用户名: 密码: 验证码:
水稻抗条纹叶枯病遗传分析和主基因qSTVll的精细定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻条纹叶枯病(rice stripe)是近年来危害长江中下游地区的粳稻生产的主要病害之一,传毒介体为灰飞虱(Small brown planthopper, SBPH)。水稻对条纹叶枯病的抗性分为对病毒的抗性和对介体灰飞虱的抗性,目前在生产上利用的主要抗源为来自巴基斯坦品种Modan的抗病基因Stvb-i,但该基因尚未深入研究,加之存在抗源单一的风险,因而我们需要发掘新的抗病毒基因和抗灰飞虱的基因。本研究基于上述需求开展抗条纹叶枯病的遗传学研究,从鉴定方法的建立、抗性资源的筛选、基因定位和精细定位几方面着手进行了较为系统的研究,以下为本研究的主要内容:
     1、鉴定方法的建立
     本研究建立了规模化灰飞虱繁殖体系,改良和优化了三种病毒接种方法(田间鉴定、集团接种和强迫饲毒),开发了12天集团接种的新方法;在灰飞虱接种方面,我们改良和优化了耐虫性测验、排驱性测验和抗生性测验的方法。
     2、抗性资源的筛选和研究材料的选择
     本研究共筛选出高抗品种313份,通过对广西91份地方品种的细化分析发现水稻条纹叶枯病的抗性资源主要存在籼稻中,且抗性主基因与11染色体的标记RM287连锁。
     等位性分析发现三个品种(IR24、DV85和Habataki)携带的抗性基因与Stvb-i不等位,因此这三个品种作为材料进一步发掘条纹叶枯病的新抗性基因。我们还对高抗灰飞虱品种窄叶青8号和高抗的抗病对照IR36进行了相关的遗传研究。同时,我们利用籼稻品种Kasalath对其主抗基因(qSTVll)进行精细定位。
     3、利用不同群体对条纹叶枯病抗性基因的发掘
     利用以Asominori为遗传背景IR24为插入片段的染色体片段置换系群体(Chromosome segment substitution lines, CSSLs)验证了11染色体中抗主效基因qSTV11-i的遗传稳定性。而后我们利用2780个Asominori/CSSL62 F2:3家系将该中抗基因精细定位在与Stvb-i临近的720.6kb的区间内。同时我们利用分子标记筛选到的137份交换单株并繁殖成F3:4,完成了其中纯合株系的表型鉴定。我们的研究为分子标记辅助选择(MAS)提供了紧密连锁标记和为进一步的分离和克隆该基因提供遗传基础。
     利用Sasanishiki/Habataki//Sasanishiki(BC1F8)回交重组自交系群体(Backcrossedinbred lines, BILs)进行抗条纹叶枯病基因的初步定位。利用四种接种鉴定方法共检测到了3个QTL,其中一个QTL定位于第3染色体贡献率(Phnotypic variation explained, PVE)为12.6-18.4%,第11染色体的两个加性的QTL (qSTV11.1和qSTV11.2)遗传上连锁,集团接种条件下分别表现中抗但累加后表现高抗,分别定位在标记区间G257-RM457(PVE为14.4-20.9%)和RM457-RM187(PVE为13.5-26.6%)。利用背景亲本与含有这2个QTL的片段置换系SL437杂交构建次级群体,从总共2750份F2:3中挑选出147个重组株系进行集团接种鉴定,将qSTV11.1和qSTV11.2分别定位在333.2Kb(R15-RM209)和203.9Kb(R69-R73)的区间内。本研究首次定位到了2个中抗条纹叶枯病的基因,对丰富抗水稻抗条纹叶枯病遗传资源并加速水稻抗性育种都具有重要意义。
     利用来源于IR36/热研2号的重组自交系群体(Recombinant inbred lines, RILs),采用三种方法在两年不同处理中检测到抗条纹叶枯病的QTL分布在两年第1、3、4、5、7、10、11、12染色体,贡献率范围是1.2-32.9%。其中,第1染色体(区间RM488-RM128,贡献率为3.2-6.8%)和11染色体(RM332-RM287,贡献率为6.0-32.9%)检测到的QTL成簇分布,说明这两个区间存在稳定表达的QTL。上述两个QTL的抗性均来自高抗品种IR36。IR36的抗性机制的研究发现:IR36是综合了高抗病毒侵染、耐病毒、耐灰飞虱取食和排驱性等综合的高抗条纹叶枯病的特性。
     另外利用窄叶青8号/京系17加倍单倍体群体在抗虫检测中采用成虫或若虫苗期集团筛选法在第1 (qSBPH1)、2(qSBPH2)和11 (qSBPH11)染色体均检测一个抗虫的QTL,两年两种处理检测到的所有QTL的贡献率为44.39-50.96。其中qSBPHl是一个抗灰飞虱新的主基因,其贡献率超过30%。
     4. qSTV11的精细定位
     本研究利用来源于Koshihikari和Kasalath的CSSLs验证了Kasalath的主效抗性基因及其遗传稳定性。而后,我们从7018个BC3F2单株(SL-234/Koshihikari回交次级F2群体)中筛选到372份重组的BC3F2:3株系及其后代399份重组的BC3F3:4家系。利用这些材料,我们将qSTV11定位在39.2 Kb的区间内,其中有7个侯选基因。qSTV11附近的4个多态InDel标记(R21、R25、R13和R48)可以用于抗性粳稻品种的标记辅助选择(MAS)。对应现有的表型,所有4个分子标记的选择效率>95%。
Rice stripe, caused by rice stripe virus (RSV), is one of the most damaging diseases in temperate regions of East Asia. In China, rice stripe is increasing in severity, particularly in Jiangsu province. The resistance to rice stripe can be divided into resistance against RSV and small brown planthopper (SBPH), so it is necessary to explore new resistant genes against RSV and resources against SBPH. Basing on the genetics of resistance to RSV and SBPH, this work was consisted of optimizing inoculation methods, scanning for resistant varieties, detetction of resistant genes/QTLs and fine mapping of major genes.The results were as follows:
     1) Establishing of inoculation system of RSV and SBPH.
