300MN模锻水压机动梁驱动系统动态响应特性及速度控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
300MN模锻水压机是我国国防建设和基础建设的关键设备,其动梁驱动及速度控制技术是它的关键技术之一。动梁驱动系统流量大,工作框架系统所受载荷巨大、变形大,锻压力不断变化,以及各参数之间耦合关系非常复杂等特点,是一个复杂的机电液耦合系统;当前该水压机无锻压自动化和等温锻压功能,其驱动系统的动态响应特性不明;动梁速度控制系统载荷瞬变、惯性巨大,控制滞后、控制精度低、鲁棒性差。因此,以动梁驱动及速度控制系统为研究对象,围绕其控制机理、动态响应特性、控制策略进行了研究,以提高速度控制精度,为实现模锻自动化、等温锻压或模拟等温锻压提供技术基础。
     论文的主要研究内容和结论如下:
     (1)分析国内外巨型模锻水压机动梁速度控制技术及液压系统特性研究的现状和发展趋势,针对控制系统惯性巨大、载荷瞬变、水路长而导致控制滞后、鲁棒性差、控制精度低等特点,基于“油控水”控制方式,采用“液压缸+齿轮齿条机构+凸轮机构+转角位移检测装置”的分配阀芯开启度控制方式,提出了内环采用PID-H_∞控制凸轮轴转角、外环采用PFC控制动梁速度的双闭环串级控制策略。
     (2)考虑流体的可压缩性、粘性阻力、泄漏及工作框架系统变形等因素,分空程、锻压和提升三种工况,建立分配阀口、液压管道、液压缸的流量方程,建立动梁和上横梁的动力学方程,建立动梁驱动系统动态模型,进行仿真和试验研究。同时,对锻压行程的动梁速度、位移,工作缸压力,以及分配阀口压力差的动态响应特性进行仿真分析。仿真和试验研究表明,动梁速度等参数在阀芯开启瞬间瞬变载荷的作用下产生振荡,响应时间约0.7秒,控制精度受到影响。
     (3)分析300MN模锻水压机动梁速度控制系统液压操作控制原理和结构,通过计算和仿真可知,液压操作系统存在瞬变载荷,且是影响控制系统的鲁棒性和控制精度的主要因素。建立瞬变载荷作用下的液压操作控制模型,分别采用单一PID和PID—H_∞两种控制策略,仿真和试验研究表明,采用PID—H_∞串级控制能很好抑制瞬变载荷的影响。同时基于液压操作系统载荷巨大、瞬变的特征,提出凸轮升程与转角成线性关系的一种巨型水压机分配阀芯开启凸轮升程曲线,以曲线最大压力角为优化目标,建立优化模型,优化设计升程曲线。
     (4)针对300MN模锻水压机动梁速度控制滞后、鲁棒性差和控制精度低的特点,提出并设计基于PFC-(PID-H_∞)双闭环串级动梁速度控制系统,从模型失配、干扰、轨迹跟踪等方面进行仿真研究。研究表明,控制系统具有良好的稳态精度、动态品质、鲁棒性和跟踪性能。
     (5)根据主分配器双轴同步、通道多、流量大的特点,优化设计阀芯开启图和阀体。研制基于总线技术的多系统协同的多主站结构的复杂网络分布式三级计算机动梁速度控制系统,以及基于比例流量控制原理液压操作系统。采用WINCC组态软件研制基于拓扑结构、多视窗分级的人机界面的动梁速度监控系统。集成这些系统,实现了300MN模锻水压机动梁速度控制。
     (6)在不同速度、不同工艺条件下,对300MN模锻水压机PFC-(PID-H_∞)动梁速度控制系统进行试验研究。研究表明,试验与仿真结果相互吻合,证明了控制模型、策略的正确性、可靠性和实用性。测试表明,分配器凸轮轴转角控制动态精度和静态精度均为±1°,分配阀芯位置控制静态精度±0.2mm、动态精度±0.5mm,在不同负载下速度控制精度为(0.26~1.35)mm/s。
The 300MN die forging hydraulic press is key equipment of national defence and foundation construction of our country.Its moving beam's drive and control technology is one of its key technology.The flow of the beam's driving system is giant.The load and deformation of working house's system are giant.The forging force is continuously varing.A complex coupling relation exists in all kinds of its parameters.The drive and control system is a complex mechanical-electrical-hydraulic coupling system.There are't automation forging system or isothermal forging system in the hydraulic presses presently.The dynamics response characteristic of the driving system is unknown.Transient load,giant inertance,hysteretic control,low control accurancy and low robustness exist in the moving beam's speed control system.Therefore,this paper studied the speed drive and control system of the hydraulic press,based on its control mechanism,dynamic response characteristic and control strategies,to improve speed control accurancy and supply technical base for realization of die forging automation,isothermal forging or simulation isothermal forging.In this paper,these main research works and conclusions as following:
     (1)Based on analysis of present state and perspectives on the speed control technology of these domestic and foreign giant die forging hydraulic press,and such characteristics as control hysteresis,low robustness and low control accuracy because of giant inertia,transient load,long waterway,"oil control water" control mode was applied.A new control mode of the distributor's spools open gap was applied based on the mode of "hydraulic cylinder+gear and rack machnism+cam machnism+rotary displacement testing device",to control the flow and direction of the waterway distribution system.A double-closed-loops cascade control strategy was put forward that inner loop was used to control cam shaft angle by PID-H_∞control and external loop to control moving beam speed by PFC-(PID-H_∞)control.
