration was put forward, that is, X value, the ratio of casting thickness and the perform thickness. When X is between 4 and 8, the good SiC particle reinforced steel matrix surface composite can be obtained.
     The microstructure, composition of casting-infiltration surface compound layer and the bonding interface between SiC particles and matrix were analyzed. The main microstructure of casting-infiltration compound layer is consisted of SiC particles, steel matrix and graphite, the SiC particles are distributed uniformly and arranged tightly without agglomeration, the SiC casting-infiltration compound layer has a metallurgical bonding with steel matrix, thus has a larger bonding strength. The matrix of steel is mainly ferrite, but pearlite also appears under certain conditions. The microhardness of matrix around SiC particles decreases with increasing the distance from the centre of SiC particles, the addition of SiC particles enhances the whole hardness of the composite. Due to the existence of transition zone, there is a gradually decreased hardness gradient from the compound layer to the matrix, the hardness of compound layer is distributed in gradient as well. The gradually negative hardness gradient is beneficial to enhance the slurry erosion wear resistance.
     The reasonable adjustment of additive constituents of prefabricate SiC loaf can not only guarantee the steel infiltration, but also prevent the decomposition of SiC particles. The reaction products in the interface between SiC particles and steel matrix are oxides and complex compound oxides. The formation of interface reaction layer improves the bonding strength between SiC particles and steel matrix, and decreases the thermal stress caused by the difference of elastic modulus and thermal expansion coefficient.
     An inexpensive and conveniently operated slurry erosion wear test apparatus was researched and developed ultilizing the knowledge of machine design and manufacturing, hydromechanics principle and the hydraulic engineering principle etc. The test results show that slurry erosion data of the apparatus is repeatable, and the test machine is a reliable apparatus which is suitable for abrasive material selection and erosion wear mechanism research.
     The slurry erosion wear tests show that the wear mechanism of the SiC particles reinforced steel matrix surface composite is cutting and ploughing when the jet angle is low. The SiC particles reinforced steel matrix surface composite has the best relative erosion wear property of at 45°jet angle, which is 3.03 times than that of the Q235 steel. The erosion wear rate of composite decreases with increasing the jet angle in the range of 60°~90°due to the supporting effect of the matrix on the reinforced particles and the protecting effect of the SiC particles on the matrix. The wear mechanisms of the SiC particles reinforced steel matrix surface composite are impact fracture and cutting. The SiC steel matrix surface composite reinforced with 850um SiC particles has better slurry erosive wear property than that reinforced with 600um SiC particles. The erosion wear rate of SiC steel matrix composite increases with increasing size of quartz particles in the slurry.
     With increase of jet angle, the erosion wear property of the high chromium cast iron first increases and then decreases, the peak value appears at 60°. Its wear mechanisms are brittle fracture and flaking. The low chromium cast iron has excellent slurry erosion wear resistance when the jet angle is less than 45°. Its erosive wear mechanisms are cutting and ploughing. The slurry erosion wear resistance of Q235 steel has plain property and its erosive wear mechanisms are cutting and impact wear.
引文
[1] 张剑锋,周志芳.摩擦磨损与抗磨技术[M].天津:天津科技翻译出版公司,1993:3
    [2] 杨贵荣,郝远,宋文明等.铸渗法制备铜基表面复合材料[J].复合材料学报,2005:52-57.
    [3] 华磊,宋月鹏等.铸渗法制造表面耐磨复合材料的工艺进展[J].现代铸铁,2002(2):25-27.
    [4] 袁中岳,武仲铭,赵恒章,等.铸件表面合金化评述[J].铸造设备研究,2002,(5):18-20
    [5] X.Tong, J. A. Khan. Infiltration and solidification/remelting of a pure metal in a two-dimensional porous perform[J]. Journal of Heat Trasfer, 1996, 118(1): 173-180.
    [6] 王冬,张军.90年代铸渗工艺新进展[J].铸造技术,2000,(3):36-38.
    [7] 李维民,沈蜀西,刘炳等.铸渗质量及其影响因素的研究[J].热加工工艺,2000(6):24-26
    [8] 沈蜀两,李维民,刘炳,等.铸铁渗铬层形成机理研究[J].铸造技术,2000(4):40-42.
    [9] 刘耀辉,于思荣,任露泉,等.金属基耐磨铸造表面复合材料的现状及其今后研究丁作的主攻方向[J].摩擦学学报,1994(1):89-95.
