气动力及热载荷作用下功能梯度材料矩形板的非线性动力学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文分析了四边简支功能梯度材料矩形板在气动热载荷作用下的非线性动力学。本文基于Reddy的三阶剪切变形薄板理论和von-Karmann型大挠度非线性几何关系,得到了功能梯度矩形板弹性力学问题的基本方程,以此为基础通过Hamilton原理建立了热载荷和气动力作用下板的弹性动力学问题五个自由度的数学模型。选择横向位移的模态函数使其满足板四边简支的边界条件,进行二阶模态截断,用比较消元法和Galerkin方法得到板横向位移的非线性常微分控制方程组。本文假设材料参数沿厚度呈幂律变化,材料物性与温度相关,温度分布符合一维热传导定律,用活塞理论导出了高超音速非线性气动力的具体形式。模型考虑系统受线性气动力和非线性气动力作用两种不同的情况。
     文章用多尺度法得到系统在不同内共振条件下的平均方程,以Potter的观点为基础,将1:2内共振条件下系统的解分为平凡解、单模态解、双模态解、行波解、驻波解、调幅行波解六类,讨论了各类解存在和稳定的条件,以Aluminum- Alumina功能梯度材料板为例,用半解析法和数值方法研究了温度变化和组分指数对响应类型及稳定性的影响。数值实验最初只激发一个模态,系统因所受热载荷不同或有不同的材料组分指数,而可能出现双模态振动、单模态振动、倍周期振动等不同类型的响应,数值结果与半解析法的结果定性相同,但存在定量差异,文章讨论了可能引起这些差异的原因。
     本文分别分析了线性气动力和非线性气动力作用下板的气动热弹性响应,用多尺度法得到了系统在1:2内共振条件下的平均方程,受线性气动力作用时板没有非零定常解,受非线性气动力作用时当组分指数为0.2或5时平均系统中存在稳定的非零平衡点和非零周期解,但在原系统中没有找到对应的行波解和调幅行波解,数值结果得到的响应不是收敛到零就是发散到无穷。由于将四边简支FGM矩形板的双三角级数形式模态函数进行二阶截断的形式比较特殊,经Galerkin离散后各模态的线性项不耦合,因此模态发生屈曲前,不论受到哪种气动力作用,系统的零平衡点始终稳定。文中细致地分析了模态函数的截断形式对零平衡点稳定性的影响。
     本文分析了板的几何参数和组分指数对模态频率的影响,两个共振项系数异号是1:2内共振系统存在非零周期解的必要条件,文中分析了几何参数变化对共振项系数符号的影响。数值结果中有些情况下模态的Poincare截面有自相似结构,且有宽频连续频谱,有混沌运动的特点,本文用Melnikov法得到,系统的Hamilton量很小,不足以产生同宿轨道,没有Smale马蹄意义下的混沌。
Nonlinear dynamics of functionally graded plate subjected to aero-thermal load is analyzed in this paper. Based on Reddy’s third-order shear deformation plate theory and von-Karman- type large deflection nonlinear geometric relations, basic equations of functionally graded rectangular plate’s elasticity are obtained. Using Hamilton’s principle, elastodynamic model of simply-supported functionally graded plate subjected to aero-thermal load is established, which consists of five degrees of freedom. Transversal motion’s modal function satisfying simply-supported boundary is truncated to two modes. Nonlinear ordinary differential equations of transversal oscillation of the plate are derived by using elmination methods and Galerkin’s method. Material properties vary continously in the thickness direction according to simple power-law. Temperature distribution is in line with one-dimensional heat conduction law. Hypersonic aerodynamics pressure is approximated by higher-order poiston theory. Supersonic as well as hypersonic aerodynamic pressure is considered in this paper.