     We optimized the inbred system of SBPH and RSV inoculation methods of field test, mass inoculation test and seedling test. Meanwhile, we innovated the 12 days inoculation test as a new method. We also optimized inoculation methods of testing resistance to SBPH. These research with be useful for later study.
     2) Scanning for resistant varieties with new RSV resistant gene.
     In this study, resistance to rice stripe in 735 rice landraces was scanned. According to the allelic tests with Stvb-i, two varieties (IR24 and Habataki) carrying new resistant gene were selected to construct genetic populations and map quantitative trait loci (QTL). Meanwhile, QTL for RSV resistance in'Zhaiyeqing8','IR36'and'Kasalath', and QTL for SPHB in'Zhaiyeqing8'were also scanned. Then, major QTLs detected in 'Kasalath'and'Habataki'were seletcted for fine mapping.
     3) Gene mapping of rice stripe resistance with different poputions.
     The partial resistant gene with main effect on chromosome 11 in IR24 was validated using chromosome segement substitution lines (CSSLs), and secondary population was constructed for fine mapping. This QTL were roughly mapped to a 720.6Kb region using 2780 F2:3 families, and 137 recombinant lines were planted to F3:4 and homogenious plants selected for fine mapping.
     With four inoculation methods,85 backcross inbred lines (BILs) of Sasanishiki (japonica)×Habataki(indica) was used to map QTL conferring resistance to rice stripe virus (RSV). Two main effect QTLs (qSTVll.l and qSTV11.2) on chromosome 11 were genetically linked, and mapped in the interval G257-RM457 and RM457-RM187, respectively. Fine mapping of qSTV11.1 and qSTV11.2 was carried out using 147 recombined BC3F2:3 lines selected from 2750 BC3F2 plants of the cross Sasanishiki/SL437. The qSTV11.1 was finally localized to a 333.2Kb interval (R15-RM209), which was physically about 230 Kb away from that of the well known Stvb-i. The other locus, qSTV11.2, was delimited into a 203.9 Kb region (R69-R73).
     IR36 is highly resistant to rice stripe disease. QTLs against RSV were detected on chromosomes 1,3,4,5,7,10,11 and 12 across two years. Of these QTLs, three were repeatedly detected, they were:one on chromosome 1 (interval RM488-RM128, PVE of 3.2-6.8%) and two on chromosome 11 (interval RM332-RM202, PVE of 11.8-32.9% and interval RM202-RM287, PVE of 6.0-24.8%, respectively). And the QTL of interval RM332-RM202 was allelic with the well known Stvb-i. The resistance mechanism in IR36 was consisted of resistance to virus infection, tolerance to virus, tolerance to feeding of vector and antixenosis.
     Using a doubled haploid lines (DHs) bred from the cross ZYQ8 x JX17 and four separate inoculation methods to genetically dissect the rice stripe resistance present in ZYQ8. Two linked RSV resistance QTLs were located on chromosome 1, and one on chromosome 11, jointly explaining 30-44% of the trait variance. The main-effect qSTV11 was mapped close to the established RSV resistance gene Stvb-i. For resistance to SBPH, three QTLs were located, mapping to chromosomes 1,2 and 11 and jointly explaining 44-51% of the trait variance. The large-effect qSBPHl (PVE>30%) appears to be a novel QTL conferring a degree of tolerance and antibiosis against SBPH. Analysis of a set of chromosome segment substitution lines showed rice stripe resistance genes/QTLs are commonly exsisted on the long arm of chromosome 1.
     4) Fine mapping of a main effect qSTV11 in Kasalath
     The stability of was validated using 39 established chromosome segment substitution lines. Fine mapping of qSTV11 was carried out using 372 recombinant BC3F2:3 and 399 BC3F3:4 lines selected from 7018 BC3F2 plants of the cross SL-234/Koshihikari.Four SSR (Simple Sequence Repeat), ten InDel and one CAPS markers were developed to narrow qSTVll locus. The qSTV11 was finally localized to a 39.2 Kb region that contains seven annotated genes. Marker-resistance association analysis suggested qSTV11 was distributed in diverse landraces coming from different regions. These results will provide a basis for map-based cloning of qSTV11,and benefit for the improvement of RSV resistance in rice varieties.
引文
Ahn SN, Kim YK, Han SS et al. Molecular mapping of a gene for resistance to a Korean isolate of rice blast. Rice Genet Newsl.1996,13:74-76
    Aksoy S. Tsetse:a haven for microorganisms. Parasitology Today.2000,16:114-119
    Alam S N and M B Cohen. Durability of brown planthopper, Nilaparvata lugens, resistance in rice variety IR64 in greenhouse selection studies. Entomol Exp. Appl.1998a,89:71-78.
    Ando T., Yamamoto T., Ahimizu T. et al. Genetic dissection and pyramiding of quantitative traits for panicle architecture by using chromosomal segment substitution lines in rice. Thero Appl Genet.2008, 116,881-890.