    [10] Y.Nishda, G.ohira. Modeling of Infiltrtion of Molten Metal in Fibous Preform by Gentrifugal Force[J]. Actamater, 1999,47(3): 841-852.
    [11] 蒋业华,周荣,卢德宏,邢建东.渣浆泵用WC/铁基表面复合材料的研究.铸造,2002,51(3):170-172
    [12] Deo.Nath, P.k Rhatgi. Solidification Processing of Aluminum Matrix Composites[A]. K.A.Kbor. Processing and Fabricationof A dvanced Materials.Vl[C].Singapore: 1997:499-508
    [13] 刘炳.工艺因素对铸渗合金层的影响[J].现代铸铁,2000(2):10-12
    [14] Wang Yisan, Zhang xinyuan, et al. Casting sineering Technology for Producing Iron Base surface Composites[J]. Material and Design, 2000,21:447-452
    [15] 李慧中,唐世荣,李友荣.铸件表面合金层制造工艺研究[J].兵器材料科学与工程,1993,16(4):27-29
    [16] 王恩泽.铸渗法制备颗粒增强钢基复合材料的研究[J].复合材料学报,1998(2):2-5
    [17] 袁中岳,张忠明,李朝升,等.消失模法铸渗表面合金层组织研究[J].兵器材料科学与工程,2002,25(4):36-38.
    [18] 李秀兵,高义民,邢建东,方亮,等.运用复合剂制备WC颗粒增强钢基表面复合材料[J].铸造,2004,53(2):93-96
    [19] 魏世忠,祝要民,陈振华,等.铸渗表面合金化层的组织与性能研究[J].材料开发与利用,1997,12(1):34-37
    [20] 李晓桥,王建明,王玉环.铸渗成形过程直接差分法数值模拟[J].铸造,2000,49(5):282-284
    [21] 纪朝辉,魏尊杰,等.用铸渗工艺对消失模铸铁件进行表面合金化的研究[J].材料科学与工艺,2001,9(2):195-196
    [22] 祁小群,李秀兵,高义民.WC颗粒增强高铬铸铁基表面复合材料喷射口衬板的研制[J].铸造技术,2002,23(5):282-284
    [23] Mechel.D. Surface alloying the operating layers of ingot moulds[J]. Mezhdunarodnays Kniga, 1998(3): 25-28
    [24] 纪朝辉,张成军.消失模铸钢件表面合金化铸渗机理研究[J].铸造,2000(3):130-133
    [25] 祁小群,等.WC颗粒增强高铬铸铁基表面复合材料喷射口衬板的研制[J].铸造技术,2002(5):282-284.
    [26] 梁作俭,邢建东,鲍崇高,王恩泽,张风华.碳化钨/铁基铸造复合材料的抗冲蚀磨损性能[J].铸造,2000,49(5):265-267
    [27] 蒋业华,周荣,邢建东,卢德宏.不同颗粒粒度表面复合材料的耐冲蚀磨损性能[J].铸造,2003,52(9):664-667
    [28] Latanish.R.M. Corrosion. Science Corrosion Engineering and Advanced Technologies. Corrosion Science[J].1995,5(4): 270-283
    [29] Ozdemir Ismail, Onel Kazim. Hermal cycling behaviour of an extruded aluminium alloy/SiCp composite[J]. Composites Part B: Engineering, 2004,35(5): 379-384
    [30] Tosun, Gul, Muratoglu, Mehtap. The drilling of an Al/SiCp metal-matrix composites. Part Ⅰ: microstructure[J]. Composites Science and Technology, 2004,64(2): 299-308
    [31] Gupta M, Sinha S K. Enhancing strength and ductility of Mg/SiC composites using recrystallization heat treatment[J]. Composite Structures, 2006,72(2): 266-272
    [32] 杨贵荣,郝远,宋文明,等.铸渗法制备铜基表面复合材料[J].复合材料学报,2005(1):52-57.
    [33] 华磊,宋月鹏,等.铸渗法制造表面耐磨复合材料的工艺进展[J].现代铸铁,2002,(2):25-27
    [34] 王冬,张军.90年代铸渗工艺新进展[J].铸造技术,2000,(3):36-38.
