电流型电子式电压互感器关键技术及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电子式电压互感器(EVT)具有体小质轻、无铁磁谐振、绝缘性能好、频率响应范围宽以及采用数字量输出等优点,被认为是传统电压互感器的替代产品,代表着高性能电压互感器技术的发展方向。虽然国内外研究人员在EVT的理论和应用研究方面已经取得了很大进展,但是目前EVT的技术尚不成熟,现场在运行的EVT普遍存在受温度和电磁干扰影响较大、故障率偏高等问题。本文以开发性能稳定可靠的EVT为目标,提出了直测电流型EVT的设计思想,围绕电流型EVT的组成原理及关键技术展开系统深入的研究,成功研制出110kV电流型EVT。本文完成的主要工作如下:
     (1)针对分压型EVT在传输分压信号过程中易受电磁干扰的问题,提出了一种通过直接检测电容电流实现一次电压传感和测量的电流型EVT构成方案。该方案利用电容传感头将待测高电压直接变换为电容电流信号,再进行信号还原从而实现电压测量。由于传输电流信号几乎不受电磁场干扰的影响,因此从传感机理上保证了电流型EVT良好的抗干扰性能。
     (2)高压电容传感头是电流型EVT实现信号传感的核心部件,针对常用的油浸式高压电容器易受杂散电容影响和介质损耗偏大的问题,提出了一种具有集中结构的独立式SF6同轴圆筒型高压电容传感头。建立了电容传感头的数学模型和电场模型,利用有限元法对其电场分布和受杂散电容的影响情况进行了仿真分析。系统地研究了SF6气体压力、温度、电极几何参数等因素对电容传感头性能的影响,并提出相应的改进方法。仿真分析及样机试验结果表明,SF6同轴圆筒型电容传感头受杂散电容影响小、介质损耗小、极间电场均匀、绝缘性能强。
     (3)信号积分是电流型EVT实现电压信号还原的关键环节,其工作特性直接影响EVT的稳态和暂态性能。针对常用积分电路不能兼顾宽频带响应特性和快速暂态响应的问题,提出了一种基于系统状态的自适应积分电路。自适应积分电路通过判别系统处于稳态或暂态情况,自动控制两种不同性能的积分器工作状态的切换,可以同时实现稳态宽频带响应性能和快速暂态响应性能,满足电流型EVT对信号积分电路在工频信号高精度测量、谐波测量和暂态性能等各方面的要求。仿真分析结果验证了自适应积分电路的正确性和有效性。
     (4)研究了提高电流型EVT工作稳定性的误差补偿方法。针对温度和SF6气体压力影响电容传感头测量精度和稳定性的问题,利用多传感器信息融合方法对电容传感头进行误差补偿。建立了包含温度、气体压力和电容传感头理想电容量的三元回归信息融合模型,采用最小二乘法获取最优的回归模型参数,计算电容传感头电容量的估计值,并利用该估计值对电流型EVT的输出电压进行修正,从而实现电容传感头的误差补偿,仿真结果验证了信息融合方法的有效性。针对模拟信号处理电路的温度漂移问题,建立了模拟信号处理电路的温度误差模型,提出了基于铂电阻的温度补偿方法,温度误差试验结果表明该方法能有效提高模拟信号处理电路的温度稳定性。
     (5)对电流型EVT的高压电容传感头和信号处理单元进行了设计;分析了变电站电磁干扰侵入电流型EVT的途径,研究了提高电流型EVT电磁兼容性能的措施,电磁兼容试验结果验证了所采取电磁兼容措施的有效性;对研制的110kV电流型EVT样机进行了多项试验,试验结果表明,电流型EVT样机的测量准确度达到0.2级,保护准确度达到3P级,而且符合EVT标准的其它相关性能要求。
     本文提出的电流型EVT采用基于直测电容电流进行高电压测量的传感原理和方法,具有抗干扰能力强、温度稳定性好、暂态性能好、带宽满足谐波测量要求的优点。本文的研究为EVT的实现提供了新的思路和解决方案,研制的电流型EVT整机性能指标达到了预期的设计目标,能够满足工程实用化的要求,具有广阔的应用前景。
Electronic Voltage Transformer (EVT) has a variety of advantages. It is small,light, non-ferroresonant, has a good insulation performance and a wide frequencyresponse range, as well as it can provide digital output. Therefore, EVT has beenconsidered as an appropriate substitute of the traditional voltage transformer and itrepresents the development trend of the high performance voltage transformertechnology. Many researchers from all over the world have made lots of progress inthe theories and applications of EVT. However, the techniques of EVT have not beenwell developed. The current operating EVTs have some common problems, such astemperature influence, electromagnetic interference, and high failure rate, etc. Aimedat the development of stable and reliable EVTs, this dissertation, firstly, bringsforward a design concept of the directly detecting current-based EVT, then, it studiesthe composition principles and key techniques of the EVT systemically andthoroughly, and finally researches and manufactures a110kV current-based EVTsuccessfully. The major achievements of this dissertation are described as follows:
     (1) To deal with the problems of the divider-based EVT’s electromagneticinterference during transmission of partial voltage signal, a current-based EVTscheme is proposed, which can realize primary voltage sensing and measurement bydirectly detecting capacitive current. Specifically, it, firstly, transforms the highvoltage, which needs to be measured, into capacitive current signal by usingcapacitive sensor, then re-transforms the current signal into voltage signal for voltagemeausurement. Since current transmission is hardly affected by electromagneticinterferences, a good anti-interference performance of the current-based EVT can beguaranteed from the sensing principles.