     (2)Based on coercibility,viscosity resistance,leakage of the fluid, and working house system's deformation etc,flow equation of distribution spool,hydraulic tube and fluid cylinder were established, dynamics eqation of moving beam and upper beam were established, during back play stage,forging stage and hoisting stage.These hydraulic-mechanical coupling dynamics models of drive system for the moving beam were first established,and their simulations and tests were done.At the same time,during the forging stage,these dynamic response characteristics of speed and displacement for the moving beam,pressure of the working cylinder,and pressure difference of the distribution spool were simulated.These simulations and tests showed that these models are correct,speed is vibrating under the the transient load,control hysterisis time is 0.7 second,and the control accrancy is influenced.
     (3)The principle and structure were analysed on hydraulic operation control system of the 300MN die forging hydraulic press.The phenomenon that the transient load existed in the control system was discoverred,and the load was a main factor to influence the control robustness and accrancy.The hydraulic operation control model was established based on the giant transient load.These strategies based on the single PID control and PID-H_∞control were simulated and tested.The research result shows that PID-H_∞control can suppress the influence from the transient load.Based on giant and transient load,a new right cam-lifting curve was put forward which was a linear relation between open gap of spool and cam shaft rotary angle,and based on which target is maxmal pressure angle of the curve,its optimization model was established,simulated and designed.
     (4)Based on such characteristics as slow response speed,low accuracy and low robustness,a double-closed-loop PFC-(PID-H_∞) cascade speed control system was put forward and designed.Its simulations were done under the mismatched model and the disturbance. The result shows that there are good steady-state accuracy,dynamic characteristic,robustness and traceability in the control system.
     (5)Based on the main distributor's double-shaft synchronism, multi-channel and large flow,the open diagram of distributor,the structure and volume of the valve body were optimized.A speed control computer control system based on bus technique,multisystem cooperation,many main stations,complex network was put forward. Based on the control principle of proportional flow,the hydraulic operation system was developped.With WINCC configuration software, an upper computer intelligent speed monitoring and controlling system based on topology network structure,multi-window,grading man-machine interface was developped.These systems were originaly integrated.For the first time,the speed control of the 300MN die forging hydraulic press was developped.
     (6)The test on the PFC-(PID-H_∞)speed control system in 300MN die forging hydraulic press was carried out under different speeds and technical conditions,in order to prove the correctness,reliability and practicability of the application of the control theory,the establishment of the control model and the proposition of control strategy.The result shows that the test results coincide with the theory stimulation results. The test shows that dynamic and static rotary control accuracy of the cam shaft in the distributor is±1°.The static position control accuracy of the distributor spool is±0.2 mm,its dynamic accuracy is±0.5 mm,speed control accuracy is(0.26~1.35)mm/s under different load.
引文
[1]荆宏善.八十年代国外重型锻压机械制造业及其产品技术.重型机械,1992,4:37-45.
    [2]于凤仁.当代锻造液压机的发展状况与现有液压机的改装.重型机械,1990,(1):1116.
    [3]田依民,陈延杭.锻造液压机的发展动态.重型机械,1985,8:1-4.
    [4]王风喜.锻造液压机与操作机的发展.锻压机械,1998,6:3-5.
    [5]朱钒,张志,张道富等.国内外液压机技术现状及发展趋势.机床与液压,2000,(1):6-7.
    [6]俞新陆.液压机.北京:机械工业出版社,1990:1-2.
    [7]田会然.800MN多向模锻液压机本体结构设计及分析:[硕士学位论文].秦皇岛:燕山大学,2005:5-6.
    [8]俞新陆.液压机.北京:机械工业出版社,1982:193-199.
    [9]杨大祥,韩炳涛.165MN自由锻造油压机的液压控制系统.重型机械,2006,3:11-16.