    [35] 沈蜀西,李维民,徐彰德.铸渗机理与改善铬铸渗层质量的研究[J].铸造技术,1995,(2):43-46
    [36] 纪朝辉,张成军.消失模铸钢件表而合金化铸渗机理研究[J].铸造,2000,49(3):130-133
    [37] Hans Berns, Birgit Wewers. Development of an abrasion resistant steel composite with in situ TiC particles. Wear, 2001, 251: 1386-1395
    [38] 李元东,阎锋云,李爱萍.V-EPC法铸渗过程的热力学及热力学研究[J].铸造技术,2000(3):39-42
    [39] 刘炳.工艺因素对铸渗合金层的影响[J].现代铸铁,2000(2):10-12.
    [40] Zhang Jun, etal. Cast Surface Alloying By Centrifugal Casting Method[J]. proceedings of 61 th World Foundry congress. 1995(9): 251-223
    [41] 王玉玮.铁基SiC颗粒表而耐磨复合材料的研制[J].铸造,1900(11):15-20
    [42] Deo Nath, P k Rhatgi. Solidification Processing of Aluminum Matrix Composites[A]. K.A.Kbor. Processing and Fabrication of Advanced Materials. Vl[C]. Singapore: 1997: 499-508.
    [43] 金雪松,等.石墨砂型铸渗机理的研究[J].铸造技术,1997(2):43-45.
    [44] A D Morris. Method of making resistant surface[J]. U.S.Patent: No .1072026(1913)
    [45] K G Davis, J G.Magny. Cast-in-place hardfacing[J]. A.F.S Transactions,1981 (89): 385-402
    [46] 袁绪华,汪大经,代振福,等.铸铁件表面合金化的研究与应用[J].铸造,1987,(1):6-12
    [47] 张军,童杏林,曹彪.超重力场铸渗表面合金化研究.第61届世界铸造会议论文集[C],1995(9):215-223
    [48] 王溪,胡汉起,史京明等,WCp/Fe-Ni钢基复合材料的抗热疲劳特性[J].钢铁研究学报,1998,(10):44-48
    [49] 王恩泽,郑燕青,邢建东,等.铸渗法制备颗粒增强钢基复合材料的研究[J].复合材料学报,1998(2):12-17
    [50] Subaru T, etal. Structure and wear characteristics of composite coating deposite[J]. ITSC 86, Canada, 1986:212-217
    [51] Logo F N. Plasm.a.and. flame sprayed coatings satiety hard chromium plate applications[J]. Miami,USA,ITSC76: 341-353
    [52] 吴欣强,敬和民,等.超音速喷涂316L合金涂层在实际炼油环境中的冲蚀行为[J].腐蚀科学与防护技术,2002(1):23-26
    [53] 刘乐昕,顾钰熹,徐国建.铁基Cr-Mo-C-B系耐磨堆焊焊条的研制[J].沈阳工业学院学报,1998,17(1):72-77
    [54] 刘兆勇,葛长路.挖掘机斗齿的耐磨堆焊[J].冶金矿山设计与建设,1997,29(5):54-56
    [55] 丁彰雄,裴振林,王天荣.煤粉风机防磨涂层耐磨性及应用研究[J].中国电力,2002,35(5):9-13
    [56] 徐向阳,刘文今,等.激光融敷NiCrBSi-WC涂层的冲蚀磨损行为[J].应用激光.2002(4):36-39
    [57] 段钢,赵海云,王华明.激光融敷Cr3Si/Cr2Ni3Si复合材料涂层组织与耐磨研究[J].复合材料学报,2002(2):47-51
    [58] A. G.Merzhanov. Combustion and Plasma Synthesis of High Temperature Materials[J]. VCH Pubishers.1990 (1): 47-53
    [59] 赵天林,吴宏飞.新型耐磨管材—陶瓷钢铁复合管[J].电力建设,1997(11):44-46
    [60] 周小新,张树格,俞洪南,等.陶瓷内衬复合钢管的研制及在矿山的应用[J].金属矿山,1997(7):29-32
    [61] Berns H, Koch S. Influence of abrasive particles on wear mechanism and wear resistance in sliding abrasion tests at elevated temperatures[J]. Wear. 1999,233 (6): 424-430