     Average equations in different internal resonance are obtained by using multi-scale method. Based on Potter’s idea, basic stationary solutions are divided into six types, including trivial state, pure modes, mixed modes, traveling waves, standing waves, and modulated traveling waves. Condition for the existence and stability of each type of solutions are discussed. Paticular results of the Aluminum-Alumina functionally graded rectangular plate are given. Effects of temperature and volume fraction index on nonlinear behaviors and stabilities of the plate are analyzed. In numerical experiments only one mode is excited at the beginning, however, many kinds of response, e.g. pure-mode oscillation, mixed-mode oscillation, n-periodic oscillation, may emerge with different temperature or different volume fraction index. Numerical results are qualitatively as same as theorical results, but are quantitatively different, possible reasons are discussed in the paper.
     Nonlinear aero-thermal elastodynamics of the plate subjected to linear and nonlinear aero-dynamic pressure are respectively analyzed. Average equations in 1:2 internal resonance of the plate subjected to aero-thermal load are obtained by using multi-scale method. There is no stationary solution if the plate is subjected to linear aero-dynamic pressure. With nonlinear aero-dynamic pressure, if fraction index is equal to 0.2 or 5, average system has stable equilibriums and stable periodic solutions, but relevant traveling waves and modulated traveling waves in original system have not been found. Numerical results show that the response either converges to zero or diverges to infinity. Because of the special form of the truncated two-mode function of the transversal motion, discreted by Galerkin method, linear terms of the two modes are uncoupled. So before buckling, zero equilibrium is always stable, no matter which kind of aerodynamic pressure the plate subjected to. Effects of the form of truncated two-mode function on zero-equilibrium’s stability are discussed detailedly in this paper.
     Effects of geometrical parameters and fraction index on natural frequencies of the two modes are analyzed. Coefficients of the two resonant terms have opposite sign is a necessary condition for the existence of non-zero stationary solutions in 1:2 internal resonance. Effects of geometrical parameters on coefficients of the resonant terms are discussed. Numerical results indicate that first mode’s Poincare map has self-similar structure sometimes; its spectrum has a continuous, broad-band nature. In order to recognize chaos, Melnikov’s method is used. Hamilton quantity is obtained and is too small to generate homoclinic orbits, so it is concluded that chaos in the sense of Smale horseshoe is absent.
引文
[1]新野正之,平井敏雄,斜倾技能材料,日本复合材料学会志,1987,13(6):257~260
    [2] S. Suresh,A. Mortensen著,李守新等译,功能梯度材料基础-制备及热机械行为,北京:国防工业出版社,2000
    [3]李永,宋健,张志民,梯度功能力学,北京:清华大学出版社,2003
    [4]王新林,孙桂琴,金属功能材料发展概况,金属功能材料,1999, 6(4):145~155
    [5]徐娜,李晨希,李荣德等,功能梯度材料的制备、应用及发展趋势,材料保护,2008,41(5):54~57
    [6] N. Noda, Thermal stresses in functionally graded materials, Journal of Thermal Stresses, 1999, 22(4-5): 477~512
    [7] Y. Ootao, Y. Tanigawa, Three-dimensional transient piezothermo-elasticity in functionally graded rectangular plate bounded to a piezoelectric plate, International Journal of Solids and Structures, 2000, 37(32): 4377~4401
    [8] Y. Ootao, Y. Tanigawa, Transient thermoelastic problem of functionally graded thick strip due to nonuniform heat supply, Composite Structures, 63(2):139~146
