消失模铸造镁合金表面合金化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金是一种轻质结构材料,被广泛应用于各领域,但由于耐蚀性差,其大规模应用受到限制。消失模铸造作为一种净无余量的绿色铸造技术,在成形镁合金铸件方面有独特优势。为改善镁合金铸件的防腐性能,本文采用消失模铸造表面合金化的方法对镁合金进行表面改性处理,并得到了一些有意义的结论。
     首先,本文对消失模铸造镁合金表面铝元素合金化进行了研究。单因素试验研究表明:一定工艺条件下,浇注温度及真空度的阈值分别处于750~780℃及0.02~0.04MPa之间,只有当两工艺参数取值大于其对应阈值时,镁合金表面才能形成合金化层。通过正交优化试验得到最优工艺条件:真空度为0.07~0.075MPa,粉体粒度为150μm,外层涂料为1层,粘结剂聚乙烯醇(PVA)含量为2.44%,浇注温度为780℃。该工艺下镁合金表面形成了厚度约为2mm、组织覆盖率接近100%的致密均匀合金化层。铝合金化层的形态呈菊花状或网状,主要由Mg17Al12、Mg和Al等物相组成。只有当组织覆盖率大于临界值约37%时,镁合金表面铝合金化层才能起到防腐作用,且组织覆盖率越高,镁合金耐蚀性越强。本实验最优工艺条件下镁合金表面合金化层的自腐蚀电位为-1.0628V,自腐蚀电流下降了两个多数量级。
     其次,本文对消失模铸造镁合金表面锌及铝锌复合合金化进行了探索。结果表明,在浇注温度为720℃或铸件模数为6.3mm的条件下,镁合金表面能形成以Mg17Al12、Al5Mg11Zn4、Zn、Mg为主要组成物相的具有一定防腐性能的锌合金化层。而当铝锌混合比例为3.5:1或铸件模数为10.4mm时,镁合金表面也能形成一层主要物相为Mg17Al12、Al、Zn、Mg的铝锌复合合金化层,腐蚀极化试验研究表明其自腐蚀电位相对AZ91D合金有所提高,自腐蚀电流下降一个多数量级,达到防腐蚀的效果。
     最后,以表面铝合金化为对象,建立了消失模铸造镁合金表面合金化模型,从理论上推导了表面合金化热力学及动力学条件,结果表明:热力学上,欲满足合金化过程的吸热量要求,镁合金熔体在铝熔点以上的降温幅度应至少为合金化层厚度的409.2倍;动力学上,镁合金的渗入深度与背压、粉体粒度、凝固时间、润湿角、金属液粘度及静压头等因素有关,且一定工艺条件下,真空度及粉体粒度均存在理论临界值。
As a kind of lightweight structural material,magnesium alloys have been widely used in various fields. However, the corrosion resistance of magnesium alloys is very poor, which limits their large-scale application. Lost foam casting, a kind of near net-shaped green casting technology, is very suitable for magnesium alloys. In order to improve the corrosion resistance of magnesium alloy castings, this paper developed the method of lost foam casting surface alloying and made some meaningful conclusions.
     Firstly, surface aluminum-alloying of lost foam casting magnesium alloy was studied. Single factor experiments indicated that under certain processing conditions the threshold value of pouring temperature was between 750℃and 780℃, and that of vacuum degree was between 0.02MPa and 0.04MPa. Only when the pouring temperature and vacuum degree were greater than the threshold value, could the surface alloying layer be formed. The orthogonal and optimization experiments were applied to get the optimal processing conditions which were vacuum degree 0.07~0.075MPa, particle size 150μm, outer coating 1 layer, the content of PVA 2.44% and pouring temperature 780℃. In this processing, a dense and uniform alloying layer was formed on the surface of the magnesium alloy, and its thickness and microstructure coverage was about 2mm and 100% respectively. The surface aluminum-alloying layer whose main phases were Mg17Al12, Mg and Al showed in chrysanthemum or mesh structure. Only when the microstructure coverage was greater than the critical value of about 37%, could the surface alloying layer be anti-corrosive. And the higher the microstructure coverage was, the stronger the corrosion resistance of the magnesium alloy could be. Under the optimal processing conditions, the corrosion potential of the magnesium alloy was -1.0628V and the corrosion current decreased by more than two orders of magnitude.