    Banerjee D., Zhang X. And bent A. F. The leucine-rich repeat domain can determine effective interaction between PRS2 and other host facters in Arabidopsis PRS2-medicated disease resistance. Genetics.2001,158:439-450
    Beard CB, O'Neill SL, Tesh RB,et al. Modification ofarthropod vector competence via symbiotic bacteria. Parasitology Today.1993,9(5):179-183
    Berger S. Jasmonate-related mutants of Arabidopsis as tools for studying stress-signaling. Planta.2002, 214:497-504
    Blanchard RL, Freimuth RR, Buck J, et al. A proposed nomenclature system for the cytosolic sulfotransferase (SULT) superfamily. Pharmacogenetics.2004,14:199-211
    Boisnard, A., L.Albar, D.Thiemele. et al. Evaluation of genes from EIF4E and EIF4G multigenic families as potential candidates for partial resistance QTLs to Rice yellow mottle virus in rice. Theor Appl Genet.2007,116,53-62.
    Chae Y A, Fischbeck G W. Genetic analysis of powdery mildew resistance in wheat cultivar 'Diplomat',. Z Pflanzenzuchtg.1979,83:272-280
    Channamallikarjuna, V., Aonah, H., Prasad. et al. Identification of major quantitative trait loci qSBRll-1 for sheath blight in rice. Mol. Breeding.2010,25:155-166.
    Chen F, Temnykh S, Xu Y et al. Development of a microsatellite framework map providing genome-wide coverage in rice (Oryza sativa L.). Theor Appl Genet.1997,95:553-567.
    Dellapporta S L, Wood J, Hicks J B. A plant DNA mini preparation:Version Ⅱ. Plant Mol Biol Rep.1983,1:19-21
    Delseny M, Salses J, Cooke R, et al. Rice genomics:present and future. Plant Physiol Biochem.2001, 39:323-334
    Devicence M C and Tanksley S D. QTL analysis of transgressive segregation in an interspecific tomato cross. Genetics.1993,134:585-596
    Ding X L, Jiang L, Liu SJ et al QTL analysis for rice stripe disease resistance gene using recombinant inbred lines (RILs) derived from crossing of Kinmaze and DV85. Acta Genet Sin 31.2004, 287-292.
    Duan CX, Su N, Cheng, ZJ et al. QTL analysis for the resistance to small brown planthopper (Laodelphax striatellus Fallen) in rice using backcross inbred lines. Plant Breeding.2010. DOI:10.111/j.1439.0523.2009.01648.x.
    Duan CX, Wan JM, Zhai HQ et al. Quantitative trait loci mapping of resistance to Laodelphax striatellus (Homoptera:Delphacidae) in rice using recombinant inbred lines. J. Econ. Entomol.2007, 100(4),1450-1455.
    Ebitani T, Takeuchi Y, Nonoue Y et al. Construction and evaluation of chromosome segment substitution lines carrying overlapping chromosome segments of indica rice cultivar'Kasalath' in a genetic background of japonica elite cultivar'Kashihikari'. Breed Sci.2005,55:65-73.
    Eshed Y, Zamir D. An introgression line population of lycopersicon pernellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics.1995,141:1147-1162
    Fraster R.S.S.1992. The genetics of plant-virus interactions:implications for plant breeding. Euphytica 63:175-185.
    Freyre R, Douches DS. Development of a model for marker assisted selection of special gravity in diploid potato across environments. Crop Scicnee.1994,34:1361-1368
    Fukushige T, Yasuda H, Siddiqui S S. Molecular cloning and developmental expression of the Alpha-2 tubulin gene of Carnorhabditis elegants. J.Mol. Biol.1993,234:1290-1300
    Geethanjali, S., Kadirvel, P., Gunathilagaraj et al. Detection of quantitative trait loci (QTL) associated with resistance to whitebacked planthopper (Sogatella furcifera) in rice (Oryza sativa). Plant breeding.2009,128:130-136.
    GL(eds). Moleeular biology of Plantviruses. Boston:Kluwer Aeademic Pubishers.
    Gu BL, Xue PX, Shi WX. et al. Observation on rice spikes infected by Laodelphax striatellus and rice yield loss. China Plant Prot.2005,25,7-8.
    Handler AM, O'Brochta DA. Prospects for gene transformation in insects. Annu Rev Entomol. 1990,36:159-183
    Harushima, Y., Yano, M., Shomura et al. A high-density rice genetic linkage map with 2275 markers using a single F2 Population. Genetics.1998,148,479-494
    Hayakawa T, Zhu Y, Itohk, et al. Genetically engineered rice resistant to rice stripe virus, an insect -transmitted virus. Proceeding of the National Academy of Science(USA).1992,89:9865-9869.
    Hayano-Saito Y, Kakutani T, Hayashi T. Coding strategy of rice stripe virus:major nonstructural protein is encoded in viral RNA segment 4 and coat protein in RNA complementary to segment 3. Virology. 1990,177:372-374
    Hayano-Saito Y, Saito K, Nakamura S et al. Fine physical mapping of the rice stripe resistance gene locus, Stvb-i. TheorAppl Genet.2000,101:59-63
    Hayano-Saito Y, Tsuji T, Fuji K, et al. A.Saito. Localization of the rice stripe disease resistance gene, Stv-b', by graphical genotyping and linkage analysis with molecular markers. Theoretical and Applied Genetics,1998,96(8):1044-1049.