     (2) High-voltage capacitive sensor is a key component of the current-based EVTfor the signal sensing. This dissertation proposes a freestanding SF6coaxial cylinderhigh-voltage capacitive sensor with integrated construction, to deal with the problemsof being much affected by the stray capacitance and high dielectric loss of thecommon oil-immersed high-voltage capacitor. Here, the mathematical and electricfield models of the capacitive sensor are established, and the simulation analysis ofelectric field distribution and the stray capacitance influence are done by using finiteelement method. It also studies systemically the performance of the capacitive sensor as the change of parameters, including SF6gas pressure, temperature, and theelectrodes’ geometric parameter, then based on that, it introduces correspondingimproved methods. The results of simulation analysis and capacitive sensor prototypetests demonstrate that the proposed sensor is almost not influenced by straycapacitance, and has low dielectric loss, uniformity of electric fields between theelectrodes, as well as high insulation performance.
     (3) Signal integration is a key part of the current-based EVT to realize voltagere-transformation, whose operating characteristics have direct influence on the steadyand transient performances of the EVT. To deal with the problem that the commonused integral circuits cannot pay attention to both of the wide-band frequencyresponse characteristics and the rapid transient response characteristics, thisdissertation proposes a system state-based adaptive integral circuit. The circuit canidentify the steady and transient states of the power system, and then automaticallyswitch the working states of two integrators with different performances. The circuitcan achieve both wide-band frequency response characteristics in steady state andrapid transient response characteristics, so it can meet the requirements of thecurrent-based EVT on precise power-frequency signal measurement, the harmonicmeasurement and transient performances. The results of simulation analysis haveproved the correctness and effectiveness of the adaptive integral circuit.
     (4) The error compensation methods to improve the operation stability of thecurrent-based EVT are investigated in this dissertation. The multi-sensor informationfusion method is employed for error compensation of the capacitive sensor, to dealwith the problem that temperature and SF6gas pressure influence the measurementaccuracy and stability of the capacitive sensor. Firstly, the information fusion modelbased on the ternary regression analysis is established, which include temperature, gaspressure and ideal capacitance of the capacitive sensor. Secondly, the least squaremethod is used to get the optimal parameters in the regression model. Thirdly, theestimated capacitance value of the capacitive sensor is calculated. Finally, theestimated value is used to modify the output voltage of the current-based EVT,realizing the error compensation of the capacitive sensor. The simulation results haveproved the effectiveness of the information fusion method. To deal with thetemperature drift of the analog signal processing circuit, this dissertation establishesthe temperature error model of the analog signal processing circuit, and proposes atemperature compensation method based on the platinum resistor. The temperatureerror experimental results have demonstrated that this method can effectively improve the temperature stability of the analog signal processing circuit.
     (5) This dissertation designs the high-voltage capacitive sensor and the signalprocessing unit of the current-based EVT. The electromagnetic interference path tothe current-based EVT is analyzed, and the strategies to improve the EVT’selectromagnetic compatibility are studied. The effectiveness of the strategies isdemonstrated by the electromagnetic compatibility test results. Several experimentson the110kV current-based EVT prototype are conducted. The experimental resultshave shown that the EVT prototype assures0.2measurement precision class and3Pprotective class, as well as complies with other relevant performance requirements ofEVT standards.