    [10]潘紫微,邵韦循,王彪等.80MN水压机下梁有限元分析.安徽工业大学学报.2005,22(2):145-146.
    [11]侯晓望,童水光.基于有限元分析的液压机结构优化.重型机械.2005,(4):46-48.
    [12]李德军,李培武,管延锦等.22MN液压机整体框架式机身的有限分析.塑性性工程学报.1995,3(9):52-59.
    [13]余心宏,李天恩,张盛华等.快锻液压机机架静动态数值模拟.重型机械.2005,(2):25-27.
    [14]杨秀萍,宗升发,曹晓邮.液压机结构设计的有限元法.重型机械.2006,(6):38-41.
    [15]方刚.大型水压机横梁结构优化及补强理论的研究:[博士学位论文].哈尔滨:哈尔滨工业大学.1999.
    [16]贾玉双.三万吨模锻水压机立柱螺纹联结的优化设计.机械设计,2002,19(2):19-20,49.
    [17]李范坤,钟掘.300MN模锻水压机侧推力研究.中国有色金属学报.1995,5(3):134-137.
    [18]钟伟弘,徐燕申.基于广义模块化的整体框架式液压机机身结构的优化设 计.重型机械.2004,(12):47-50.
    [19]黄明辉,张可.巨型模锻水压机立柱应力在线检测及保护系统.中南工业大学学报.1997,28(5):474-477.
    [20]方刚,康达昌,朱信等.万吨水压机下横梁强度的有限元分析.塑性工程学报.1999,6(2):78-81.
    [21]郭玉玺,丁耀林等.大型热模锻水压机的电液伺服控制系统.锻压机械.2002,37(4):13-16.
    [22]A.hitchcox,J.Manji.PLCs Continue Their Move into Fluid Power Control.Hydraulics &Pneumatics,Pneumatics,Cleveland,Ohio,USA,1993,46(5):30-32.
    [23]秦勇.液压机技术的现状与发展趋势.煤矿机械,2000,11:3-4.
    [24]Hitchcox.A,Manji.J.PLCs Continue Their Move into Fluid Power Control.Hydraulics & Pneumatics,1993,46(5):30-32
    [25]LEE,C.B.WU,H.W.SELF-TUNING ADAPTIVE SPEED CONTROL FOR HYDROSTATIC TRANSMISSION SYSTEMS.INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY,1996,9(1):18-33.
    [26]FU QING,LUO AN.DEVELOPMENT OF INTELLIGENT HYDRAULIC PRESSURE SELF-CONTROL SYSTEM.INSPEC ABSTRACT NUMBER:C2002-10-3260G-003.
    [27]IZUMI EIKI(JP);WATANABE HIROSHI(JP).CONTROL SYSTEM FOR HYDROSTATIC POWER TRANSMISSION.EUROPEAN PATENT PUBLICATION NUMBER:US4528813.
    [28]谭建平,周俊峰,黄长征.300MN模锻水压机智能操纵控制系统设计与应用.机器人技术与应用,2006,(10):32-36.
    [29]陈柏金.锻造液压机组液压控制系统研究:[博士学位论文].武汉:华中理工大学,2000.
    [30]逢振旭,李从心.液压机计算机控制与监测系统的设计.计算机应用.2000,20(9):54-56.
    [31]张仁杰.用插装阀和PC改造压力机液压系统.机床与液压,1996,(1):45-47
    [32]BERG H,IVANTYSYNOVA M.DESIGN AND TESTING OF A ROBUST LINEAR CONTROLLER FOR SECONDARY CONTROLLED HYDRAULIC DRIVE.PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING.1999,(15):375-386.
    [33]PANG ZHEN-XU.STRUCTURE AND CONTROL OF HIGH SPEED FORGING HYDRAULIC PRESS.1NSPEC ABSTRACT NUMBER:C2001-02-3355Z-004.
    [34]Clinton,John.Beam Synchronization of Press Brakes.Sheet Metal Industries.1986,63(9):510-518.
    [35]Pylajkin,P.A.Parameters Indication of Stamping Press Hydraulic Synchronizing System.Kuznechno-Shtampovochnoe Proizvodstvo.1991,(12):19-22.
    [36]谭建平,刘昊.溢流补偿型液压位置保持系统的研究及应用.机械工程学报,2004,(3):23-25.
    [37]袁春.三万吨水压机的操作系统和同步平衡系统:[硕士学位论文].长沙:中南工业大学,2002.
    [38]周俊峰,谭建平.300MN模锻水压机活动横梁同步检测系统设计.机械与电子.2004(8):51-53.
    [39]张友旺,谭建平.TEMPOSONICSⅢ位移感器及其在水压机平衡校正系统中的应用.机床与液压.2000(6):73-74.
