V-EPC铸渗法制备铁基表面复合材料的铸渗机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文对V-EPC铸渗法制备碳化钨/铁基表面复合材料的铸渗机理进行了研究,主要包括铸渗工艺参数对铸渗深度的影响规律和有关界面的研究等。
     首先,为模拟铸渗过程,考察浇注温度和真空度这两个工艺因素对铸渗深度的影响,论文设计了一个简易的铸渗动力学装置,选取同一真空度下(-0.06MPa)不同浇注温度(1400℃、1450℃、1500℃、1550℃和1600℃)以及同一浇注温度下(1500℃)不同的真空度(0、-0.02MPa、-0.04MPa和-0.06MPa)进行实验,结果表明:铸渗深度分别随着浇注温度的升高和真空度的增大而增加,相关的铸渗深度的公式也证实了实验所得的结论。
     论文还针对可能发生的界面反应进行热力学计算,结果表明:首先发生反应W_2C=WC+W,然后析出的W或与C结合重新生成WC或W_2C析出,或与WC结合生成W_2C,后者发生的可能性较大。
     论文中复合材料的界面为第3类界面,即铸渗过程中界面处碳化钨、高碳铬铁和灰铸铁这三种物质之间相互作用并生成界面反应物。论文设计了一组有关这三种物质的差热分析实验,并对该实验得到的试样进行XRD和SEM等一系列实验,为研究该界面提供指导。结果表明:铸渗过程中,高碳铬铁熔化,碳化钨颗粒产生局部溶解,界面产物主要有重新析出的WC和W_2C、M_6C型碳化物和M_7C_3型碳化物(M为Fe、Cr、W);WC的溶解和析出,改变了碳化钨颗粒和基体的原始成分和形态,且适当的界面反应,有利于基体合金化、减小界面处的应力集中,提高界面结合强度,进而提高材料的耐磨性;只将碳化钨看作增强相时,灰铸铁加高碳铬铁基体中碳化钨的溶解程度最大,析出产物最为复杂。复合层形成的条件是能量流和物质流必须同时存在;高碳铬铁未能与碳化钨颗粒形成良好的冶金结合正说明了只有能量流存在时,不能形成复合层。
In the paper, the cast-infiltration mechanism of WC reinforced HT300 matrix surface-layer composite fabricated by V-EPC and cast-infiltration process was studied, including the influence of cast-infiltraton parameter on infiltration depth, and the study on the interface in the composite material.
    First of all, for simulating the cast-infiltration process, a simple infiltration apparatus was designed to study the influence of the melting temperature and vacuum degree on infiltration depth, and melting temperature and vacuum degree varied in series experiments. The results show that the infiltration depth increases as the melting temperature and vacuum degree increases. The relating infiltration depth formula confirms to it.
    In addition, the possible interface reactions were calculated on thermodynamics. The resulte shows as is followed: there is the reaction W_2C = WC+W, then the formed
    W synthesizes with C to form WC or W_2C, or synthesizes with WC to form W_2C. The tendency of the latter is bigger than the former.
    The interface in the composite material in this paper is the third interface, on which tungsten carbide, high carbon chrominum iron and grey iron interact, forming interface reaction formation. The three matters were analyzed by Differential Thermal Analysis (DTA) to study the interface reactions. The samples gained by DTA were analyzed by Scanning Electron microscope (SEM) and X-Ray Diffraction (XRD). The results show that in the cast-infiltration process high carbon chrominum iron melted, tungsten carbide particle partly dissolved and the interface reaction formations were reformed WC and W_2C, M_6C and M_7C_3 carbide while M contained Fe,Cr and W; The dissolution and formation of tungsten carbide particles changed the original contain and shape of the tungsten carbide particles and the matrix, and the appropriate interface reactions were good for the matrix alloying, reducing stress concentration on the interface, increasing the interface bond strength and improving the abration resistance of the material. During the different matrice, tungsten carbide in the grey iron and high carbon chrominum iron matrix dissolved the most and the formations were the most. The composite layer formed when the energy flow and matter flow
    egsisted simultaneously. When there was only energy flow the composite layer didn't form. It was showed by that high carbon chrominum iron and tungsten carbide didn't form the metallurgical bond.