    Hayano-Saito Y, Satiok, Nakamura S. et al. Fine physical mapping of the rice stripe resistance gene locus, Stv-bi. Theoretical and Applied Genetics.2000,101:59-63
    Hayano-Saito Y, Tsuji T, Fujii et al. Localization of the rice stripe disease resistance gene, Slvb-i, by graphical genotyping and linkage analyses with molecular markers. TheorAppl Genet.1998, 96:1044-1049.
    Hayashit, Usugit,Nakanom, et al. On the strains of Rice stripe virus (1):an attempt to detect strains by difference of molecular size of disease-specific proteins. Proceedings of the Association for Plant Protection of Kyushu.1989,35(1):1-2.
    Heinrichs E A. Perspectives and directions for the continued development of insect-resistant rice varieties. Agric. Ecosystems Environ.1986,18:9-36.
    Hernandez-Sebastia C, Varin L, Marsolais F. Sulfotransferases from plants, algae and phototrophic Bacteria. In:Sulfur Metabolism in Phototrophic Organisms, Series:Advances in Photosynthesis and Respiration, Vol.27, Hell, R.; Dahl, C.; Knaff, D.; Leustek, Th. (Eds.), Springer, Chapter 6. 2006,111-130.
    Hirayama T, Shimizu H, Lin SY et al. Development of BC2F4 lines derived from a cross between Sasanishiki and Habataki in rice and construction of RFLP linkage map. Breed. Res. 1999.,(Suppl.2):148.
    Howell P. M., Marshall D.F. and Lydiate D. J. Towards developing intervarietal substitution lines in Brassica napus using marker-assisted selection. Genome,1996,39:348-358.
    Ikeda,R.&C.Kaneda. Genetic relationships of brown planthopper resistance to dwarf and stripe disease resistance in rice. Jpn J Breed 1982,32:177-185
    Ishii M. and Ono K. Strains of rice stripe virus. Ann Phytopathol Soc Jpn.1996,32:83-85
    Ishikawa K, Omura T, Tsuchizaki T. Association of double-and single-stranded RNAs with each four components of rice stripe virus. Annual of the phytopathological Society of Japan.1989, 55:315-323
    Ishikawa, K., Hayashi. T. and Hibino, H. Virulence of rice stripe virus strains ot rice. Ann. Phytopathol. Soc. Jpn.1992,58:619-620
    Ishikawa. K., H. Nemoto,T. Omura and T. Tsuchizaki. Improvement of test method for rice stripe virus with simplified ELISA. Ann. Phytopath. Soc. Japan.1987,54:123
    Jack E. Rechcigl. Biological and biotechnological control of insect pests, Lewis publishers 2000, p.173
    Jairin, J., Phengrat, K., Teangdeerith, S., Vanavichit, A. et al. Mapping of a broad-spectrum brown planthopper resistance gene, Bph3, on rice chromosome 6. Mol Breed.2007,19:35-44.
    Jenner CE and Walsh JA Pathotype variation in turnip mosaic virus with special reference to European isolates. Plant Pathol.1996,45:848-856.
    Kazuo Ise, Koichi Ishikawa,Chengyun Li et al. Inheritance of resistance to rice stripe virus in rice line 'BL1'. Euphytica.2002,127:185-191
    Kelly JD, Gepts P, Miklas PN et al. Tagging and mapping of genes and QTL and molecular marker-assisted selection for traits of economic importance in bean and cowpea. Field Crops Res. 2003,82:135:154
    Khush GS and Virmani. Breeding Rice for disease resistance, in:progress in Plant breeding, VOL.1. Butterworths, United Kingdom,1985, PP,240-279
    Kisimoto R. Genetic Variation in the ability of a planthopper vector:Laodelphax striatellus (Fallen) to Acquire the rice stripe virus. Virology.1967,32:144-152
    Kiso A and Yamamoto T. Infection and symptom development in rice stripe disease, with special reference to disease-specific protein other than virus. Review of Plant Protection Research.1973, 6:75-100
    Koganezawa H., Doi Y, Yora K. Purification of rice stripe virus. Annals of Phytopathological Society of Japan.1975,41:148-154
    Kosambi D. The estimation of map distances from recombination values. Ann. Eugen.1994,12:172-175
    Kubo T, Nakamura K, Yoshimura A. Development of a series of Indica chromosome segment substitution lines in Japonica background of rice. Rice Genet Newslett 1999; 16:104-106.
    Kubo T., Aida Y., Nakamura K. et al. Reciprocal chromosome segment substitution series derived from Japonica and Indica cross of rice (Oryza saliva L.). Breeding science.2002,52:319-325.
    Lacomme C, Roby D. Molecular cloning of a sulfotransferase in Arabidopsis thaliana and regulation during development and in response to infection with pathogenic bacteria. Plant Mol Biol.1996, 30:995-1008
    Lander ES, Green SP, Abrahamson J et al. (1987) MAPMAKER:an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174-181. doi:10.1016/0888-7543(87)90010-3
    Lander, E.S., Green, S.P., Abrahamson, J. et al. MAPMAKER:an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics. 1987,1:174-181.
    Li X., Mo H. D., Wang A. M. et al. Genetic expression for quality traits of rice grain in Japonica hybrids. Chinese J. Rice Sci.1999,13:197-204.
    Li Y, Wang TY, Jia JZ. Advances in Molecular Markers Studies on Disease/Pest Resistance in Maize. Progress in biotechnology.2001,21:3
    Lin, X.H., Zhang, D.P., Xie, Y.F. et al. Mapping a new resistance gene to bacterial blight based on RFLP markers. Rice Genet. Newsl.1995,12:234-236.