     The proposed current-based EVT is based on the sensing theories and methodsfor measuring high voltage by directly detecting capacitive current. It has manyadvantages, among these are strong anti-interference performance, good temperaturestability, and good transient performance, and satisfactory bandwidth meeting therequirements of harmonic measurement. The research in this dissertation provides anew design idea and solution for realizing EVT. In addition, the researched andmanufactured current-based EVT has achieved the prospective design goals and canmeet the requirements of engineering applications, therefore, it has very promisingapplications in this field.
引文
[1] Anjan Bose. Smart transmission grid applications and their supportinginfrastructure. IEEE Transactions on Smart Grid,2010,1(1):11-19
    [2] Xi Fang, Satyajayant Misra, Guoliang Xue, et al. Smart grid–The new andimproved power grid: A Survey. IEEE Communications Surveys&Tutorials,2012,14(4):944-980
    [3] J. O. Petinrin, Mohamed Shaaban. Smart power grid: Technologies andapplications. In: IEEE International Conference on Power and Energy. KotaKinabalu,2012,892-897
    [4]余贻鑫,栾文鹏.智能电网述评.中国电机工程学报,2009,29(34):1-8
    [5]汤奕, Manisa Pipattanasomporn,邵盛楠,等.中国与美国和欧盟智能电网之比较研究.电网技术,2009,33(15):7-15
    [6]肖世杰.构建中国智能电网技术思考.电力系统自动化,2009,33(9):1-4
    [7] Sadik Kucuksari, George G. Karady. Experimental comparison of conventionaland optical VTs, and circuit model for optical VT. IEEE Transactions on PowerDelivery,2011,26(3):1571-1578
    [8]徐大可,赵建宁,张爱祥,等.电子式互感器在数字化变电站中的应用.高电压技术,2007,33(1):78-82
    [9] Marco Faifer, Sergio Toscani, Roberto Ottoboni. Electronic combinedtransformer for power-quality measurements in high-voltage systems. IEEETransactions on Instrumentation and Measurement,2011,60(6):2007-2013
    [10] Carson W. Taylor, Dennic C. Erickson, Kenneth E. Martin, et al. WACS–wide-area stability and voltage control system: R&D and online demonstration.Proceedings of the IEEE,2005,93(5):892-906
    [11] P.P. Chavez, N.A.F Jaeger, F. Rahmatian. Accurage voltage measurement bythe quadrature method. IEEE Transactions on Power Delivery,2003,18(1):14-19
    [12] Sadik Kucuksari, George G. Karady. Development of electrical circuit modelfor an optical potential transformer. In: Power and Energy Society GeneralMeeting. Pittsburgh,2008,1-5
    [13]冯建勤,王庆铭,丁莉芬,等.电子式电压互感器的研究现状和展望.变压器,2010,47(11):40-43
    [14]王红星,张国庆,郭志忠,等.电子式互感器及其在数字化变电站中的应用.电力自动化设备,2009,29(9):115-119
    [15]刘振亚.建设坚强智能电网,推动21世纪能源可持续发展—在2011智能电网国际论坛上的致辞.国家电网报,2011年9月29日
    [16]刘彬,叶国雄,郭克勤,等.电子式互感器性能检测及问题分析.高电压技术,2012,38(11):2972-2980
    [17] Chunxi Zhang, Xiujuan Feng, Sheng Liang, et al. Quasi-reciprocal reflectiveoptical voltage sensor based on Pockels effect with digital closed-loopdetection technique. Optics Communications,2010,284(20):3878-3883
    [18]崔瑛,叶妙元,陈志萍.110kV无分压型光纤电压互感器的研制.高电压技术,1998,24(4):75-78
    [19] Changsheng Li, Toshihiko Yoshino. Optical voltage sensor based onelectrooptic crystal multiplier. Journal of Lightwave Technology,2002,20(5):843-849
    [20] P. Niewczas, L. Dzitida, G. Fusiek, et al. Design and evaluation of apre-prototype hybrid fiber-optic voltage sensor for a remotely interrogatedcondition monitoring system. IEEE Transactions on Instrumentation andMeasurement,2005,54(4):1560-1564
    [21]徐雁,陈志萍,朱勇,等.无分压纵向线性电光效应用于高电压测量.高电压技术,2000,26(4):59-60,63,66
    [22]张明明,李红斌,刘延冰.基于纵向Pockels效应的光学电压互感器.传感器技术,2005,24(6):58-59,64
    [23] J.C. Santos, M.C. Taplamacioglu, K. Hidaka. Pockels high voltagemeasurement system. IEEE Transactions on Power Delivery,2000,15(1):8-13
    [24] Peter Norgard, S. Kovaleski. An electrooptic probe to determine internalelectric fields in a piezoelectric transformer. Review of Scientific Instruments,2012,83(2):025106-025106-7
    [25] Valery N. Filippov, Andrey N. Starodumov, Vladimir P. Minkovich, et al.Optically controlled voltage sensor. IEEE photonics technology letters,2000,12(7):870-872.