    [9] B. L. Wang, N. Noda, Thermally induced fracture of a smart functionally graded composite structure. Theoretical and Applied Fracture Mechanics, 2001, 35(2): 93~109
    [10] K. S. Kim, N. Noda, A Green’s function approach to the deflection of a FGM plate under transient thermal loading, Archieve of Applied Mechanics, 2002, 72(2-3): 127~137
    [11] K. S. Kim, N. Noda, Green’s function approach to unsteady thermal stresses in an infinite hollow cylinder of functionally graded material, ACTA Mechanica, 2002, 156(3-4): 145~161
    [12] A. Sutradhar, G. H. Paulino, L. J. Gray, Transient heat conduction in homogenous and non-nomogenous materials by the Laplace transform Galerkin boundary element method, Engineering Analysis With Boundary Element, 2002, 26(2): 119~132
    [13] K. M. Liew, S. Kitipornchai, X. Z. Zhang, et al. Analysis of the thermal stress behavior of functionally graded hollow circular cylinders, International Journal of Solids and Structures, 2003, 40(10): 2355~2380
    [14] H. Tsukamoto, Analytical method of inelastic thermal stresses in a functionally graded material plate by a combination of micro- and macromechanical approaches, Composites Part B-Engineering, 2003, 34(6): 561~568
    [15] Z. Q. Cheng, R. C. Batra, Three-dimensionally thermoelastic deformation of a functionally graded elliptic plate, Composite Part-B: Engineering, 2000, 31(2), 97~106
    [16] S. S. Vel, R. C. Batra, Exact solution for thermaoelastic deformations of functionally graded thick rectangular plates, AIAA Journal, 2002, 40(7): 1421~1433
    [17] S. S. Vel, R. C. Batra, Three-dimensional analysis of transient thermal stresses in functionally graded plates, International Journal of Solids and Structures, 2003, 40(25): 7181~7196
    [18] L. F. Qian, R. C. Batra, L. M. Chen, Analysis of cylindrical bending thermoelastic deformations of functionally graded plates by a meshless local Petrov-Galerkin method,Computational Mechanics, 2004, 33(4), 263~273
    [19] L. F. Qian, R. C. Batra, Transient thermoelastic deformations of a thick functionally graded plate, Journal of Thermal Stress, 2004, 27(8): 705~740
    [20] L. F. Qian, R. C. Batra, Three-dimensional transient heat conduction in a functionally graded thick plate with a higher-order plate theory and a meshless local Petrov-Galerkin method, Computational Mechanics, 2005, 35(3): 214~226
    [21] Y. Ootao, Y. Tanigawa, Transient Thermoelastic Problem of a Functionally Graded Hollow Cylinder Due to Asymmetrical Surface Heating, Journal of Thermal Stresses, 2009, 32(12): 1217~1234
    [22] C. O. Horgan, A. M. Chan, The pressurized hollow cylinder or disk problem for functionally graded isotropic linear elastic materials, Journal of Elasticity, 1999, 55(1): 43~59
    [23] G. N. Parveen and J. N. Reddy, Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates, International Journal of Solids and Structures, 1998, 35(33): 4457~4476
    [24] J. N. Reddy, Analysis of functionally graded plates, International Journal for Numerical Methods in Engineering, 2000, 47(1-3): 663~684
    [25] J. N. Reddy, C. D. Chin, Thermomechanical analysis of functionally graded cylinders and plates, Journal of Thermal Stresses, 1998, 21(6): 593~626
    [26] C. T. Loy, K. Y. Lam, J. N. Reddy, Vibration of functionally graded cylinder shells, International Journal of Mechanical Sciences, 1999, 41(3): 309~324
    [27] T. Y. Ng, K. Y. Lam, K. M. Liew, Effects of FGM materials on the parametric resonance of plate structures, Computer Methods in applied Mechanics and Engineering, 2000, 190(8-10): 953~962