    Lin,Q.Y., Xie, L.H., Zhou, Z.J. et al.. Study on Rice Stripe I:Distribution of and Losses Caused by the Disease. J. Fujian Agr. College 1990,19(4):421-425.
    Lincoln S., Daly M. and lander E. Constructing genetics maps with MAPMARKER/EXP3.0. Whitehead Institute Technical Report. Cambridge, MA 1992
    Lu C F, Shen L S, Tan ZB et al. Comparative mapping of QTLs for agronomic traits of rice across environments by using a doubled-haploid population. Theor. Appl. Genet.1997,94:145-150.
    Maeda H, Matsushita K, Iida S. et al. Characterization of two QTLs controlling resistance to rice stripe virus detected in a Japanese upland rice line, Kanto 72. Breeding Sci.2006,56:359-364
    Maeda H, Matsushita K, Iida S. et al. Characterization of two QTLs controlling resistance to rice stripe virus detected in a Japanese upland rice line, Kanto 72. Breed. Sci.2006,56:359-364.
    Maeda H, Nemoto H, Yagi T. et al. QTL analysis for rice stripe disease resistance using recombinant inbred lines (RILs) derived from crossing between Milyang and Akihikari. In:China Association of Agricultural Science Societies, China National Rice Research Institute, China National Hybrid Rice Research and Development Center, China Foundation Society for Agricultural Science and Education (eds). Prospects of rice genetics and breeding for the 21st century—Paper collection of international rice genetics and breeing symposium. Beijing:China Agricultural Science Technology Press.1999,53-57.
    Maeda H, Sugisawa T, Nemoto H, Sunohara Y. QTL analysis for rice stripe resistance in the Japanese upland rice Kanto 72. Breeding Sci 2004,54:19-26
    Maeda, H., H. Nemoto, T. Yagi and Y. Fukuta. QTL analysis for rice stripe disease resistance using recombinant inbred lines (RILs) derived from crossing between Milyang 23 and Akihikari. In: China Association of Agricultural Science Societies, China National Rice Research Institute, China National Hybrid Rice Research and Development Center, China Foundation Society for Agricultural Science and Education (eds). Prospects of rice genetics and breeding for the 21st century-Paper collection of international rice genetics and breeding symposium. Beijing:China Agricultural Science Technology Press.1999,53-57
    Maeda H, Matsushita K, Iida S et al. Characterization of two QTLs controlling resistance to rice stripe virus detected in, a Japanese upland rice line, Kanto 72. Breeding Sci. 2006.56:359-364.
    Maeda H, Takeshi S, Hiroshi et al. QTL analysis for rice stripe resistance in the Japanese upland rice kanto72. Breeding Sci.2004,54:19-26.
    McCouch SR, Cho YG, Yano M et al. Report on QTL nomenclature. Rice Genet Newslett. 1997,14:11-13.
    McCouch SR, Teytelman L, Xu Y. Development and mapping of 2240 new SSR markers for rice (Oryza saliva L.). DNA Research,2002,9:199-207.
    McCouch, SR, Teytelman, L Xu Y. et al. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res.2002,9:257-279
    McCouch, SR, CGSNL (Committee on Gene Symbolization, Nomenclature and Linkage, Rice Genetics Cooperative) Gene nomenclature system for rice, Rice.2008,1:72-84.
    McCouch SR, Teytelman L and Xu YB. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res 2002,9:199-207
    McCouch SR, Teytelman L, Xu Y. et al. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res.2002,9:257-279.
    Metthews KA, Rees D, Kaufman TC. A functionally specialized a-tubulin is required for oocyte meiosis and cleavage mitoses in Drosophila. Development.1993,117:977-991
    Mew TV, Parco AS, Hittalmani S et al. Fine-mapping of major genes for blast resistance in rice. Rice Genet. Newsl.1994,11:126-128.
    Molecular Evolution.1997,44(1):81-88
    Mu P, Li ZC, Li CP et al. QTL mapping of the root traits and their correlation analysis with drought resistance using DH lines from paddy and upland rice cross. Chinese Science Bulltin, 2003,48(24):2718-2724
    Nei M and Li WH. Mathematical model for studying genetic variation in terms of restriction endonuleases. PNAS.1979,76:5269-5273
    Nemoto H, Ishikawa K. and Shimura E. The resistance to rice stripe virus and small brown planthopper in rice variety. IR50. Breeding Sci.1994,44(1):13-18.
    Ogawa T, Yamamoto T, Khush G.S et al.The Xa-3 gene for resistance to Philippine reces of bacterial blight of rice. Rice Genet. Newslett.1986c,3:77-68
    Ogawa T, Busto, GA, Tabien RE et al.Further study of Xa-4a gene for resistance to bacterial blight of rice. Rice Genet. Newslett.1988a,5:104-106
    Ogawa T, Tabien RE, Busto GA. et al. The relationships between Xa-3, Xa-4 and Xa-4h for resistances to
    rice bacterial blight. Rice Genet. Newslett.1986a,3:83-84
    Ogawa T, Yamamoto T, Khush GS et al.T.W. Inheritance of resistance to bacterial blight in sateng-A reinvestigation. Rice Genet. Newslett.1986b,3:80-82
    Okamoto D.and H. Inoue. Studies in the smaller brown planthopper, Laodelphax striatellus fallen as vector of rice stripe virus. Varietal resistance of rice to the smaller brown planthopper. Chugoku Agr. Exp.Sta., Bull. E.1967,1:115-136
    Painter, P.H. Insect resistance in crop plants. McMillan, New York.1951
    Panda N and G S Khush. Crop plant and insect diversity. In:Host plant resistance to insects. UK: Biddies Ltd, Guildford.1995b, P8-20
    Powell Abel P, Nelson RS, De, B., Hoffmann et al. Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science.1986,232:738-743
    Qian Q, Zeng DL, He P et al. QTL analysis of the rice seedling cold tolerance in a double haploid population derived from anther culture of a hybrid between indica and japonica rice, Chinese Science Bulletin.1999,44 (22):2402.