引文
[1] 王武孝,袁森.铸造法制备颗粒增强金属基复合材料的研究进展[J].铸造技术,2001,(2):42~45
    [2] 张淑英,孟繁琴,陈玉勇,等.颗粒增强金属基复合材料的研究进展[J].材料导报,1996,(2):66~71
    [3] 王恩泽,徐学武,邢建东.颗粒增强钢基铸造复合材料研究[J].材料科学与工程,1996,56(12):27~30
    [4] 郭小军.铸渗法制取颗粒增强钢基复合材料的研究[D]:[硕士学位论文].沈阳:东北大学,2001
    [5] 李祖来,蒋业华,周荣.铸渗法制备钢铁基表面耐磨复合材料[J].铸造设备研究,2003,3(6):27~30
    [6] 上官宝,陈跃.高铬铸铁铸渗层的冲击磨损性能研究[J].中国铸造装备与技术,2004,(1):21~23
    [7] 严有为,汪大经.铸渗工艺及其机理的研究[J].汽车工艺与材料,1998,(8):8~10,25
    [8] 袁中岳,张忠明,李朝升,等.消失模铸渗法制备复合材料的研究[J].功能材料,2002,33(6):684~686
    [9] 张万红,方亮.消失模铸造工艺的发展和研究现状[J].铸造设备研究,1998,(6):29~32
    [10] 姜青河,廖希亮,庞守美.消失模铸造技术的国内外现状及展望[J].铸造设备研究,1999,(1):1~3
    [11] 刘建永,张元好,曾大新.铸渗技术制备金属基表面复合材料的研究进展[J].湖北汽车工业学院学报,2003,17(1):17~21
    [12] 张正洋.铸渗WC复合材料的研究[J].铸造,1993,(4):18~22
    [13] 刘建永.反应铸渗法制备Fe-WC表面复合材料的研究[D]:[硕士学位论文].武汉:武汉科技大学,2003
    [14] 李祖来.V-EPC制备铁基表面耐磨复合材料[D]:[硕士学位论文].昆明:昆明理工大学,2004
    [15] 纪朝辉,魏尊杰,张成军.用铸渗工艺对消失模铸铁件进行表面合金化的研究[J].材料科学与工艺,2001,9(2):195~198
    [16] 江伯鸿.材料热力学[M].第1版.上海交通大学出版社,1999
    [17] 郝士明.材料热力学[M].第1版.化学工业出版社,2004
    [18] 石锋,钱端芬,吴顺华.SiCp/Al复合材料界面反应的XRD及热力学分析[J].硅酸盐通报,2003,(6):12~16
    [19] 尤显卿,任昊.铸造WC/钢铁基复合材料研究进展[J].合肥工业大学学报,2003,26(5):1063~1067
    [20] D.Lou, J.Hellman, D.Luhulima, et.al. Interactions between tungsten carbide (WC) particulates and metal matrix in WC-reinforced composites [J]. Materials Science and Engineering,2003,A340:155~162
    [21] 游兴河.WC在WC/钢复合材料中的溶解行为[J].复合材料学报,1994(3):29~35
    [22] 于化顺,闵光辉,任旭芳,等.B_2O_3与Mg-Li合金反应合成复合材料的热力学及动力学研究[J].复合材料学报,1998,15(2):18~22
    [23] 司为民,郑灵仪,李鹏兴,等.金属间化合物基复合材料的界面反应-热力学计算预测[J].复合材料学报,1995(2):68~74
    [24] 吕维洁,张小农,张荻,等.原位合成TiB和TiC增强钛基复合材料热力学[J].中国有色金属学报,1999(6):220~224
    [25] 李元东,阎峰云,李爱萍,等.V-EPC法铸渗过程的热力学及动力学研究[J].铸造技术,2000(3):39~42
    [26] 夏亚锋,张元好,丁洁淼.V-EPC铸渗铁基复合材料的研究[J].铸造设备研究,2001,2:13~15,23
    [27] 夏亚锋,张元好,丁洁淼.用V-EPC铸渗法制造铁基颗粒复合材料的研究[J].现代铸铁,2003,2:18~21
    [28] 胡连喜,杨绮雯,罗守靖,等.铝/氧化铝纤维预制体的液态浸渗动力学[J].中国有色金属学报,1998,8(增刊):75~79
    [29] 王恩泽,郑燕青,刑建东,等.铸渗法制备颗粒增强钢基复合材料的研究[J].复合材料学报,1998,15(2):12~17
    [30] B.S.Murty, S.K.Thakur, B.K.Dhindaw. On the infiltration behavior of Al, Al-Li, and Mg melts through SiCp bed [J]. Metallurgical and Materials Transactions, 2000, 31A(1): 319~325
    [31] Wen-Sheng Chung,Su-Jien Lin.Ni-coated SiCp reinforced aluminum composites processed by vacuum infiltration [J]. Materials Research Bulletin, 1996, 31(12):1437~1447
    [32] 杨贵荣,郝远,阎峰云,等.一种新型金属材料的表面改性技术[J].铸造设备研究,2003,6(3):49~51
    [33] 马幼平,许云华,贾刘卡.负压实型铸造及其铸件质量[M].第1版.北京:冶金工业出版社,2002
    [34] 索进平,冯涤,骆合力,等.WC颗粒在堆焊过程中溶解机理的研究[J].功能材料,2003,34(2):221~223
    [35] 吴新伟,曾晓雁,朱蓓蒂,等.镍基WC金属陶瓷激光熔覆涂层的熔化烧损规律[J].金属学报,1997,33(12):1282~1288