    [28] Z. Q. Cheng, R. C. Batra, Exact correspondence between eigenvalues of membranes and functionally graded simply supported polygonal plates. Journal of Sound and Vibration, 2000, 229(4): 879~895
    [29] S. V. Sankar, An elasticity solution for functionally graded beams, Composites Science and Technology, 2001, 61(5): 689~696
    [30] L. S. Ma, T. J. Wang, Nonlinear bending and post-buckling of a functionally graded circulate plate under mechanical and thermal loadings, International Jouranl of Solids and Structures, 2003, 40(13-14): 3311~3330
    [31] W. Q. Chen, Z. G. Bian, C. F. Lv, et al., 3D free vibration analysis of a functionally graded piezoelectric hollow cylinder filled with compressible fluid, International Journal of Solids and Structures, 2004, 41(3-4): 947~964
    [32] W. Q. Chen, K. Y. Lee, H. J. Ding, On free vibration of non- homogeneous transversely isotropic magneto-electro-elastic plates, Journal of Sound and Vibration, 2005, 279(1-2): 237~251
    [33] Y. M. Shabana, N. Noda, Numerical evaluation of the thermo-mechanical effective properties of a functionally graded material using the homogenization method, International Journal of Solids and Structures, 2008, 45(11-12): 3494~3506
    [34] L. C. Guo, N. Noda, Dynamic investigation of a functionally graded layered structure with a crack crossing the interface, International Journal of Solids and Structures, 2008, 45(1): 336~357
    [35] H. S. Shen, N. Noda, Postbuckling of pressure-loaded FGM hybrid cylindrical shells in thermal environments, Composite Structures, 2007, 77(4): 546~560
    [36] H. S. Shen, Thermal postbuckling behavior of shear deformable FGM plates with temperature-dependent properties, International Journal of Mechanical Science, 2007, 49(4): 466~478
    [37] X. L. Huang, H. S. Shen, Vibration and dynamic response of functionally graded plates with piezoelectric actuators in thermal environments, Journal of Sound and Vibration, 2006, 289(1-2): 25~53
    [38] J. Yang, H. S. Shen, Dynamic response of initially stressed functionally graded rectangular thin plates, Composite Structures, 2001, 54(4): 497~508
    [39] J. Yang, H. S. Shen, Vibration characteristics and transient response of shear-deformable functionally graded plates in thermal environments, Journal of Vibration and Sound, 2002, 255(3): 579~602
    [40] H. S. Shen, Nonlinear bending response of functionally graded plates subjected to transverse loads and in thermal environments, International Journal of Mechanical Sciences, 2002, 44(3): 561~584
    [41] X. K. Xia, H. S. Shen, Nonlinear vibration and dynamic response of FGM plates with piezoelectric fiber reinforced composite actuators, Composite Structures, 2009, 90(2): 254~262
    [42] X. K. Xia, H. S. Shen, Comparison of Vibration Characteristics for Postbuckled FGM Plates with Piezoelectric fiber reinforced composite actuators, International Journal of Structural Stability and Dynamics, 2009, 9(3): 533~559
    [43] A. M. Zenkour, D. S. Mashat, Bending analysis of a ceramic-metal arched bridge using a mixed first-order theory, Meccanica, 2009, 44(6): 721~731
    [44] L. L. Ke, J. Yang, S. Kitipornchai, Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams, Composite Structrues, 2010, 92(3): 676~683
    [45] P. Malekzadeh, M. R. G. Haghighi, M. M. Atashi, Out-of-plane free vibration of functionally graded circular curved beams in thermal environment, Composite Structures, 2010, 92(2): 541~552
    [46] A. M. Zenkour, The refined sinusoidal theory for FGM plates on elastic foundations, International Journal of Mechanical Sciences, 2009, 51(11-12): 869~880