    Qin WS, Gao DM, and Chen SX, Studies on techniques of rapid detecting rice stripe virus in Laodelphax striatellus. Zhejiang J. Agric. Sci.1994,6,226-229.
    Ramirez BC, Haenni A L. Molecular biology of tenuiviruse, a remarkable group of plant viruses. Journal of general virology.1994,75:467-475
    Robaglia C., and Caranta, C.2006. Translation initiation factors:a weak link in plant RNA virus infection. Trends Plant Sci.11:40-45. Rohlf F J. Numerical taxonomy and multivariate analysis system, Version 2.1. Applied Biostatistics Inc. Setauket, New York,1993
    Sakurai Y, Ezuka A. and Okamoro H. The seedling test method of varietal resistance of rice plants to stripe virus disease (part 1) (in Japanese) Bull. Chugoku Agri Expt Station A 1963,9,113:124.
    Sanguinetti C J, Dias N E and Simpson A J G. Rapid silver staining and recover of PCR products separated on polyacrylamide gels. Biotechniques,1994,17:915-919
    Sidu, G. S. And Khush, G. S. Dominance reversal of a bacterial blight resistance gene in some rice cultivars. Phytopathology.1978,68:461-463
    Sogawa K. Epidemic of rice stripe virus disease in Jiangsu province, China. J.Agr.Sci.60,2005, 405-409 (in Japanese).
    Song WY, Wang GL, Chen LL et al. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science.1995,270:1804-1806
    SU C C, Wan JM., Zhai HQ.et al. A New Locus for resistance to Brown Planthopper in DV85,an indica variety (Oryza Saliva L.) Plant breeding..2005,124(1):93-95
    Sun DZ, Jiang L, Zhang YX et al. Resistance to rice stripe in eight rice varieties. Chinese J. Rice. Sci. 2006.,20:219-222.
    Svetlana Temnykh, Genevieve Declerck, Angelika Lukashova et al. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.):Frequency, length variation, transposon associations and genetic marker potential. Genome Research.2001,11(8):1441-1452
    Syumiya A. and H. Nemoto. Rice breeding for virus resistance.Nogyou Gijyutsu.1990,45(5):36-44
    Takahashi M, Toriyama S, Hamamatsu C et al. Nucleotide sequence and possible ambisense coding strategy of rice stripe virus RNA segment 2. Journal of General Virology.1993,74:769-773
    Temnykh S, Genevieve Declerck, Angelika Lukashova et al. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.):Frequency, length variation, transposon associations and genetic marker potential. Genome Research.2001,11 (8):1441-1452
    Temnykh S, Park W D, Ayres N. Mapping and genome organization of microsatellite sequence in rice (Oryza sativa L). Theor Appl genet.2000,100:697-612
    The Rice Chromosomes 11 and 12 Sequencing Consortia. The sequence of rice chromosomes 11 and 12, rich in disease resistance genes and recent gene duplications. BMC Biol.2005,3:20
    Toriyama S and Watanabe Y. Characterization of single- and double-stranded RNAS in particles of rice stripe virus. Journal of General Virology.1989,70:505-511
    Toriyama S. Characterization of rice stripe virus:a heavy component carrying infectivity. Journal of General Virology.1982,61:187-195
    Toriyama S. Relationship between three RNA components and viral components of rice stripe virus. Annual of the phytopathological Society of Japan.1981,47:416
    Toriyama S. Ribonuceic acid polymerase activity in filamentous nucleoproteins of rice grassy stunt virus. Journal of General Virology.1987,68:925-929
    Toriyama S. Rice stripe virus:prototype of a new group of viruses that replicate in plants and insects. Microbiological Sciences.1986,3:347-351
    Toriyama S. Three ribonucleic acid associated with rice stripe virus. Annual of the phytopathological Society of Japan.1982,48:482-489
    Toriyama,K., Y.Sakurai, A.Ezuka and Y.Sakurai. The breeding of resistant varieties for rice stripe virus. J Agr Sci 1966,21:16-20 (in Japanese)
    Tsunematsu H, Yoshimura A, Harushima Y, et al. RFLP framework map using recombinant inbred lines in rice. Breed Sci 1996; 46:279-284.
    Wan X. Y., Wan J. M., Su C. C et al. QTL detection for eating quality of cooked rice in a population of chromosome segment substitution lines. Theor. Appl. Genet.2004,110:71-79.
    Wang H, Pfeiffer W, Crouch J et al. Application of identified QTL-marker associations in rice quality improvement through a design breeding approach. Theor. Appl. Genet.115:87-100.
    Wang CM, Yasui H, Yoshimura A et al. Inheritance and QTL mapping of antibiosis to green leafhopper in ricel Crop Sci,2004,44(2):389-393
    Wang D J, Zhu j, Li Z K et al. Mapping QTLs with epistatic effects and QTL ×environment interactions by mixed linear model approaches. Theor Appl Genet,1999,99:1255-1264
    Wang G, Mackill DJ, Bonman JM et al. RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistant rice cultivar. Genetics 1994,136:1421-1434
    Wang S, Basten CJ, and Zeng ZB. Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm).2007
    Wang S, Basten CJ, Gaffney P. et al.Z.B.2005.Windows QTL Cartographer 2.5 User Manual. Available online at:http://statgen.ncsu.edu/qtlcart/wqtlcart.htm (verified in April 2006). NC. State University Bioinformatics Research Center, Raleigh, NC.