    [40]中南大学.300MN模锻水压机同步控制系统.国家科技成果数据库.Nast 序列号:9432001000328.
    [41]西安重型机械研究所.六万五千吨多向模锻水压机活动横梁同步平衡系统的试验研究.国家科技成果数据库.Nast序列号:9661982001396.
    [42]陈就.插装阀的复合控制机能及其在大型液压机上的应用.机床与液压,2003,2:213-215.
    [43]陈柏金,黄树槐.锻造液压机液压系统传动方式研究.锻压技术,2003,2:44-47.
    [44]张利平,刘青社.现代液压机研发中的液压系统设计.锻压机械,2006,6:7-8.
    [45]赵静一.10MN水压机控制系统更新及可靠性研究:[博士学位论文].哈尔滨:哈尔滨工业大学,2000:3-4.
    [46]陈世雄,陆善.挤压机挤压速度控制与节能.中国有色工程.2005,(10):37-44.
    [47]P.Sun,J.J.Gr'acio,J.A.Ferreira.Control system of a mini hydraulic press for evaluating springback in sheet metal forming.Journal of Materials Processing Technology.176(2006):55-61.
    [48]Uwe Konnerth.A hydraulic high-speed tryout press for the simulation of mechanical forming processes.Journal of Materials Processing Technology.111(2001):159-163.
    [49]S.Thiruvarudchelvan,G.L.Seet,H.E.Ang.Computer-monitored hydraulic bulging of tubes.Journal of Materials Processing Technology.57(1996):182-188.
    [50]J.A.Ferreira,P.Sun and J.J.Grácio.Close loop control of a hydraulic press for springback analysis.Journal of Materials Processing Technology,2006,177(3):377-381.
    [51]H.W.Wagener,A.Wendenburg.Analysis system prerequisite for automation in metal-forming technology.Journal of materials Processing Technology.116(2001):55-61.
    [52]Renn,J.C.Tsai,C.Development of an unconventional electro-hydraulic proportional valve with fuzzy-logic controller for hydraulic presses.International Journal of Advanced Manufacturing Technology.2005,26(1/2):10-16,7.
    [53]D.Denman,W.McNeil.Multi-axial servohydraulics controls compaction press [J].HYDRAULIC & PNEUMATICS,2000,(1):27-29.
    [54]蒙争争.电液比例控制技术在快速深拉伸液压机中的应用.合肥工业大学学报(自然科学版).2006,29(1):69-73.
    [55]俞兴民,齐乐华,苏力争等.液压机调速系统改进设计.液压与气动.2006,(3):63-64.
    [56]S Bailey and J Watton.A neural network approach to transmission line modelling and fault diagnosis of a hydraulic press control system.Jonoural Systems and Control Engineering.2002,216(1):357-368.
    [57]Quang-Cherng Hsu,Sio-Hou Lei.Development and analysis for the large-scale tee-forming process.Journal of Materials Processing Technology.104(2000):265-270.
    [58]L.H.Langa,J.Danckert,K.B.Nielsen etal.Key technologies of the simulation of the hydrodynamic deep drawing of irregular parts Journal of Materials Processing Technology.150(2004)40-47.
    [59]彭辉.等温挤压的实现方式与控制算法.工业仪表与自动化装置.1997,(4):22-24.
    [60]彭辉,彭晓燕.液压挤压机挤压速度的预测控制.中国有色金属学报.1996,6(3):164-168.
    [61]司徒忠,李庆亮,朱钒.高速液压机智能控制方法研究.机床与液压.19991,(5):14-18.
    [62]陈祥,易孟林,曹树平.基于模糊PID控制和变频调速的高速液压拉伸机控制系统研究.机械与电子.2002,(1):40-42.
    [63]王勇,熊晓红,黄树槐.快速锻造液压机组的模糊控制策略研究.机械工程学报.1998,134(8):102-105.
    [64]王勇,熊晓红,黄树槐等.一种新型最优模糊控制器的应用.自动化学报.1999,125(14):560-562.
    [65]温海燕,王增强,叶玮琼.模糊控制器在水压机控制系统中的应用.广东自动化与信息工程.2005,(3):7-9.
    [66]周晓光,徐志军,童庆峰.液压机高精度模糊控制器的设计.北京邮电大学学报.2001,24(3):6-10.
    [67]骆建,俞新陆,巢克念等.人工神经元网络在液压机行程停位控制中的应用.清华大学学报.1995,35(2):13-19.
    [68]LUO,JIANBIN.STUDY ON STOP POSITION CONTROL OF A HYDRAULIC PRESS USING ARTIFICIAL NEURAL NETWORK.E.I.NO:EIP95072777104.