    [36] Li Yajiang,Zou Zengda,Holly Xiao, et.al. Microstructure and XRD analysis in the brazing zone of a new WC-TiC-Co hard alloy [J]. Material Research Bulletin, 2002, 37: 941~948
    [37] 梁英教,车荫昌.无机物热力学数据手册[M].第1版.沈阳:东北大学出版社,1993
    [38] 叶大伦.实用无机物热力学数据手册[M].第2版.北京:冶金工业出版社,2002
    [39] 杨全,张真.金属凝固与铸造过程数值模拟[M].第1版.杭州:浙江大学出版社,1996,9
    [40] 王溪,胡汉起.WCp/Fe-Ni钢基复合材料的界面[J].钢铁研究学报,1998,10(4):46~49
    [41] 游兴河.WC在WC/50CrMo钢复合材料中的溶解行为[J].合肥工业大学学报,1993,16(1):94~100
    [42] 李铸刚.工艺参数及渗料配比对铸渗件表面组织与性能的影响[D]:[硕士学位论文].武汉:华中科技大学,2004
    [43] http://met.fzu.edu.cn/cai/clkx/qita/xiti/8/1.files/1.htm
    [44] http://mse.csu.edu.cn/clxjpkc/ex/ex5.htm
    [45] Y. Sahina, M. Acilar. Production and properties of SiCp-reinforced aluminium alloy composites [J]. Composites, 2003, 34: 709~718
    [46] T.Yamauchi, Y.Nishida.Infiltration kinetics of fibrous performs by aluminum with solidification [J]. Acta metal. mater, 1995, 43 (4): 1313~1321
    [47] Hansen.S.Casting-on-Surfacing of Polystyrene Pattern Casting [J]. AFS Transactions, 1991, 93
    [48] Ezhov V.L, et.al. Increasing Service Life of Casting Hot-Moulding Dies [J]. Liteione Proizvodstvo, 1991, (5)
    [49] He, Y. Analysis of the Mechanism of Surface Alloying During Casting [J]. Metallurgy Italiana, 1998, (11)
    [50] 蒋业华,周荣,卢德宏,等.渣浆泵用WC/铁基表面复合材料的研究[J].铸造,2002,51(3):170~172
    [51] 蒋业华,周荣,张玉勤,等.颗粒体积分数对WC/铁基表面复合材料冲蚀磨损性能的影响[J].铸造,2002,51(7):428~430
    [52] 张丽英,黄倬,田海舸,等.WC颗粒在喷射成形高速钢复合材料中溶解-析出机理[J].北京科技大学学报,1997,19(6):599~604
    [53] 张丽英,田海舸,黄倬,等.超声雾化沉积WC颗粒增强高速钢复合材料的制备[J].北京科技大学学报,1997,19(6):595~598
    [54] 张丽英,田海舸,黄倬,等.喷射成形WC颗粒增强高速钢基复合材料中WC的颗粒行为[J].粉末冶金技术,1998,16(2):111~115
    [55] Delannay F.et.al. The wetting of solids by molten and Its Relation to the Preparation of MMCs [J]. Mater.Sci, 1987, 22
    [56] Li.Q.F, et.al. Casting and HIPping of Al-based MMCs [J]. Mater.Rro.Tech, 1995, 48
    [57] Mechel. Surface Alloying the Operating Layer of Ingot Moulds [J]. Mezhdunarodnays Kniga, 1998, (3)
    [58] I.V.Uskov et al. Improving the Wear Resistance of Steel Castings by strengthening the surface with Silicon-Carbide and Chromium-carbide Powers [J]. Soviet Journal of Friction and Wear, 1989, (2)
    [59] 刘国宇.WC陶瓷颗粒增强/铸铁基体局部复合渣浆泵过流件研究[J].锡业科技,2003,4(3):15~21
    [60] 张国赏,刘国宇,邢建东,等.WCp/Mn13表面复合材料的制备及其冲击磨损性能[J].西安交通大学学报,2005,39(7):757~761
    [61] 杨瑞成,王军民,王夏冰,等.颗粒复合材料中硬质相(WC)与钢基体的交互作用及其影响[J].金属热处理,1998,(12):7~9
    [62] 杨瑞成,师瑞霞,王晖,等.WC/钢基复合材料奥氏体化后的硬化效应及微观机理[J].复合材料学报,2002,19(2):41~44

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700