    [47] M. Shakeri, R. Mirzaeifar. Static and Dynamic Analysis of Thick Functionally Graded Plates with Piezoelectric Layers Using Layerwise Finite Element Model, Mechanics of Advanced Materials and Structures, 2009, 16(8): 561~575
    [48]冯元桢著,冯钟越等译,《空气弹性力学引论》,北京:国防工业出版社, 1963
    [49] (西德)伏欣(H. W. Forsching)著,沈克扬译,《气动弹性力学原理》,上海:上海科学技术文献出版社,1982
    [50] (美)道尔(E. H. Dowell)等著陈文俊,尹传家译,《气动弹性力学现代教程》,北京:宇航出版社,1991
    [51]杨志春,夏巍,孙浩,高速飞行器壁板颤振分析的研究进展,结构强度研究,2005,B04:10~18,36
    [52] R. C. Zhou, D. Y. Xue, C. Mei, Finite Element Time Domain-Modal Formulation for Nonlinear Flutter of Composite Panels, AIAA Journal, 1994, 32(10): 2044~2052
    [53]孟凡颢,钟腾育,用壁板颤振理论解决某系列飞机的方向舵蒙皮裂纹故障,飞机设计,2000,4:1~6
    [54] T. Prakash, M. Ganapathi, Supersonic flutter characteristics of functionally graded flat panels including thermal effects, Composite Structures, 2006, 72(1): 10~18
    [55] H. M. Navazi, H. Haddadpour, Aero-thermoelastic stability of functionally graded plates, Composite Structures, 2007, 80(4): 580~587
    [56] M. Melek, M. O. Kaya, Supersonic Flutter Prediction of Functionally Graded Panel, RAST 2009: Proceedings of the 4th International Conference on recent advances in spce technoloties, 2009: 139~144
    [57] S. L. Lee, J. H. Kim, Thermal post-buckling and limit-cycle oscillation of functionally graded panel with structural damping in supersonic airflow, Composite Sturctures, 2009, 91(2): 205~211
    [58] S. Mahmoudkhani, H. Haddadpour, H. M. Navazi, Supersonic flutter prediction of functionally graded conical shells, Composite Structures, 2010, 92(2): 377~386
    [59] J. S. Chen, C. H. Yang, Experiment and Theory on the Nonlinear Vibration of a Shallow Arch Under Harmonic Excitation at the End, Journal of Applied Mechanics, 2007, 74(6): 1061~1070
    [60]赵跃宇,李永鼎,王连华,悬索桥的多重内共振研究,力学季刊, 2008, 29:15~23
    [61] J. Porter, E. Knobloch, New type of complex dynamics in the 1:2 spatial resonance, Physical D, 2001, 159: 125~154
    [62] J. Porter. E. Knobloch, Dynamics in the 1:2 spatial resonance with broken reflection symmetry, Physical D, 2005, 201: 318~344
    [63]吴家龙,弹性力学,上海:同济大学出版社,2002
    [64] E. Feldman, J. Aboudi, Buckling analysis of functionally graded plate subjected to uniaxial loading, Composite Structures, 1997, 38(1-4): 29~36
    [65]杨杰,功能梯度复合材料板结构的非线性力学行为与动力特性:[博士学位论文],上海:上海交通大学,2001
    [66]张建武,李齐,束永平,关于一阶剪切板的Karmann型精化理论,应用数学和力学,2000,21(5):477~482
    [67] J. Aboudi, M. J. Pindera, S. M. Arnold, Higher-order theory for functionally graded materials, Composites Part-B Engineering, 1999, 30(8): 777~832
    [68] J. H. Kim, G. H. Paulino, Finite element evaluation of mixed mode stress intensity factors in functionally graded materials, International Journal for Numerical Methods in Engineering, 2002, 53(8): 1903~1935
    [69] J. Woo, S. A. Meguid, Nonlinear analysis of functionally graded plates and shallow shells, International Journal of Solids and Structures, 38(42-43): 7409~7421
    [70] X. Q. He, T. Y. Ng, S. Sivashanker, et al., Active Control of FGM plates with integrated piezoelectric sensors and actuators, International Journal of Solids and Structures, 2001, 38(9): 1641~1655
    [71] J. N. Reddy, C. M. Wang, S. Kitipornchai, Axisymmetric bending of functionally graded circular and annular plates, European Journal of Mechanics A-Solids, 1999, 18(2): 185~199
    [72] S. S. Vel, R. C. Batra, Three-dimensional exact solution for the vibration of functionally graded rectangular plates, Journal of Sound and Vibration, 2004, 272: 703~730
    [73] B. Kieback, A. Newbrand, H. Riedel, Processing techoniques for functionally graded materials, Materials Scince and Engineering A-Structural Materials Properties Microstructures and Processing, 2003, 362(1-2): 81~105