    [69]G.S.Ford and G.Gauper.Huge hydraulic press goes to work in California.HYDRAULICS & PNEUMATICS.2001(2):25-29.
    [70]LES CLAAR,AL DeROUEN,BRUNO STILLHARD.New Life for Hydraulic Presses.ENGNEERING AND TECHNOLOGY GUIDE.1989(12):40-46.
    [71]W.Voelkner.Present and future developments of metal forming:selected examples.Journal of materials Processing Technology.106(2001)236-242.
    [72]Klaus Siegert,Markus Haussermann,Bruno losch,Ralf Rieger.Recent developments in hydroforming technology.Journal of materials Processing Technology.98(2000)251-258.
    [73]Dinesh Damodaran,Rajiv Shivpuri Prediction and control of part distortion during the hot extrusion of titanium alloys Journal of Materials Processing Technology 150(2004):70-75.
    [74]常德乾,佟冰,刘鹏.步进电机闭环控制在挤压机速度系统中的应用.重型机械,2004,(2):23-25.
    [75]张海潮,段全胜,李克等.基于机器视觉的挤压机调速系.http://www.plc -fa.hk/detail.asp?id=3461.
    [76]张广红,吴爱国,郑爱红.万吨液压机等温锻造恒速度控制设计.液压与气动.2005,(4):19-21.
    [77]胥建华,李静如,陆元章.具有时变负载对象的控制系统设计.机械设计与研究.1996,(2):26-28.
    [78]张建明,王树青,王宁.液压电梯的神经元非模型控制.清华大学学报(自然科学版).2000,40(S2):314-318.
    [79]彭天好,杨华勇,徐兵.变频回转液压系统的动态特性仿真.机床与液压,2001,(13):7-10.
    [80]许沧粟,刘江峰,黄承修.电流变液力发动机悬置动态特性研究分析.汽车工程.2007,29(2):157-160.
    [81]李战慧,李白光基于SIMULINK的转运车液压系统动态特性仿真研究.机床与液压,2005,(7):169-171.
    [82]Min Young Kim,Chung-Oh Lee.An experimental study on the optimization of controller gains for an electro-hydraulic servo system using evolution strategies.Control Engineering Practice,2006,(14):137-147.
    [83]S.Li,Y.Song.Dynamic response of a hydraulic servo-valve torque motor with magnetic fluids.Mechatronics,2007,(4):1-6.
    [84]FLORIN IONESCU.SOME ASPECTS CONCERNING NONLINEAR MATHEMATICAL MODELING AND BEHAVIOUR OF HYDRAULIC ELEMENTS AND SYSTEMS.Proc.2nd World Congress of Nonlinear Analysts.1997,30(3):1447-1460.
    [85]Guangfu Sun,Michael Kleeberger.Dynamic responses of hydraulic mobile crane with consideration of the drive system.Mechanism and Machine Theory,2003,(38):1489-1508
    [86]蔡廷文.带恒压惯性源的非线性液压系统的数学模型和自持振荡参数的研究.华东船舶工业学院学报(自然科学版),2001,15(6):55-61.
    [87]宋锦春,高航,张立成等.高压辊磨机液压系统及其动态特性.2000,21(1):38-41.
    [88]荆宝德,瞿爱勤,陈铁民.全液压抽油机液压系统的动态特性分析.吉林工业大学学报 1998,28(3):76-80.
    [89]李锋,黄先祥,马长林.承载下降液压系统动态特性仿真研究.机床与液压,2003,(5):80 82.
    [90]蒋苗苗,刘混举.基于SIMULINK的往复式交流液压系统的动态仿真.机械工程与自动化.2007,(2):24-26.
    [91]赵升吨,张立军.新型开槽机液压系统的动态特性仿真研究.机床与液压,2006,(2):100-102.
    [92]李锋,马长林.液压系统动态特性的SIMULINK仿真与优化研究.计算机仿真,2003,(5):110-112.
    [93]卢责主,胡国清.一种改进了的液压系统动态特性分析方法.厦门大学学报(自然科学版),2001,40(4):878-891.
    [94]宁崴,王艾伦,杨务滋.支臂回转机构液压系统动态特性仿真与实验研究.矿山机械,2005,33(2):6-8.
    [95]杜诗文,李永堂,雷步芳.棒料高速剪切机液压系统设计与动态特性研究.锻压装备与制造技术,2006,(6):42-45.
    [96]唐林.面向对象的液压系统动态特性仿真研究.机械制造,1998,(8):11-13.
    [97]Y.Liu,T.N.Baker.A comparison of experimental and computer-simulated isothermal upset forging of IMI685 titanium alloy.MATTERIALS SCIENCE & ENGINEERING.A205(1996):117-127.