     Secondly, surface zinc-alloying and aluminum-zinc-alloying of lost foam casting magnesium alloy were investigated. The results showed that when the pouring temperature was 720℃or the modulus of casting was 6.3mm, an anti-corrosive zinc-alloying layer which mainly consisted of Mg17Al12, Al5Mg11Zn4, Zn and Mg could be formed on the surface of the magnesium alloy. And when the weight ratio of Al-Zn was 3.5:1 or the modulus of the casting was 10.4mm, an aluminum-zinc-alloying layer whose main phases were Mg17Al12, Al, Zn and Mg could be also formed on the surface of the magnesium alloy. Corrosion polarization test showed that the corrosion potential of the aluminum-zinc-alloying layer was higher than that of AZ91D, and the corrosion current decreased by more than one order of magnitude.
     Finally, the surface alloying model of lost foam casting magnesium alloy was established based on the surface aluminum-alloying. And the surface alloying thermodynamic and kinetic conditions were deduced theoretically. The results showed that in order to meet the heat absorption requirement of the surface alloying process in thermodynamics, the dropping margin of the temperature of molten magnesium alloy which must be higher than the melting point of aluminum should be at least 409.2 times greater than the thickness of surface alloying layer. In kinetics the infiltrating depth of magnesium alloys was related to the factors of back pressure, particle size, coagulation time, wetting angle, viscosity and static head of liquid metal. And under certain processing conditions critical values of vacuum degree and particle size were existed in theory.
引文
[1]黎文献.镁及镁合金[M].长沙:中南大学出版社, 2005
    [2]彭岳华.镁合金材料在汽车中的应用[J].汽车与配件, 2008(20): 46-47
    [3]唐全波,黄少东,伍太宾.镁合金在武器装备中的应用分析[J].兵器材料科学与工程, 2007, 30(02): 69-72
    [4]钟皓,刘培英,周铁涛.镁及镁合金在航空航天中的应用及前景[J].航空工程与维修, 2002(04): 41-42
    [5]吕渠东,吕宜振,曾小勤,等.镁合金在电子器材壳体中的应用[J].材料导报, 2000, 14(06): 22-24
    [6]陈振华,严红革,陈吉红,等.镁合金[M].北京:化学工业出版社, 2004
    [7]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用[M].北京:机械工业出版社, 2002
    [8] B. L. Mordike, T. Ebert. Magnesium: Properties -- applications -- potential[J]. Materials Science and Engineering A, 2001, 302(1): 37-45
    [9]田学锋.消失模铸造镁合金组织及性能研究[D].武汉:华中科技大学, 2005
    [10] Zhu Liqun, Song Guangling. Improved corrosion resistance of AZ91D magnesium alloy by an aluminium-alloyed coating[J]. Surface and Coatings Technology, 2006, 200(8): 2834-2840
    [11] Song Guangling. Recent Progress in Corrosion and Protection of Magnesium Alloys[J]. Advanced Engineering Materials, 2005, 7(7): 563-586
    [12] K. Rehring. Compositional Requirements for Quality Performance with High Purity[C]. 55th International Magnesium Conference, Coronado, CA, USA, 1998(5):17-19
    [13] Eiqo Kakutani, Masahiro Jotoku, Atsushi Yamamoto, et al. Deformation and Corrosion Behavior of A High Purity Manganese Free AZ31 Magnesium Alloy[J].Advanced Materials Research, 2007, 26-28: 1283-1286
    [14] Song Guangling, Atrens Andrej, Wu Xianliang, et al. Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride[J]. Corrosion Science, 1998, 40(10): 1769-1791