    [62] Sheikh-Ahamed J Y, Bailyey J A. The wear characteristics of some cemented tungsten carbide in machine particleboard[J]. Wear, 1999,225(1): 256-266
    [63] Voyer J, Marple B R. Sliding wear behavior of high velocity oxy-fuel and high power plasma spray processed tungsten carbide-based cermet coatings[J]. Wear, 1999,229(2): 135-145
    [64] Kiourtsidis, Grigoris.E, Skolianos. Wear behavior of artificially aged AA2024/40μmSiCp composites in comparison with conventionally wear resistant ferrous materials[J]. Wear. 2002,253(6): 946-956
    [65] Dogan O N, Hawk J A, Tylczak J H. Wear of cast chromium steels with TiC reinforcement. Wear. 2001, 250(5): 462-469
    [66] Albertin E, Sinatora A. Effect of carbide fraction and matrix microstructure on the wear of cast iron balls tested in a laboratory ball mill[J].Wear. 2001, 250 (1): 492-501
    [67] Martin B, Vincent L, Wright C S. Fretting wear and cracking in sintered metal matrix composites[J]. Wear. 2001, 248 (2): 65-74
    [68] Liao H, Normand B. Influence of coating microstructure on the abrasive wear resistance of WC/Co cermet coatings[J]. Surface and Coating Technology. 2000, 124 (3): 23-242
    [69] 郭成,程羽,尚春阳.SiC颗粒增强铝合金基复合材料断裂与强化机理[J].复合材料学报,2001,18(4):54-57
    [70] 秦蜀鼓,张国定等.改善颗粒增强金属基复合塑性和韧性的途径与机制[J].中国有色金属学报,2000(10):621
    [71] HansenJS. Casting on surfacing of polystyrene patter casting[J]. AFSTrans,1983, 91:652-701
    [72] 阎峰云,李元东,蒋春宏.V-EPC法铸渗表面合金化研究[J].铸造设备研究,2002(2):13-16
    [73] 阎峰云,李元东.V-EPC法铸渗工艺的实验研究[J].热加工工艺,2000(2):24-26
    [74] 李元东,阎峰云,李爱萍.V-EPC法铸渗过程的热力学及动力学研究[J].铸造技术,2000(3):39-42
    [75] 纪朝辉,张成军.消失模铸钢件表面合金化铸渗机理研究[J].铸造,2000,49(3):130-133
    [76] 袁中岳,张忠明,李朝升,等.消失模铸渗法制备复合材料的研究[J].功能材料,2002,33(6):684-686
    [77] 许大庆,罗吉荣,宋象军.V-EPC铸渗工艺的研究[J].铸造设备研究,1999(2):3-6
    [78] 夏亚锋,张元好,丁洁淼.V-EPC铸渗铁基复合材料的研究[J].铸造设备研究,2001(2):13-15
    [79] 李诗卓,董祥林.材料的冲蚀磨损与微动磨损[M].北京:机械工业出版社,1987
    [80] I. Hussainova. Some aspects of solid particle erosion of cermets[J]. Tribology International, 2001(34): 89-93
    [81] 林建忠,吴法理,余钊圣.一种减轻固粒对壁面冲蚀磨损的新方法[J].摩擦学学报,2003,23(3):231-235
    [82] 赵田臣,樊云昌,付华,于旭光.砂浆冲蚀磨损特性研究[J].润滑与密封,2003(2):58-59
    [83] 王恩万,祁小群.颗粒增强金属基复合材料耐浆料冲蚀磨损性能的研究[J].热加工工艺,2001(2):15-16
    [84] 陈孙艺.流体对管件冲蚀的研究和防护[J].石油化工腐蚀与防护,2003,20(5):59-62
    [85] 董刚.材料冲蚀行为与机理研究[D].浙江工业大学硕士学位论文,2004
    [86] 姜晓霞,李诗卓,李曙.金属的腐蚀磨损[M].北京:化学工业出版社,2003:122-123
    [87] 徐滨士,朱绍华.表面工程的理论与技术[M].北京:国防工业出版社,1999:43-56