    [98]周建罗,许小虎.钛合金压气机盘等温锻造技术.航空制造工程.1997,(10):24-26.
    [99]J.Zhou,L.Li,J.Duszczyk.Computer simulated and experimentally verified isothermal extrusion of 7075 aluminium through continuous ram speed variation.Journal of Materials Processing Technology.146(2004):203-212.
    [100]张广红,吴爱国,郑爱红.万吨液压机等温锻造恒速度控制设计.液压与气动.2005,(4):19-21.
    [101]洪慎章,曾振鹏.起落架轮毂等温模锻工艺.航空制造技术.2002,(2):59-61.
    [102]王芝英,邵仁兴.钛合金等温锻造进展,锻压技术.1997,(1):12-28.
    [103]Abhijit Dutta,A.Venugopal Rao.Simulation of isothermal forging of compressor disc by combined numerical and physical modelling techniques.Journal of Materials Processing Technology.72(1997):392-395.
    [104]D.B.Shah,Z.Wang,Y.Lu,k.m.x ue.Study on isothermal precision forging technology for a cylindrical aluminium-alloy housing.Journal of Materials Processing Technology.72(1997):403-406.
    [105]李功成,曾凡昌.俄国等温徒然技术的进展.航空科学技术.1996,(5): 32-35.
    [106]李云瑞,张建国,李鹏等.液压机用于超塑性和等温锻造控制模式.锻压机械.1997,(3):14-16.
    [107]中南工业大学,西南铝加工厂.100MN多向模锻水压机运行操作与保护系统的研制.国家科技成果数据库 Nast序列号:9431998000236.
    [108]中南大学.大型模锻水压机智能控制与操作系统.国家科技成果数据库.Nast序列号:9432004000426.
    [109]谭建平,周俊峰,黄长征.300MN模锻水压机操作系统改造方案研究.机械科学与技术,2006,142(12):1408-1410.
    [110]骆建.三万吨模锻水压机主液压系统动力学分析及主液压缸的强度计算:[硕士学位论文].长沙:中南大学.1989.
    [111](苏)A.Φ.别洛夫等著,靳辅安译.水压机模锻.北京:国防工业出版社.1981:29-33.
    [112]Gianluca Lucente,Marcello Montanari and Carlo Rossi.Modelling of an automated manual transmission system.Mechatronics.2007,17(2-3):73-91.
    [113]李锋,马长林.平衡阀动态特性仿真与参数优化研究.机床与液压,2003,(4):232-233.
    [114]逄振旭,李从心.快速锻造液压机的建模与动态仿真.中国机械工程,2002,13(10):841-844.
    [115]杨军红,船舶运动模拟平台及其液压伺服驱动系统:[博士学位论文].长沙:国防科技大学.2007.
    [116]黄长征,谭建平.液压机分配阀芯驱动凸轮升程曲线优化设计.中南大学学报.2007,(5).
    [117]黄长征,谭建平.巨型液压机分配阀芯开启凸轮工作曲线设计研究,机械科学与技术,2007,26(6):710-713.
    [118]JB/T 2001.25-1999 分配阀芯.
    [119]黄长征,谭建平.水压机分配器凸轮过渡曲线改进设计.机械设计与制造.2006.(12):33-35.
    [120]熊伟.凸轮.中国专利:01221518,2002.4.17.
    [121]许勇,邹慧君,邓堃等.作复杂相对摆动构件-凸轮机构优化设计.机械设计与研究,2005,21(3):27-30.
    [122]J.Lamppinen.Cam shape optimization by genetic algorithm.Computer-Aided Design,2003,35(3):727-737.
    [123]K.Y.Ahn,J.H.Kim and S.H.Kim.DESIGN OF A SPRING-ACTUATED HIGH-SPEED CAM MECHANISM WITH NON-CONSTANT ANGULAR VELOCITY.Mechanics Research Communication,2000,27(5):529-538.
    [124]Chu-Jen Wu,Jorge Angeles.The optimum synthesis of an elastic torque-compensating cam mechanism.Mechanism and Machine Theory,2001,36(2):245-259.
    [125]Yan-an Yao,Ce Zhang,Hong-Sen Yan.Motion control of cam mechanisms.Mechanism and Machine Theory,2000,35(3):593-607.
    [126]Chiara Lanni,Marco Ceccarelli,Giorgio Figliolini.An analytical design for three circular-arc cams.Mechanism and Machine Theory,2002,37(4):915-924.
    [127]林金木.高速盘式凸轮的优化和动态设计.湖南大学学报,1994,21(5):78-85.