    [26]殷培峰,张婧瑜.基于光学电压互感器稳定性的分析与研究.电气自动化,2012,34(1):55-57.
    [27]张永,罗苏南.数字式光电电流/电压互感器.电力自动化设备,2002,22(6):47-49
    [28]刘丰,毕卫红,郭璇.基于椭圆芯保偏光纤模间干涉的光学电压互感器.光学学报,2009,29(1):219-224
    [29] K. Bohnert, P. Pequignot. Inherent temperature compensation of a dual-modefiber voltage sensor with coherence-tuned interrogation. Joumal of LightwaveTechnology,1998,16(4):598-604
    [30] J. A. Brandao Faria. An overview of electrooptic high voltage measuringsystems. In: Aficon '92Proceedings.,3rd Aficon Conference. Ezulwini Valley,1992,466-469
    [31] F. Rahmatian, N.A.F. Jaeger. An integrated optics sensor for high-voltagemeasurement applications. In: Canadian Conference on Electrical andComputer Engineering. Vancouver,1993,672-675
    [32] Sang Shin Lee, Min Cheol Oh, Sang Yung Shin, et al. Integrated opticalhigh-voltage sensor using a Z-cut LiNbO3cut off modulator. IEEE PhotonicsTechnology Letters,1993,5(9):996-999
    [33] A. H. Luxa, A. B. Mueller, T. J. Noble. Sensors and non-conventional VT andCT for medium voltage switchgear. In: Fifth International Conference onTrends in Distribution Switchgear:400V-145kV for Utilities and PrivateNetworks. London,1998,173-180
    [34]王佳颖.基于电阻分压原理的电子式电压互感器研究[西华大学硕士论文].成都:西华大学,2007,16
    [35]张贵新,万雄,王强,等.提高中压电子式电压互感器温度稳定性的新方法.高电压技术,2009,35(10):2434-2439
    [36]牛海清.电阻分压器电场计算及其结构参数的确定.华南理工大学学报(自然科学版),2004,32(1):33-36
    [37]方春恩,李伟,王佳颖,等.基于电阻分压的10kV电子式电压互感器.电工技术学报,2007,22(5):58-63
    [38]迟永久,牛海清.电阻分压器及电压传感器的结构设计和实验分析.变压器,2002,39(5):21-24
    [39]翁韶芳,孙丹婷.电子式电压互感器传感元件的分析及实验.南方电网技术,2008,2(5):55-58
    [40]杨玲君,周冬旭,徐志超.电容分压型电子电压互感器的特性研究.电力自动化设备,2012,32(8):71-74
    [41]韩世忠.基于电容分压的电子式电压互感器的研究[华中科技大学硕士论文].武汉:华中科技大学,2006,44-51
    [42] J.J. Hill, T.A. Deacon. Theory, design and measurement of inductive voltagedividers. Proceedings of the Institution of Electrical Engineers,1968,115(5):727-735
    [43] J.J. Hill. An optimized design for a low-frequency inductive voltage divider.IEEE Transactions on Instrumentation and Measurement,1972,21(4):368-372
    [44] Jiangting Zhao, Yang Yan, Yunfeng Lu, et al. An improved bootstrap methodfor the calibration of inductive voltage dividers. In: Conference on PrecisionElectromagnetic Measurements(CPEM). Washington DC,2012,722-723
    [45]陈应林,黄德祥,孙志杰. OET700电子式互感器的结构与性能.变压器,2006,43(6):1-5
    [46] A.J. Rogers. Optical technique for measurement of current at high voltage.Proceedings of the Institution of Electrical Engineers,1973,120(2):261-267
    [47] G. A. Massey, D. C. Erickson, R. A. Kadlec. Electromagnetic field components:their measurement using linear electrooptic and magnetooptic effects. Appliedoptics,1975,14(11):2712-2719
    [48] A.J. Rogers. Method for simultaneous measurement of current and voltage onhigh-voltage lines using optical techniques. Proceedings of Institution ofElectrical Engineers,1976,123(10):957-960
    [49] D.C. Erickson. The use of fiber optics for communications, measurement andcontrol within high voltage substation. IEEE Transactions on Power Apparatusand System,1980, PAS-99(3):1057-1065