    [74] T. R. Jackson, H. Liu, N. M. Patrikalakis, et al., Modeling and designing functionally graded material components for fabrication with local composition control, Materials and Design, 1999, 20(2-3): 63~75
    [75] K. A. Khor, Y. W. Gu, Effect of residual stress on the performance of plasma sprayed functionally graded ZrO2/NiCoCrAIY coatings, Materials Science and Engineering A-Structral Materials Properties Microstructure and Processing, 2000, 277(1-2): 64~76
    [76] G. Anlas, M. H. Santare, J. Lambros, Numerical calculation of stress intensity factors in functionally graded materials, International Journal of Fracture, 2000, 104(2): 131~143
    [77] R. J. Butcher, C. E. Rousseau, H. V. Tippur, A functionally graded particular composite: preparation, measurements and failure analysis, ACTA Material, 1998, 47(1): 259~268
    [78] R. Javaheri, M. R. Eslami, Thermal buckling of functionally graded plates, AIAA Journal, 2002, 40(1): 162~169
    [79] J. N. Reddy, Z. Q. Cheng, Three-dimensional solution of smart functionally graded plates, Journal of Applied Mechanics Transactions of The ASME, 2001, 68(2): 234~241
    [80] J. Chen, Z. X. Liu, Z. Z. Zou, Electromechanical impact of a crack in a functionally graded piezoelectric medium, Theory and Applied Fracture Mechanics, 2003, 39(1): 47~60
    [81] O. Kesler, J. Matejicek, S. Sampath, et al., Measurement of residual in plasma-sprayed metallic-ceramic and composite coatings, Materials Science and Engineering A-Structral Materials Properties Microstructure and Processing, 1998, 257(2): 215~224
    [82] J. N. Reddy, Z. Q. Cheng, Three-dimensional thermomechanical deformations of functionally graded rectangular plates, International Journal of Mechanics A-Solids, 2001, 20(5): 841~855
    [83] M. Mott, J. R. G. Evans, Zirconia/almina functionally graded material made by ceramic ink jet printing, Materials Scince and Engineering A-Structural Materials Properties Microstructures and Processing, 1999, 271(1-2): 344~352
    [84] N. T. Hart, N. P. Brandon, M. J. Day, et al., Functionally graded composite cathodes for solid oxide fuel cells, Journal of Power Sources, 2002, 106(1-2): 42~50
    [85] R. W. Zimmerman, M. P. Lutz, Thermal stresses and thermal expansion in a uniformly heated functionally graded cylinder, Journal of Thermal Stresses, 1999, 22(2): 177~188
    [86] A. Chakraborty, S. Gopalakrishnan, J. N. Reddy, A new beam finite element for the analysis of functionally graded materials, International Journal of Mechani- cal Sciences, 2003, 45(3): 519~539
    [87] J. R. Cho, J. T. Oden, Functionally graded material: a parametric study on thermal-stress characteristics using the Crank-Nicolson-Galerkin scheme, Computer Methods in Applied Mechanics and Engineering, 2000, 188(1-3): 17~38
    [88] C. E. Rousseau, H. V. Tippur, Compositionally graded materials with cracks normal to the elastic gradient, ACTA Material, 2002, 50(18): 4449~4460
    [89] V. Parameswaran, A. Shukla, Crack-tip stress fields for dynamic fracture in functionally gradient materials, Mechanics of Materials, 1999, 31(9): 579~596
    [90] Y. Watanable, N. Yamanaka, Y. Fukui, Control of composition gradient in a metal-ceramic functionally graded material manufactured by the centrifugal method, Composites Part A-Applied Science and manufacturing, 1998, 29(5-6): 595~601
    [91] J. E. Dolbow, M. Gosz, On the computation of mixed-mode stress intensity factors in functionally graded materials, International Jouranl of Solids and Structures, 2002, 39(9): 2557~2574