    [88] Iain Finnie. Some reflections on the past and future of erosion[J]. Wear, 1995(1~10): 186-187
    [89] 董刚,张九渊.固体粒子冲蚀磨损研究进展[J].材料科学与工程学报,2003,21(2):307-312
    [90] 冯益华,邓建新,史佩伟.陶瓷材料冲蚀磨损的研究[J].陶瓷学报,2002,23(3):169-173
    [91] 邵荷生,张清.金属的磨料磨损与耐磨材料[M].北京:机械工业出版社,1988
    [92] J John Rajesh, J.Bijwe, B Venkataraman, U. S. Tewari. Effect of impinging velocity on the erosive wear behaviour ofPolyamides[J]. Tribology International, 2004(37): 219-226
    [93] 马颖,任峻,李元东,陈体军,李炳.冲蚀磨损研究的进展[J].兰州理工大学学报,2005,31(1):21-25
    [94] A. V. Levy. Erosion of Silide Sikytuib Strenvh Alloys[J]. Wear, 1988, 127(2): 231~242
    [95] A. V. Levy. Liquid-solid Particle Slurry Erosion of Sreels[J]. Wear, 1987, 117(2): 347~358
    [96] 林福严.磨损理论及抗磨技术[M].北京:科学出版社,1993
    [97] M. Suckling, C. Allen.The design of an apparatus to test wear of boiler tubes[J]. Wear, 1995 (186-187): 266-272
    [98] Q Fang, H. Xu, P S Sidky, M G.Hocking. Erosion of ceramic materials by a sand/water slurry jet[J]. Wear, 1999, 224: 183-193
    [99] 蒋业华,周荣,邢建东,卢德宏.不同颗粒粒度表面复合材料的耐冲蚀磨损性能[J].铸造,2003,52(9):664-667
    [100] 饶启昌,高峰,刘福玲.西安交通大学学报[J].1990,22(6):53-62
    [101] R. Dasgupta, B.K. Prasad, A.K. Jha, O.P. Moth, S. Das A.H. Yegneswaran.Slurry erosive wear characteristics of a hard faced steel: effect of experimental parameters[J]. Wear, 1997(213): 41-46
    [102] 陈茜,鲍崇高.液/固两相流冲蚀磨损机理及材料应用现状[J].铸造技术,2005,26(6):548-550
    [103] 李茂林.我国金属耐磨材料的发展和应用[J].铸造,2002,51(9):525-529
    [104] 孙家枢.金属的磨损.北京:冶金工业出版社[M],1992
    [105] Delannay F, etal. The Wetting of Solids by Molten and its Relation to the preparation of MMCs[J]. Mater. Sci, 1987(5): 22-27
    [106] LiQ.F, etal. Casting and Hipping of A1-based 1 VMCs[J]. Mater. Rro. Tech, 1995(8): 48-52
    [107] 赵玉厚,等.SiCp/A1复合材料SiCp与A1基体的润湿性研究[J].热加工工艺,1993(1):27-29
    [108] 王恩泽.铸渗法制备颗粒增强耐磨钢基表而复合材料的研究[D].西安:西安交通大学机械工程学院,1998:50-51
    [109] 祁小群.PLJ式喷射口衬板材料工艺及性能研究[D].西安:西安交通大学机械工程学院,2002:35-42
    [110] 中国机械工程学会铸造专业学会编.铸造手册造型材料[M].北京:机械工业出版社,2002:58-129
    [111] 祁小群,李秀兵,高义民.WC颗粒增强高铬铸铁基表面复合材料喷射口衬板的研制[J].铸造技术,2002,23(5):282-284
    [112] 管蓉,鲁德平,杨世芳编著.玻璃与陶瓷用胶粘剂及粘结技术[M].北京:化学工业出版社,2004:143
    [113] 黄发荣,焦杨声主编.酚醛树脂及其应用[M].北京:化学工业出版社,2003.9
    [114] 中国机械土程学会铸造专业学会编.铸造手册(第一卷).北京:机械土业出版社,1995:711
    [115] 方锡义.无机化学丛书[M].北京:科学出版社,1998:204-581
    [116] 孟庆珍.无机化学[M].北京:北京师范大学出版社,1988:1090-1092
    [117] 张玉萍,周永欣,吕振林,邢志国,袁中岳.射流式冲蚀磨损试验机的研制.铸造设备研究,2006(4):9-11