    Wang, C.L. The advance of the resistant breeding of rice stripe disease in Jiangsu province. Jiangsu Agr. Sci.2006,3:1-5.
    Wang G.L., Mackill D. J., Bonman J et al.. RFLP mapping of genes conferring and partial resistance to blast in a durably resistance rice cultivar. Genetics.1994,136:1421-1434
    Washio O, Ezuka A, Toriyama K and Sakurai Y. Studies on the breeding of rice varieties resistant to stripe disease Ⅱ. Genetic study on-resistance to stripe disease in Japanese upland rice. Jpn J. Breeding.1968a,18:96-101
    Washio O, Ezuka A, Sakurai Y. et al. Studies on the breeding of rice varieties resistant to stripe disease.1. Varietal difference in resistance to stripe disease. Jpn. J. Breed.1967,17:91-98.
    Washio O, Ezuka, A., Toriyama, K. et al. Testing method for, genetics of and breeding for resistance to rice stripe disease. Bull. Chogoku Agr. Exp. Stn. A.1968c,16:39-197 (in Japanese with English summary).
    Washio O. Ezuka A. Sakurai Y.et al. Studies on the breeding of rice varieties resistant to stripe disease III. Genetic studies on resistance to stripe disease in foreign varieties. Japan Journal of Breeding. 1968b,18:167-172
    Wright JD, Wang BT. Observation on Wolbachiae in mosquitoes. J Invertebr Pathol.1980, 35:200-208
    Wu Aizhong, Zhao Yan, Qu ZC, et al. Subcellular localization of the stripe disease-specific protein encoded by rice stripe virus (RSV) in its vector, the small brown planthopper, Laodelphax striatellus. Chinese Science Bulletin.2001,48(21):1819-1822
    Wu, SJ, Zhong, H., Zhou, Y. et al. Identification of QTLs for the resistance to rice stripe virus in the indica rice variety Dular. Euphytica 2009,165,557-565.
    Xiao J, Li J, Yuan L, Tanksley S D. Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross. Theor Appl Genet,1996, 92:230-244
    Xie Lianhui. Research on rice virus diseases in China. Tropical Agriculture research Series.1986, 19:45-50
    Xu J, Xue Q, Luo L, Li Z. Genetic dissection of grain weight and its related traits in rice (Oryza sativa L.). Chin J Rice Sci.2002,16(1):6-10
    Yamaguchi T, Yasuo S, Ishi M. Studies on rice stripe disease, Ⅲ. Study on varietial resistance to stripe disease of rice plant. J. Vent. Agr. Exp. Sta.1965,8:109-160
    Yamasaki M, Yoshimura A. and Yasui H. Mapping of QTLs affecting egg mortality of whitebacked planthopper, Sogatella furcifera Horvath in rice, Oryza sativa L. Rice Genet. Newsl.2000,17:87-89
    Yang H, Matsubayashi Y, Nakamura K et al. Oryza sativa PSK gene encodes a precursor of phytosulfokine-alpha, a sulfated peptide growth factor found in plants. Proc Natl Acad Sci USA. 1999,96:13560-13565
    Yano M.2001:Naturally occurring allelic variations as a new resource for functional genomics in rice. Rice genetics Ⅳ. In:Khush GS, Brar DS, Hrady B(eds) Proceeding of the fourth international rice genetics symposium,22-27 October 2000,227-238.
    Yasui H and Yoshimura, A., QTL mapping of antibiosis to green leafhopper, Nephotettix virescens distant and green rice leafhopper, Nephotettix cincticeps Uhler in rice, Oryza sativa L. Rice Genet Newsl,1999,16,96-98.
    Yoshimura S, Yoshimura A, Nelson RJ et al. Mapping and combining of bacterial blight resistance genes in rice using molecular markers. Jpn JBreed,1993,43:161.
    Yu J, Hu SN, Wang J, Gane KW et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science.2002,296:79-92
    Zhang JF, Gong LG, Qu Y et al. The rice ears were seriously damaged by the fifth and sixth generation of small brown planthopper in Changshu City in 2004. China Plant Prot.2005,25:39.
    Zhang, Q., C.L. Wang, K.J. Zhao, Y.L et al. The effectiveness of advanced rice lines with new resistance gene Xa23 to rice bacterial blight. Rice Genetics Newsl.2001,18:71-73
    Zhou YJ, Liu HJ, Wang G.Z. et al. Immunity detecting of rice stripe virus in Laodelphax striatellus. Jiangsu Agri. Sci.2004,1:50-51.
    Zhu LH, Chen Y, Xu YB et al. Construction of a molecular map of rice and gene mapping using a double haploid population of a cross between Indica and Japonica varieties. Rice Genet Newsl.1993,10,132-134.
    Zhu Y, Hayakawa T. Toriyama S. Complete nucleotide sequence of RNA4 of rice stripe virus isolate T, and comparison with another isolate and with maize stripe virus. Journal of General Virology.1992, 73:1309-1312
    Zhu Y, Hayakawa T. Toriyama T. et al. complete nucleotide sequence of RNA3 of rice stripe virus:an ambisense coding strategy. Journal of General Virology.1991,72:763-767
    Zhuang JY, Lin HX, Lu J, et al. Analysis of QTL ×environment interaction for yield components and plant height in rice. Theor. Appl. Genet.1997,95:799-808.