    [50] M. Kanoe, G. Takahashi, T. Sato, et al. Optical voltage and current measuringsystem for electric power system. IEEE Transaction on Power Delivery,1986,1(1):91-97
    [51] M. Kuribara, M. Kurono. Passive optical multipoint sensing system for voltagemeasurement. IEE Proceedings J on Optoelectronics.1989,136(6):315-319
    [52] S.J. Huang, Dennis C. Erickson. The potential use of optical sensors for themeasurement of electric field distribution. IEEE Transactions on PowerDelivery,1989,4(3):1579-1585
    [53] Andrew J. Cruden, Zachery J. Richardson, J.R. McDonald, et al. Compact132kV combined optical voltage and current measurement system. IEEETransactions on Instrumentation and Measurement,1998,47(1):219-223
    [54] F. Rahmatian, N.A.F. Jaeger. Frequency responses of integrated optics Pockelscell high voltage sensors. In: IEEE/LEOS Annual Meeting. Boston,1992,462-463
    [55] N.A.F. Jaeger, F. Rahmatian. Integrated optics Pockels cell high-voltage sensor.IEEE Transactions on Power Delivery,1995,10(1):127-134
    [56] L.H. Christensen. Design, construction, and test of a passive optical prototypehigh voltage instrument transformer. IEEE Transactions on Power Delivery,1995,10(3):1332-1337
    [57] T. Sawa, K. Kurosawa, T. Kaminishi, et al. Development of optical instrumenttransformers. IEEE Transactions on Power Delivery,1990,5(2):884-891
    [58] D. Reinbald. Applications of optical current and voltage sensing. In: ElectricUtility Conference. USA,1997,182-186
    [59] Zhenghao He, Jing Li, Qizheng Ye, et al. Electrical field adjustment for500kVoptical metering unit. In: IEEE Power Engineering Society Summer Meeting.Chicago,2002,894-897
    [60] K. Bohnert, P. Gabus, H. Brandle. Fiber-optic current and voltage sensors forhigh-voltage substation. In:16th International Coference on Optical FiberSensors. Nara,2003,752-754
    [61] K. Bohnert, P. Gabus, J. Kostovic. Optical fiber sensors for the electric powerindustry. Optics and Lasers in Engineering,2005,43(3):511-526
    [62] J. Pease. Experience with optical “PTs and CTs” at500kV for metering andrelaying. In: IEEE Technical Aplications Conference and Workshops Northcon.Portland,1995,260-266
    [63] D. Chatrefou, G.F. Montillet. A series of implementation of optical sensors inhigh voltage substations. Proceedings of IEEE PES Transmission andDistribution Conference and Exposition,2003,(2):792-797
    [64] D. Chatrefou, M. Prischepa, D. Uhde. Application of optical sensors formeasurement of high frequency overvoltages in power transformer.Proceedings of IEEE Power Engineering Society Winter Meeting,2000,(3):2257-2268
    [65] Optical High Voltage Sensors123to765kV, Balteau Series CTO-VTO-CCO.Documents of GEC ALSTHOM, Paris,1997
    [66] S. Kobayashi, A. Horide, I. Takagi, et al. Development and field test evaluationof optical current and voltage transformers for gas insulated switchgear. IEEETransactions on Power Delivery,1992,7(2):815-821
    [67] T. Mitsui, K. Hosoe, H. Usami, et al. Development of fiber-optic voltagesensor and magnetic-field sensors. IEEE Transactions on Power Delivery,1987,2(1):87-93