    [118] 纪朝辉,魏尊杰,张成军.用铸渗工艺对消失模铸铁件进行表面合金化研究[J].材料科学与工艺,2001,9(2):195-198
    [119] 马幼平,许云华,贾刘卡.负压实型铸造及铸件质量[M].北京:冶金工业出版社,2002.1
    [120] 岑启宏.碳化钨颗粒增强钢铁基局部复合材料及其应用研究[D].昆明:昆明理工大学,2001
    [121] 尤显卿,任昊.铸造WC/钢铁基复合材料研究进展[J].合肥工业大学学报(自然科学版),2003(10):1063-1067
    [122] 黄乃瑜,叶升平,樊自田.消失模铸造原理及质量控制[M].武汉:华中科技大学出版社,2004:75
    [123] 夏亚锋,张元好,丁洁淼.V-EPC铸渗铁基复合材料的研究[J].铸造设备研究,2001(2):13-15
    [124] Wang Yi-san, ZHANG Xiny-uan, etal. Cast sinter technique for producing iron base surface composites [J]. Materials and Design, 2000,21(10): 447-452
    [125] Wang Yi-san, Zhang Xiny-uan, etal. In situ production of Fe-VC and Fe-TiC surface composites by cast-sintering[J]. Composites Part A: Applied science and Manufacturing, 2001,32(2): 281-286
    [126] Wang Yi-san, Sun Zhi-ping, etal. In situ production of VC-SiO2-Fe surface composites by cast-sintering [J]. Materials and Design, 2004,25(1): 69-72
    [127] 贾利晓,陈跃,张永振,等.铸钢件表面铸渗钨铬复合层的研究[J].热加工工艺,2004(3):9-11
    [128] 陈跃,上官宝,铁喜顺,张永振,等.碳化钨/高铬铸铁复合铸渗层耐磨特性研究[J].热加工工艺,2005(10):935-937
    [129] 贾利晓,石燕,温广宇.试验条件对钨铬铸渗层冲击磨损性能的影响[J].中国铸造装备与技术,2005(3):15-17
    [130] 贾利晓,张永振,陈跃.钨铬复合铸渗层的冲击磨损性能研究[J].铸造技术,2004,25(5):346-348
    [131] 宋继忠,吴新跃,韩江桂.用快干涂料铸渗法制备金属基表面复合材料工艺[J].铸造,2004,53(3):200-203
    [132] 王静,王一三,丁义超,石建国.原位合成(Ti,V)C颗粒增强铁基复合材料[J].材料工程,2006,(9):3-6
    [133] 石建国,王一三,丁义超,等.氮化烧结V(C,N)颗粒增强铁基复合材料的研究[J].热加工工艺,2006,35(2):28-31
    [134] 王一三,丁义超,程凤军,等.固相反应生成VC颗粒增强铁基复合材料[J].热加工工艺,2004(9):9-14
    [135] 程凤军,王一三,赖丽,等.原位生成超细VC颗粒增强铁基复合材料[J].钢铁钒钛,2005,26(2):58-61
    [136] 黄发荣,焦扬声.酚醛树脂及其应用[M].北京:化学工业出版社,2003:9
    [137] 严瑞瑄,陈振兴,等.水溶性聚合物[M].北京:化学工业出版社,1992:47-48
    [138] 管蓉,鲁德平等.玻璃与陶瓷用胶黏剂及粘结技术[M].北京:化学工业出版社,2004:143-145
    [139] 沈鹤年.怎样看硅酸酸盐相图[M].北京:中国建筑工业出版社,1974:46-51
    [140] 纪朝辉,张成军.消失模铸钢件表而合金化铸渗机理研究[J].铸造,2000,49(3):130-133
    [141] 李维民,沈蜀西,等.铸渗质量及其影响因素的研究[J].热加工工艺,2000(6):24-26
    [142] 尤显卿,任吴.铸造WC/钢铁基复合材料研究进展[J].合肥工业大学学报(自然科学版),2003(10):1063-1067
    [143] 蒋业华,周荣,张玉勤,等.颗粒体积分数对WC/铁基表面复合材料冲蚀磨损性能的影响[J].铸造,2002(7):428-430
    [144] 黄乃瑜,叶升平,等.消失模铸造原理及质量控制[M].武汉:华中科技大学出版社,2004.75
    [145] 李维民,沈蜀西,刘炳,等.铸渗质量及其影响因素的研究[J].热加工工艺,2000(6):24-26
    [146] 夏亚锋,张元好,丁洁淼.V-EPC铸渗铁基复合材料的研究[J].铸造设备研究,2001,(2):13-15
    [147] 杨胶溪,许斌,等.铸渗法获得表面粒子增强复合材料的研究[J].现代铸铁,1998,(4):13-14
    [148] Hansen.S. Casting-on-Surfacing of Polystyrene Pattern Castings [M].AFS Transactions, 1985, 93
    [149] 王玲,赵浩峰.金属基复合材料及其浸渗制备的理论与实践[M].北京:冶金工业出版社,2005