    [128]彭云柯,周济,余俊.移动从动件平面凸轮机构基本尺寸的优化设计.华中理工大学学报,1994,22(7):106-110.
    [129]关天民,张东生.摆线针轮行星传动中反弓齿廓研究及其优化设计.机械工程学报,2005,41(1):151-156.
    [130]李永堂,雷步芳,高雨茁编著.液压系统建模与仿真.北京:冶金工业出版社,2003.
    [131]董敏,赵静一,吴晓明.二通插装阀系统动态特性的仿真与研究.液压气动与密封,2001,1:34-37.
    [132]杨巨庆,黄健,段丽华.PID控制技术与应用.哈尔滨师范大学自然科学学报,2004,20(2):77-79.
    [133]Min Young Kim and Chung-Oh Lee.An experimental study on the optimization of controller gains for an electro-hydraulic servo system using evolution strategies.Control Engineering Practice,2006,14(2):137-147.
    [134]Chang-Sei Kim,Keum-Shik Hong and Moon-Ki Kim.Nonlinear robust control of a hydraulic elevator:experiment-based modeling and two-stage Lyapunov redesign.Control Engineering Practice,2005,13(6):789-803.
    [135]沙导航,杨华勇.电液伺服系统鲁棒最优控制的研究.机床与液压,1997,5:1-18.
    [136]张洪涛,安瑞生.智能控制技术在电液伺服控制中的应用.液压与气动,1998,6:6-7.
    [137]Astrom K J.Hagglund T.Automatic Tuning of PID Controllers.Research Triangle.Park,North Carolina:Instrument Society of America,1988.
    [138]Koivo H N,Tanttu J T.Tuning of PID controllers:survey of SISO and MIMO techniques.Preprints of IFAC International Sympon Intelligent Tuning and Adaptive Control,Session 1,Singapore,1991.
    [139]王伟,张晶涛,柴天佑.PID参数先进整定方法综述.自动化学报,2000,26(3):347-355
    [140]叶兆春,王发庆.一种基于规则的PID参数自整定.北京工业大学学报,1987,3:1-7.
    [141]江琼,陈怀民,吴佳楠.H∞鲁棒控制与PID制相结合的无人机飞行控制研究.宇航学报,2006,27(2):192-195.
    [142]Peng,Ya-Fu,Hsu,Chun-Fei,Lin,Chih-Min;Intelligent adaptive control scheme for uncertain nonlinear systems using H infinity control technique,IEEE International Conference on Mechatronics and Automation,ICMA 2005,2216-2221.
    [143]解学书.最优控制理论与应用.北京:清华大学出版社,1986.
    [144]王德进.H2和H_∞优化控制理论.哈尔滨:哈尔滨工业大学出版社,2001.
    [145]刘长年.液压伺服系统优化设计理论.北京:冶金工业出版社,1989.
    [146]宋俊,王淑莲.液压系统优化.北京:机械工业出版社,1996.
    [147]王幼民,司妙丽.电液位置伺服系统干扰抑制问题的H_∞控制,农业机械学报,2004,35(6),164-170
    [148]刘,300MN水压机操纵液压系统仿真及其控制技术研究:[硕士学位论文].长沙:中南大学.2006.
    [149]Sohel Anwar.Generalized predictive control of yaw dynamics of a hybrid brake-by-wire equipped vehicle.Mechatronics,2005,15(9):1089-1108.
    [150]席裕庚.预测控制.北京:国防工业出版社,1993.
    [151]Richalet J,Rault A,Testud J L,etal.Model Predictive Heuristic Control:Application to Industrial rocesses.Automatica,1978,14(5):413-428.
    [152]Rouhani R,Mehra R.K.Model Algorithmic Control(MAC),Basic Theoretical Properties.Automatica,1982,18(4):401-414.
    [153]Culter C R,Ramaker B L.Dynamic Matrix Control-A Computer Control Algorithm.Proc.JACC.SanFranciso,1980.
    [154]De Keyser R M C,Van Cauwenberghe A R.A Self- Tuning Multistep redictor Application.Automatica,1981,17(1):167-174.
    [155]De Keyser R M C,Van Cauwenberghe A R.Extended prediction self-adaptive control.IFAC Symp.Ident.Syst.Param.Est,York,1985.
    [156]Ydstie P S.Extended horizon adaptive control.IFAC 9th World Congress.Budapest,Hungary,1984.
    [157]Clarke D W,Mohtadi C,Tuffs P S.Generalized Predictive Control,Part 1:The Basic Algorithm;Part 2:Extensions and Interpretations.Automatica,1987,23(2):137-160.