    [68] E. Aikawa, A. Ueda, M. Watanabe, et al. Development of new concept opticalzero-sequence current/voltage transducers for distribution network. IEEETransactions on Power Delivery,1991,6(1):414-420
    [69]叶妙元,肖霞.光电互感器(一)—21世纪电力系统电压电流测量的基本设备.广东输电与变电技术,2003,(4):11-16
    [70] F. Rahmatian, P.P. Chavez, N. A. F. Jaeger.230kV optical voltage transducersusing multiple electric field sensors. IEEE Transactions on Power Delivery,2002,17(2):417-422
    [71] F. Rahmatian, P.P. Chavez, N.A.F. Jaeger.. Wide-band138kV distributed-sensor optical voltage transducer: Study of accuracy under pollution and otherfield disturbances. In: Power Engineering Society Summer Meeting. Vancouver,2001,156-161
    [72]李开成,叶妙元,王井刚.新型光纤电压测量仪的性能试验与现场运行.电工技术杂志,1997,(1):33-34
    [73]郑小平,廖延彪.光纤电压传感器温度特性的研究.光学学报,2000,20(12):1684-1687
    [74]刘丰,毕卫红,王健.光学高压电压互感器传感头结构的研究.电工技术学报,2008,23(5):43-48
    [75] Feng Liu, Delan Cao, Xuan Guo, et al. Intermodal interference of LP01andLP11modes in panda fibers. Chinese Optics Letters,2012,10(6):060602-1-4
    [76] Feng Pan, Xia Xiao, Yan Xu, et al. Optical AC voltage sensor based on twoBi4Ge3O12crystals. IEEE Transactions on Instrumentation and Measurement,2012,61(4):1125-1129
    [77] Hui Li, Liyang Cui, Zhili Lin. Signal detection for optical AC and DC voltagesensors based on Pockels effect. IEEE Sensors Journal,2013,13(6):2245-2252
    [78]朱勇,叶妙元,刘杰,等.220kV组合式光学电压电流互感器的设计.高电压技术,2000,26(2):34-36
    [79]高鹏,马江泓,杨妮,等.电子式互感器技术及其发展现状.南方电网技术,2009,3(3):39-42
    [80]娄凤伟,王汝琳,席政宏.基于模间干涉的光学电压互感器的设计.光电工程,2010,37(8):134-138
    [81]肖霞,叶妙元,陈金玲,等.光学电压互感器的设计和试验.电网技术,2003,27(6):45-47
    [82]许韦华,鲍海,杨以涵,等.压电陶瓷式电子电压互感器的信号处理方法.电力系统保护与控制,2010,38(10):48-51
    [83]陈丽娟,许晓慧,包玉树.一种新型光电电压互感器.电力自动化设备,2010,30(7):114-116
    [84] Feng Pan, Xia Xiao, YanXu, et al. An optical AC voltage sensor based on thetransverse Pockels effect. Sensors,2011,11(7):6593-6602
    [85] E. Kuffel, W.S. Zaengl, J. Kuffel. High voltage engineering fundamentals.Second Edition. Oxford: Butterworth-Heinemann,2000,55-58
    [86] T. Harada, T. Kawamura, Y. Akatsu, et al. Development of a high qualityresistance divider for impulse voltage measurement. IEEE Transactions onPower Apparatus and Systems,1971, PAS-90(5):2247-2250
    [87] T. Harada, T. Aizawa, Yoshihide Aoshima, et al. A consideration onmeasurement of voltage callapse during chopping in chopped impulse test oftransformer. IEEE Transactions on Power Apparatus and Systems,1974,PAS-93(1):158-166
    [88] Yi Liu, Fuchang Lin, Guan Hu, et al. Design and performance of aresistive-divider system for measuring fast HV impulse. IEEE Transactions onInstrumentation and Measurement,2011,60(3):996-1002
    [89] J.Schmid, K. Kunde. Application of non conventional voltage and currentssensors in high voltage transmission and distribution systems. In: IEEEInternational Conference on Smart Measurements for Future Grids(SMFG).Bologna,2011,64-68
    [90] M. Saitoh, T. Kimura, Y. Minami, et al. Electronic instrument transformers forintegrated substation systems. In: Transmission and Distribution Conferenceand Exhibition. Asia Pacific,2002,459-464