    [150] Hansen. S. Casting-on-Surfacing of Polystyrene PaRem[M]. Castings AFS Transactions, 1985,93
    [151] 徐瑞,荆天辅等.材料热力学与动力学[M].哈尔滨:哈尔滨工业大学出版社,2002.9
    [152] 徐祖耀,李麟.材料热力学[M].北京:科学出版社,2001
    [153] 王玲,赵浩峰。金属基复合材料及其浸渗制备的理论与实践[J].北京:冶金工业出版社,2005
    [154] 胡连喜,杨绮雯,罗守靖等.铝/氧化铝纤维预制体的液态浸渗动力学[J].中国有色金属学报,1998(9):75-79
    [155] 林晓棠,褚双杰,孟浩伟等.金属基复合材料差压浸渗凝固装置的设计[J].中国机械上程,1991,8(1):21-24
    [156] 李祖来,蒋业华,周荣等.V-EPC制备铁基表面复合材料的表面质量和组织[J].特种铸造及有色合金,2005,25(1):22
    [157] 李祖来,蒋业华,周荣.铸渗法制备金属基表面耐磨复合材料的发展现状昆明理工大学学报(理工版),2003,28(5):56-59
    [158] 纪朝辉,张成军.消失模铸钢件表面合金化铸渗机理研究[J].铸造,2000,(3):130-133
    [159] 夏亚锋,张元好,等.V-EPC铸渗铁基复合材料的研究[J].特种铸造及有色合金,2001,(2):32-33
    [160] 蒋业华,周荣,卢德宏,等.渣浆泵用WC/铁基表而复合材料的研究[J].铸造,2002(3):171
    [161] Vicens.J, Chedru.M, Chermant.J.L. New AI-AIN composite fabricated by squeeze casting: Interface phenomena[J]. Composites PartA, 2002,33(10): 1421-1423
    [162] Agbalyan.S.G, Petrosyan.A.S, Amalyan.E.S,etal. Powder metallurgy composite materials strengthened with fibers[J]. Powder Metallurgy and Metal Cremics, 2001,40(11-12): 595-600
    [163] 杨明波,代兵,等.金属铸渗技术的研究及进展[J].铸造,2003,52(9):647-651
    [164] 李珍,陈跃,上官宝.铸渗法制备金属基表面复合材料的研究现状与进展[J].河南科技大学学报(自然科学版),2005(1):14-18
    [165] S.W.Huanga, M.Samandi, M.Brandt. Abrasivewear performance and microstructure of laser clad WC/Ni layers. Wear, 2004,256: 1095-1105
    [166] 强颖怀,王晓虹,冯培忠.SiCp增强金属基复合材料的研究进展[J].轻金属,2003(7):49-51
    [167] Ugandhar.S, Gupta.M, Sinha.S.K. Enhancing strength and ductilityof Mg/SiC composites using recrystallization heat treatment[J]. Composite Structures, 2006,72(2): 266-272
    [168] Wang Yisan, Zhang xinyuan, etal. Casting sineering Technology for Producing Iron Base surface Composites[J], Material and Design, 2000,21: 447-452
    [169] 朱正吼,陈其善.铸造SiC/钢基复合材料中粒子分布特点[J].热加工工艺,1995(2):8-9
    [170] 谢国宏、厉松春.颗粒增强金属基复合材料凝固过程[J].热加工工艺,1995,32(5):6-8
    [171] 朱正吼,陈其善.SiC/钢基复合材料中粒子的分解及相界面的结合特点[J].铸造,1995(4):16-17
    [172] 陈仕奇、孙东立.SiC在金属基复合材料中的分解及其界面的结合特点[J].热加工工艺,1995(4):16-17
    [173] Tosun.Gul, Muratoglu, Mehtap. The drilling of an A1/SiCp metal-matrix composites. Part I:microstructure. Composites Science and Technology, 2004,64(2): 299-308
    [174] 归柯庭,汪军,王秋颖.工程流体力学[M].北京:科学出版社,2005:94
    [175] 张玉琴.碳化钨颗粒增强铁基表面复合材料及其冲蚀磨损性能研究[D].昆明理工大学硕士学位论文,2002
    [176] 陈冠国,褚秀萍.关于冲蚀磨损问题[J].河北理工学院学报,1997,19(4):27-32
    [177] 何奖爱,王玉玮.材料磨损与耐磨材料[M].沈阳:东北大学出版社,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700