    [92] S. C. Pradhan, C. T. Loy, K. Y. Lam, Vibration characteristics of functionally graded cylindrical shells under various boundary conditions, Applied Acoustics, 2000, 61(1): 111~129
    [93] B. N. Rao, S. Rahman, Mesh-free analysis of cracks in isotropic functionally graded materials, Engineering Fracture Mechanics, 2003, 70(1): 1~27
    [94] A. Almajid, M. Taya, S. Hudnut, Analysis of out-of-plane displacement and stress field in piezocomposite plate with functionally graded microstructure, International Journal of Solids and Structures, 2001, 38(19): 3377~3391
    [95] W. Pompe, H. Worch, M. Epple, et al., Functionally graded material for biomedical applications, Materials Science and Engineering A-Structral Materials Properties Microstructure and Processing, 2003, 362(1-2): 40~60
    [96] L. F. Qian, R. C. Batra, L. M. Chen, Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local Petrov-Galerkin method, Composites Part-B Engineering, 2004, 35: 685~697
    [97] Z. G. Ban, S. P. Alpay, J.V. Mantese, Fundamentals of graded ferroic materials and devices, Physical Review B, 2003, 67(18): 1~6
    [98] Z. H. Jin, G. H. Paulino, Transient thermal stress analysis of an edge crack in a functionally graded material, International Journal of Fracture, 2001, 107(1): 73~98
    [99] A. Jabbari, S. Sohrabpour, M. R. Eslami, Mechanical and thermal stresses in a functionally graded hollow cylinder due to radially symmetric loads, International Journal of Pressure Vessels and Piping, 2002, 79(7): 493~497
    [100] J. Q. Tarn, Exact solutions for functionally graded anisotropic cylinders subjected to thermal and mechanical loads, International Journal of Solids and Structures, 2001, 38(46-47): 8189~8206
    [101] H. S. Shen, Postbuckling analysis of pressure-loaded functionally graded cylindrical shells in thermal environments, Engineering Structures, 2003, 25(4): 487~497
    [102] G. Guglieri, F. B. Quagliotti, Analysis and Experimental Analysis of Wing Rock, Nonlinear Dynamics, 2001, 24(2): 129~146
    [103]郑国勇,杨翊仁,超音速流中非线性二元机翼的复杂响应研究,振动与冲击,2007,26(12):96~100
    [104] S. A. Fazelzadeh, M. Hosseini, Aerothermoelastic behavior of supersonic rotating thin-walled beams made of functionally graded materials, Journal of Fluids and Structures, 2007, 23: 1251~1264
    [105] B. A. Samsam Shariat, M. R. Eslami, Buckling of thick functionally graded plates under mechanical and thermal loads, Composite Structures, 2007, 78(3): 433~439
    [106] K. J. Sohn, J. H. Kim, Structural stability of functionally graded panels subjected, Composite Structures, 2008, 82(3): 317~325
    [107] I. Nydick, Studies in Hypersonic Aeroelasticity, University of California Los Angeles: Bell & Howell Information and learning company, 2000, 1~334
    [108] H. S. Shen, Thermal postbuckling behavior of functionally graded cylindrical shells with terperature-dependent properties, International Journal of Solids and Structures, 2004, 41(7): 1961~1974
    [109]叶正寅,鸭式布局机翼非线性气动力计算的一种简化方法,西北工业大学学报, 1992,1(10):1~6
    [110]郑国勇,杨翊仁,结构非线性机翼的超音速和高音速颤振,西南交通大学学报,2007,42(5):578~582
    [111] S. Kapuria, M. Bhattacharyya, A. M. Kumar,Bending and free vibration response of layered functionally graded beams: A theoretical model and its experimental validation, Composite Structure, 2008, 82(3): 390~402
    [112]叶敏,复合材料层合板1:1参数共振的分岔研究,力学学报,2004,36(1):64~71
    [113]黄小林,沈惠申,热环境下功能梯度材料板的自由振动和动力响应,工程力学, 2005, 22(3):224~227
    [114]赵凤群,王忠民,刘宏昭,非保守力作用下FGM矩形板的稳定性分析,应用力学学报, 2007, 24(1):318~322
    [115]石振海,李克智,李贺军,航天器热防护材料研究现状与发展趋势,材料导报, 2007, 21(8):15~18
    [116]张庆余,何景武,大展弦比复合材料机翼结构后屈曲分析,飞机设计, 2008, 28(1):28~32

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700