    [91] M. Smtoh, K. Kishimoto, M. Kosakada. Development of the electronicinstrument transformers for intelligent substation. TMT&D Review,2003,(1):1-6
    [92] R. Gross, J. Hemnarm, M. Wache, et al. Substation control and protectionsystems for novel sensors. In: CIGRE Session. Pairs,2002:1-9
    [93] Trench. LOPO low power instrument transformers for medium voltageswitchgear. http://www.trenchgroup.com,2012
    [94]徐雁,韩世忠,彭丽,等.电阻式电压互感器的研究.高电压技术,2005,31(12):12-14
    [95]牛海清,林莘.电阻式电压传感器结构设计及误差特性研究.电工技术杂志,2002(4):18-21
    [96]彭丽,徐雁,朱明钧.用于10kV线路的电阻分压式电压互感器.变压器,2003,40(11):17-20
    [97]方春恩,李伟,任晓等.基于电阻分压器的10kV电子式电压互感器的研制.西华大学学报(自然科学版),2010,29(2):148-151,155
    [98]杨楠.10kV电流/电压组合式传感器的研制[大连理工大学硕士论文].大连:大连理工大学,2005,13-15
    [99] M.M. Brady, K.G. Detrick. High-voltage pulse measurement with a precisioncapacitive voltage divider. Review of Scientific Instruments,1962,33(12):1421-1428
    [100] T. Hobejogi, J. Biela. Coaxial capacitive voltage divider with high divisionratio for high voltage pulses with very fast rise times. In: IEEE Pulsed PowerConference(PPC). Chicago,2011,313-318
    [101] A. Moschitta, M.L. Fravolini, P. Carbone, et al. Practical implementationissues in detecting voltage dips. In: IEEE International Instrumentation andMeasurement Technology Conference. Graz,2012,159-164
    [102] A. Kaczkowski, W. Knoth. Combined sensors for current and voltage are readyfor application in GIS. In: CIGRE. Paris,1998,106
    [103] H.G. Sarmiento, R. De La Rosa, V. Carrilllo, et al. Solving electric energysuppply to rural areas: the capacitive voltage divider. IEEE Transactions onPower Delivery,1990,5(1):259-265
    [104] J.P. Dupraz, G.F. Montillet. An innovative method for voltage measurement:application up to550kV GIS. Proceedings of IEEE PES Transmission anddistribution conference and exposition,2003,(2):460-465
    [105] V. Proca, N. Paduraru. Methods for non-conventional measuring sensorintegration in the medium voltage electrical equipment. In: IEEE Power Tech.St. Petrsgurg,2005,1-6
    [106] C. Svelto, R. Ottoboni, A.M. Ferrero. Optically-supplied voltage transducer fordistorted signals in high-voltage system. IEEE Transactions on Instrumentationand Measurement,2000,49(3):550-554
    [107] P. Bertolotto, M. Faifer, R. Ottoboni. High voltage multi-purpose current andvoltage electronic transformer. In: IEEE Instrumentation and MeasurementTechnology Conference. Warsaw,2007,1-5
    [108] F. Rahmatian. High-voltage current and voltage sensors for a smartertransmission grid and their use in live-line testing and calibration. In: IEEEPower and Energy Society General Meeting. Eetroit,2011,1-3
    [109]段雄英,廖敏夫,邹积岩.基于电容分压器的电子式电压互感器的研究.高电压技术,2003,29(1):50-51,59
    [110]钱政,贺向前,罗承沐.新型GIS用电子式光电组合互感器中电压传感器的性能分析.电工电能新技术,2003,22(1):25-28
    [111]张永辉,常安碧,甘延青,等.一种同轴高压电容分压器的设计.高电压技术,2003,29(1):37-41
    [112]时德钢,刘晔,胡光辉,等.一种基于电容分压的电子式电压互感器.电力电容器,2003,(4):1-3,12
    [113]罗苏南,南振乐.基于电容分压的电子式电压互感器的研究.高电压技术,2004,30(10):7-8
    [114]王红星,张国庆,蔡兴国,等.电容分压型电子式电压互感器研究与设计.电力自动化设备,2009,29(10):83-87
    [115]聂一雄,孙丹婷.阻容分压型电压互感器的性能分析.变压器,2007,44(1):9-14
    [116]李伟凯,郑绳楦.高压电压互感器精密电容分压器的研究与设计.传感技术学报,2005,18(3):634-637,656