    [158]Lelic M A,Zarrop M B.Generalized pole-placement self-tuning controller,Part 1:Basic algorithm.Intl.J.Control,1987,46(2):547-568.
    [159]Lelic M A,Zarrop M B.Generalized pole-placement self-tuning controller,Part 2:Application to robot manipulator control.Intl.J.Control,1987,46(2):569-601.
    [160]Demircloglu H,Gawthrop P J.Continuous-time Generalized Predictive Control(CGPC).Automatica,1991,27(1):55-74.
    [161]Garcia C E,Morari M.Internal Model Control 1.A Unifying Review and Some New Results.I&EC Process Des.Dev,1982,21(2):308-323.
    [162]Kuntze H B,et al.On the predictive functional control of an elastic industrial robot.Proc.25th CDC.Athens,Greece:1986,1877-1881.
    [163]Richalet J,et al.Predictive functional control:application to fast and accurate robots.IFAC 10th World Congress.Munich:1987,251-258.
    [164]王树青,等.先进控制技术及其应用.北京:化学工业出版社,2001.
    [165]金晓明,王树青,荣冈.先进控制技术及应用(5):预测函数控制(PFC)--种新型预测控制策略.化工自动化及仪表,1999,26(6):74-79.
    [166]张泉灵,王树青.化学反应器温度跟踪预测函数控制的研究及应用.控制理论与应用,2001,18(4):559-563.
    [167]王骥程,祝和云.化工过程控制工程(第2版).北京:化学工业出版社.1991.
    [168]会晓明,模糊控制、预测控制与工业过程的先进控制:[博士学位论文].杭州:浙江大学.1998.
    [169]郭迎清,王海泉.涡扇发动机模型辨识及其控制器设计.现代制造工程,2006,(9):73-75.
    [170]郑征,田书.基于MATLAB的辅助变量法参数辨识与仿真.计算机应用与软件,2004,(1).
    [171]孔祥臻,刘延俊,王勇等.气动比例控制系统的建模与辨识.机床与液压,2006,19(1):121-123.
    [172]Richalet J,Estival J L,Fiani Pl Industrial Applications of Predictive Functional Control to Metallurgical Industries 10-7803- 2550/95@1995.IEEE.
    [173]Kuntze H B,Jacubasch A,Hirsch U,et allOn the Application of a New Method for Fast and Robust Position Control of Industrial Robots CH2555-1/88/0000/1574@1998 IEEE.
    [174]谭建平,周俊峰,黄长征.300MN模锻水压机操作系统改造方案研究.机械科学与技术,2006,142(12):1408-1410.
    [175]Kashiwa,Masahiko.Pressing speed controller for hydraulic press.America Patent,No.:533607.
    [176]陈代明.液压系统集成块的设计与制造[J].液压与气动.1988(4),36-39.
    [177]邢志伟,姜秀萍,赵明砚.液压集成块孔道优化设计的研究.组合机床与自动化加工技术.2000(3);11-13.
    [178]黎鑫溢,谭建平,周俊峰.PLC数据通讯在水压机控制系统中的实现与研究.微计算机信息2006.22(4-1):78-81.
    [179]喻寿益,刘剀.1万吨多向模锻水压机计算机控制系统.计算技术与自动化.1997,16(3):34-37.
    [180]苏勇,陈晖,谭建平,黄长征.300MN水压机控制系统网络通讯诊断实现.微计算机信息.2007.23(2):180-182.
    [181]喻寿益,刘剀.1万t水压机学习控制系统.中南工业大学学报.1997,28(3):274-277.
    [182]黄长征,谭建平.300MN模锻水压机自学习控制系统研究,微计算机信息,2006,23(7):39-41.
    [183]中南大学.万吨水压机操纵系统液压回路.中国专利数据库.公开号:CN1647911.
    [184]莱芜钢铁集团有限公司.液压伺服系统在水压机操纵系统中的应用研究.国家科技成果数据库.Nast序列号:9372000002249.
    [185]黄长征,谭建平.300MN模锻水压机操作油压系统研究.机床与液压,2006,(7):124-126.
    [186]刘,徐先懂,谭建平.基于Bath_fp的300MN水压机液压系统的仿真研究.液压气动与密封.2006,(3):1-3.
    [187]Liu,Kai.Learning Control System for a Ten-thousand-ton Hydraulic Press.Proceedings of the International Symposium on Test and Measurement,1997:541-544.
    [188]陈晖,基于人工神经网络的水压机活动横梁位置控制系统研究:[硕士学 位论文].长沙:中南大学.2006.
    [189]陈晖,黄长征,潘鑫,谭建平.基于WinCC的300MN模锻水压机监控系统设计.微计算机信息.2007,23(1-1):45-47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700