    岸本良一.稻ひまはが水病の生态.遗传.1972,(12):34-40.
    邓可京,杨琰云,胡成业.灰飞虱共生菌Wolbachia引起的细胞质不亲和性.复旦学报(自然科学版).1997,36(5):500-506
    丁秀兰,江玲,刘世家等.利用重组自交系群体检测水稻条纹叶枯病抗性基因.遗传学报.2004,31(3):287-292
    丁秀兰,江玲,张迎信等.利用回交重组自交群体检测水稻条纹叶枯病抗性位点.作物学报.2005,31(8):1041-1046
    高东明,李爱民等.江、浙两省主要粳、糯稻品种对条纹叶枯病的抗性测定.浙江农业科学.1991,(2):96-98
    国太广史,钱前,佐藤宏之等.水稻纹枯病抗性QTL分析,遗传学报,2002,29(1):50-55
    胡淑霞.论植物病毒的传毒介体及传播方式.生物学杂志.1997,14(5):33-34
    江苏省水稻条纹叶枯病协作攻关课题组,江苏省水稻条纹叶枯病协作攻关研究进展.江苏农业科学.2003,增刊:1-2
    李在国,黄润秋.植物病毒防治剂的作用机制.植物保护.1999,25(3):37-39
    林含新,林奇田,吴祖建等.水稻条纹病毒病害特异蛋白的题纯及血清学特性.中国病毒学.1999,14(3):222-229
    林含新,林奇英,谢联辉.水稻条纹病毒分子生物学研究进展.中国病毒学,1997,12(3):203-209
    林含新,林奇田,魏太云等.水稻品种对水稻条纹叶枯病毒及其介体灰飞虱的抗性鉴定.福建农业大学学报.2000,29(4):453-458
    林奇田,林含新,吴祖建等.水稻条纹病毒外壳蛋白和病毒病特异蛋白在寄主体内的积累.福建农业大学学报.1998,27(3):257-260
    刘力,陈声祥,邱并生等.抗水稻条纹病毒核酶的设计、克隆及体外活性测定.中国病毒学.1996,11(2):157-163
    刘利华,吴祖建,林奇英等.水稻条纹叶枯病细胞病理变化的观察.植物病理学报.2000(30):306-311
    刘学瑞,张碧锋.抗植物病毒剂的研究和利用.1994,7(3)8-11
    南京农业大学、扬州大学农学院、安徽农业大学、浙江农业大学、华中农业大学、江西农业大学.农业植物病理学.江苏科学技术出版社,1996年6月第1版.102-104
    邱并生,王晋芳,田波.水稻条纹叶枯病毒分子生物学的研究 Ⅱ外壳蛋白基因的合成、克隆和表达.科学通报.1991,36(20):1578-1581
    曲志才,马向前,白逢伟等.活跃传毒介体灰飞虱(Laodelplax striatella)品系的杂交与选育.复旦学报(自然科学版).2002,41(6):684-687
    曲志才,沈大棱,邓可京等.水稻条纹病毒基因组组分4的克隆与序列分析,微生物学报,1999,39(1):36-42
    孙兴全,吴静菊,吴爱忠等.灰飞虱生物学特性研究.2000,18(2):150-154
    万向元,水稻品质性状QTL表达稳定性分析与精细定位,博士学位论文.P103
    王贵珍,周益军,陈正贤等.水稻条纹病毒单克隆抗体的制备及检测应用.植物病理学报.2004,34(4):302-306
    王志敏,王树安.发展超高产技术,确保中国未来 16亿人口的粮食安全.中国农业科技导报.2000,3:8-11
    魏太云,王辉,林含新等.我国水稻条纹病毒种群遗传结构初步分析.植物病理学报.2003a,33(3):284-285
    魏太云,林含新,吴祖建.水稻条纹病毒NS2基因遗传多样性分析.中国生物化学与分子生物学报, 2003b,19(5):600-605.
    魏太云.水稻条纹病毒两个分离物RNA4基因间隔区的序列比较.中国病毒学.2000,15(2):156-161
    刑祖颐,何家齐,刘志武等.籼粳稻杂交育种的研究Ⅱ.抗条纹叶枯病育种.作物学报.1985,11(1):1-7
    徐建龙,薛庆中,罗利军等.水稻粒重及其相关性状的遗传分析.中国水稻科学.2002,16(1):6-10
    严健,温建国,吴爱忠等.灰飞虱β3-微管蛋白cDNA的克隆及序列分析.上海交通大学学报(农业科学版).2003,21(增刊):29-34
    燕义唐,王晋芳,邱并生等.水稻条纹叶枯病毒外壳蛋白基因在工程水稻植株中的表达.植物学报.1992,34(12):899-906
    应存山,中国稻种资源,中国农业科技出版社,1993,P.59
    于群,魏太云,林含新等.水稻条纹病毒北京双桥(RSV-SQ)分离物RNA4片段序列分析.农业生物技术学报.2000,8(3):225-228
    周彤,范永坚,程兆榜等.水稻品种条纹叶枯病抗性的研究进展.植物遗传资源学报.2009,10(2):328-333
    周益军,刘海建,王贵珍等.灰飞虱携带的水稻条纹病毒免疫检测.江苏农业科学.2004,1:50-51
    周仲驹,林奇英,谢联辉等.水稻条纹叶枯病的研究,病叶细胞的病理变化.福建农学院学报.1992,21(2):157-162

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700