    [15] Song Guangling, Atrens Andrej, Dargusch Matthew. Influence of microstructure on the corrosion of diecast AZ91D[J]. Corrosion Science, 1999, 41(2): 249-273
    [16] I. Popov, D. Starosvetsky, D. Shechtman. Initial stages of corrosion within Mg-Zn-Y-Zr alloy in 1g/l NaCl solution[J]. Journal of Materials Science, 2000, 35(1): 1-8
    [17] Song Y. L., Liu Y. H., Wang S. H., et al. Effect of cerium addition on microstructure and corrosion resistance of die cast AZ91 magnesium alloy[J]. Materials and Corrosion, 2007, 58(3): 189-192
    [18] Fan Yu, Wu Guohua, Gao Hongtao, et al. Influence of lanthanum on the microstructure, mechanical property and corrosion resistance of magnesium alloy[J]. Journal of Materials Science, 2006, 41(17): 5409-5416
    [19] A. Pardo, M. C. Merino, A. E. Coy, et al. Influence of microstructure and composition on the corrosion behaviour of Mg/Al alloys in chloride media[J]. Electrochimica Acta, 2008, 53(27): 7890-7902
    [20] A. Pardo, M. C. Merino, A. E. Coy, et al. Corrosion behaviour of magnesium/aluminium alloys in 3.5wt.% NaCl[J]. Corrosion Science, 2008, 50(3): 823-834
    [21] S. Amira, D. Dube, R. Tremblay, et al. Influence of the microstructure on the corrosion behavior of AXJ530 magnesium alloy in 3.5% NaCl solution[J]. MATERIALS CHARACTERIZATION, 2008, 59(10): 1508-1517
    [22]侯彬.镁合金防腐蚀表面处理研究进展[J].电子机械工程, 2008, 24(4): 42-44, 60
    [23]王维青,潘复生,左汝林.镁合金腐蚀及防护研究新进展[J].兵器材料科学与工程, 2006, 29(2): 73-76
    [24]郭冠伟,苏铁健,谭成文,等.镁合金腐蚀与防护研究现状及进展[J].新技术新工艺, 2007(9): 3, 69-71
    [25] H. Umehara, M. Takaya, S. Terauchi. Chrome-free surface treatments for magnesium alloy[J]. Surface and Coatings Technology, 2003, 169-170: 666-669
    [26] Dabal Manuele, Brunelli Katya, Napolitani Enrico, et al. Cerium-based chemical conversion coating on AZ63 magnesium alloy[J]. Surface and Coatings Technology, 2003, 172(2-3): 227-232
    [27] Yu Sheng-Xue, Cao Jing-Yu, Chen Ling, et al. Corrosion resistance, composition and structure of RE chemical conversion coating on magnesium alloy[J]. Transactions of Nonferrous Metals Society of China, 2008, 18(Supplement 1): s349-s353
    [28] Yu Shengxue, Lv Qiaoyan, Han Jing, et al. Preparation and Performance of Rare Earths Chemical Conversion Film on Magnesium Alloy[J]. Journal of Rare Earths, 2006, 24(1, Supplement 1): 397-400
    [29] Dai Dan, Wang Hui, Li Jian-Zhong, et al. Environmentally friendly anodization on AZ31 magnesium alloy[J]. Transactions of Nonferrous Metals Society of China, 2008, 18(Supplement 1): s380-s384
    [30] Li Ling-Ling, Cheng Ying-Liang, Wang Hui-Min, et al. Anodization of AZ91 magnesium alloy in alkaline solution containing silicate and corrosion properties of anodized films[J]. Transactions of Nonferrous Metals Society of China, 2008, 18(3): 722-727
    [31] Wu Hai-Lan, Cheng Ying-Liang, Li Ling-Ling, et al. The anodization of ZK60 magnesium alloy in alkaline solution containing silicate and the corrosion properties of the anodized films[J]. Applied Surface Science, 2007, 253(24): 9387-9394
    [32] Houng-Yu Hsiao, Hua-Chih Tsung, Wen-Ta Tsai. Anodization of AZ91D magnesium alloy in silicate-containing electrolytes[J]. Surface and Coatings Technology, 2005, 199(2-3): 127-134