    [117]王化冰,赵志敏.基于电容分压器的电子式电压互感器的研究.继电器,2007,35(18):46-49
    [118]赵志敏,林湘宁.电子式电压互感器传感器设计.电力自动化设备,2009,29(8):132-135
    [119]肖霞,张忠学,徐雁,等.基于电容分压原理的电子式TV一次侧设计.高电压技术,2006,32(5):15-18
    [120] Zhimin Zhao, Xiangning Lin, Zhiqian Bo. The design of the sensor inelectronic voltage transformer. In: IEEE Power&Energy Society GeneralMeeting. Calgary,2009,26-30
    [121] Hongxing Wang, Guoqing Zhang, Xingguo Cai, et al. The electronic capacitivevoltage transformers error characteristics research and parameter optimizationdesign. In: IEEE Power and Energy Society General Meeting. Calgary,2009,1-7
    [122]黄德祥,孙志杰,陈应林.新型高电压测量装置—数字光电式串联感应分压器的研制.高压电器,2005,41(2):143-145
    [123]曹志辉,周有庆,彭春燕,等.螺线管空心线圈电子式电压互感器.电力系统及其自动化学报,2010,22(2):60-64
    [124]吴涛,周有庆,曹志辉,等.新型中高压电子式电压互感器.电力自动化设备,2009,29(12):109-112
    [125]许灵洁,李航康,周琦,等.电子式互感器的现场误差试验及问题分析.浙江电力,2012,(11):5-7
    [126]丁涛,徐二强,武宏波,等.电子式互感器现场误差测试与问题分析.电测与仪表,2011,48(544):36-39
    [127]凌子恕.高压互感器技术手册.北京:中国电力出版社,2005,90-94
    [128]卢有盟,李兆林.全膜电力电容器及其发展.电力电容器,2002,23(4):1-4
    [129]王红星.电容分压型光学电压互感器研究[哈尔滨工业大学博士学位论文].哈尔滨:哈尔滨工业大学,2010,23-25
    [130] Dieter Kind, Kurt Feser. High voltage test techniques. Second Edition. NewDelhi: SBA,1999,68-70
    [131]赵博,张洪亮. Ansoft12在工程电磁场中的应用.北京:中国水利水电出版社,2010,68-69
    [132]刘文泽,蔡泽祥,黄松波,等.高压电力电容器内部最热点温度的计算模型.电力自动化设备,2009,29(7):82-84
    [133]张仁豫,陈昌渔,王昌长.高电压试验技术.北京:清华大学出版社,2009,53-54
    [134]何计谋,蒲路,祝嘉喜.126kV复合套管SF6电流互感器绝缘结构设计.高压电器,2006,42(1):42-46
    [135]赵凯华,陈熙谋.电磁学.北京:高等教育出版社,2006,63-64
    [136] W.莫尔施, W.豪席尔德著,李建基(译).高压绝缘用六氟化硫.北京:机械工业出版社,1984,86-87
    [137]殷之文.电介质物理学.北京:科学出版社,2003,50-51
    [138]黎斌. SF6高压电器设计.北京:机械工业出版社,2008,2-3
    [139]郭天兴.1000kV标准电容器的电容稳定性能研究.电力电容器,2006,(6):12-18
    [140]张习民,姚东永.电象法求非同轴空心圆柱的电容.河南教育学院学报(自然科学版),2003,12(1):16-17
    [141] W.F.Ray, C.R.Hewson. High performance Rogowski current transducers. In:IEEE Industry Application Conference. Roma,2000,3083-3090
    [142] C.D.M. Oates, A.J. Burner, C. James. The design of high performanceRogowski coils. In: International Conference on Power Electronics, Machinesand Drives,2002,289-298
    [143]杨玲君,周冬旭,徐志超.电容分压型电子电压互感器的特性研究.电力自动化设备,2012,32(8):71-74
    [144]高广玲.电子式电流互感器传变特性及适应性保护原理研究[山东大学博士学位论文].济南:山东大学,2010,32
    [145]钱政,申烛,罗承沐.电子式光电组合电流/电压互感器中的相位补偿技术.电力系统自动化,2002,26(24):40-44
    [146]潘泉,于昕,程咏梅,等.信息融合理论的基本方法与进展.自动化学报,2003,29(4):599-615
    [147] F. Smarandache, J. Dezert. Advances and applications of DSmT forinformation fusion. Rehoboth: American Research Press,2004,110-160
    [148]常炳国.采用数据融合处理技术提高传感器可靠性.西安交通大学学报,1998,32(12):5-7
    [149]程利民,孔力,李新德.信息融合方法及应用研究.传感器与微系统,2007,26(3):4-9
    [150]童诗白.模拟电子技术基础.北京:高等教育出版社,1988,402-403
    [151]魏群,刘可,施志民,等.怎样选用无线电电子元器件.北京:人民邮电出版社,2000,7-24
    [152]陆阳,韩江洪,魏臻,等.铂电阻测温系统温度补偿方法.仪器仪表学报,2006,21(3):255-257
    [153] А.Н.Аматуни,刘毓兰.精密膨胀测量的现状和发展趋势.国外计量,1990,(2):8
    [154]严璋,朱德恒.高电压绝缘技术.北京:中国电力出版社,2002,64-66
    [155]郭文泉.硅橡胶复合套管在断路器电容器上的应用.电力电容器,2006,(1):21-22
    [156]王剑乔,刘建新.微机保护抗电快速瞬变脉冲群干扰的研究.高电压技术,2005,31(10):36-38
    [157]邵琳.电力系统电磁兼容问题综述.云南电力技术,2002,30(2): l5-16
    [158]苏惠峰,高莉,段新,等.微机保护装置的电磁兼容设计.电力系统保护与控制,2009,37(17):97-101

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700