    [33]曾爱平,薛颖,钱宇峰,等.镁合金的化学表面处理[J].腐蚀与防护, 2000, 21(2):55-56, 63
    [34] Mu Weiyi, Han Yong. Characterization and properties of the MgF2/ZrO2 composite coatings on magnesium prepared by micro-arc oxidation[J]. Surface and Coatings Technology, 2008, 202(17): 4278-4284
    [35] M. Laleh, A Sabour Rouhaghdam, T. Shahrabi, et al. Effect of alumina sol addition to micro-arc oxidation electrolyte on the properties of MAO coatings formed on magnesium alloy AZ91D[J]. Journal of Alloys and Compounds, 2010, 496(1-2): 548-552
    [36] A. Da Forno, M. Bestett. Effect of the electrolytic solution composition on the performance of micro-arc anodic oxidation films formed on AM60B magnesium alloy[J]. Surface and Coatings Technology, 2010, 205(6): 1783-1788
    [37]张艳. AZ91D镁合金表面真空固态扩散渗铝层的组织及性能研究[D].太原:太原理工大学, 2008
    [38]李娜. AZ91镁合金表面固态扩渗的研究[D].西安:西北工业大学, 2007
    [39]肖泽辉,张仁.镁合金激光表面处理技术[J].电镀与涂饰, 2008, 27(11): 28-31
    [40]周大伟,许晨阳,李晋,等.镁合金激光表面改性研究新进展[J].轻金属, 2007(04): 39-42
    [41] G. Abbas, Z. Liu, P. Skeldon. Corrosion behaviour of laser-melted magnesium alloys[J]. Applied Surface Science, 2005, 247(1-4): 347-353
    [42] Chen C. J., Wang M. C., Wang D. S., et al. Laser cladding of Mg20Al80 powder on ZM5 magnesium alloy [J]. Corrosion Engineering Science and Technology, 2007, 42(2): 130-136
    [43]刘建永,张元好,曾大新.铸渗技术制备金属基表面复合材料的研究进展[J].湖北汽车工业学院学报, 2003, 17(01): 17-21
    [44]李珍,陈跃,上官宝.铸渗法制备金属基表面复合材料的研究现状与进展[J].河南科技大学学报(自然科学版), 2005, 26(01): 14-17, 39
    [45]阎峰云,李元东,蒋春宏. V-EPC法铸渗表面合金化研究[J].铸造设备研究,2000(02): 13-16, 44
    [46]袁中岳,武仲铭,赵恒章,等.铸件表面合金化评述[J].铸造设备研究, 2002(05): 18-20
    [47]侯春林. 45钢铸渗技术中粘接剂的研究[D].成都:西华大学, 2008
    [48]夏亚锋,张元好,丁洁淼. V-EPC铸渗铁基复合材料的研究[J].特种铸造及有色合金, 2001(02): 32-33
    [49]庞兆夫.金属铸渗的基本原理及其作用[J].鞍钢技术, 1997(01): 43-45, 65
    [50]许大庆,罗吉荣,宋象军. V-EPC铸渗工艺的研究[J].铸造设备研究, 1999(02): 3-6
    [51]纪朝辉,张成军.消失模铸钢件表面合金化铸渗机理研究[J].铸造, 2000, 49(03): 130-133
    [52]周永欣,赵西城,吕振林. SiC粒子与钢铸渗复合界面特征分析[J].兵器材料科学与工程, 2007, 30(03): 24-27
    [53]杨贵荣,马颖,宋文明,等.铜合金表面铸渗的工艺参数及组织分析[J].铸造, 2004, 53(04): 284-287
    [54]宋文明,杨贵荣,李亚敏,等.负压铸渗法制备铜合金表面复合材料[J].热加工工艺, 2005(10): 22-24
    [55] Yang Gui-Rong, Song Wen-Ming, Lu Jin-Jun, et al. Microstructure of surface composite Al2O3/Ni on copper substrate produced by vacuum infiltration casting[J]. Materials Science and EngineeringA, 2006, 418(1-2): 223-228
    [56] Song Wen-Ming, Yang Gui-Rong, Lu Jin-Jun, et al. Microstructure and wear behaviour of Ni-based surface coating on copper substrate[J]. Wear, 2007, 262(7-8): 868-875
    [57]李元东,阎峰云,李爱萍. V-EPC法铸渗过程的热力学及动力学研究[J].铸造技术, 2000(03): 39-42
    [58]叶小梅. V-EPC铸渗法制备铁基表面复合材料的铸渗机理研究[D].昆明:昆明理工大学, 2007
    [59]黄发荣,焦杨声.酚醛树脂及其应用[M].北京:化学工业出版社, 2003
    [60] http://baike.baidu.com/view/333383.htm[Z]
    [61]刘楚明,朱秀荣,周海涛.镁合金相图集[M].长沙:中南大学出版社, 2006
    [62] He Meifeng, Liu Lei, Wu Yating, et al. Corrosion properties of surface-modified AZ91D magnesium alloy[J]. Corrosion Science, 2008, 50(12): 3267-3273
    [63]梁英教,车荫昌.无机热力学数据手册[M].沈阳:东北大学出版社, 1993
    [64]中国金属学会,中国有色金属学会.金属材料物理性能手册第一册,金属物理性能及测试方法[M].北京:冶金工业出版社, 1987
    [65]杨贵荣.铜合金表面铸渗工艺及渗层性能的研究[D].兰州:兰州理工大学, 2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700