重金属在鱼、蔬菜体内的分布及其存在形态的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来食品受有毒重金属污染的现象已越来越多地引起人们的重视,但是目前的研究大多侧重于测定食品中重金属的总量,而对其形态的研究相对较少。本论文研究在重金属胁迫下,鱼及蔬菜对重金属吸收和累积的规律,同时采用排阻色谱与电感耦合等离子体质谱联用的方法研究鱼及蔬菜体内重金属的存在形态。研究结果揭示了重金属在鱼及蔬菜体内的吸收、分布和累积特征,以及重金属的主要存在形态,有助于进一步研究鱼及蔬菜在重金属污染环境中的响应机理,以控制食品重金属污染的程度。
     全文共分为三章:1.重金属污染与食品安全;2.重金属在鱼体内的分布、累积规律及其存在形态的研究;3.芥菜对镉的吸收、累积规律及形态的研究。
     第一章对食源性动植物受重金属污染的危害和现状进行综述,特别就目前广泛应用于食品中微量重金属检测中的原子光谱分析方法进行了论述。此外,通过对中、外文献的查阅,综述了电感耦合等离子体质谱(ICP-MS)在食品等生物样品中微量元素检测中的应用,以及ICP-MS与高效液相色谱(HPLC)联用技术用于重金属在生物体内结合形态研究的进展。
     第二章以鲤鱼为实验动物,研究暴露在复合重金属(Hg、Cd、Pb)中的鲤鱼对Hg、Cd和Pb的吸收、积累及多金属结合金属硫蛋白(MTs)的诱导特征。通过比较不同暴露时间条件下重金属在鱼组织中的分布和累积规律,发现吸收重金属在鱼组织中的累积规律为:鳃>肾>肝>肌肉;随着暴露时间的延长,鱼各组织中的多金属结合MTs的诱导量均随之增多。同时,组织中不同重金属诱导生成的MTs量也显著不同,尽管鳃中累积的重金属规律为Hg>Cd>Pb,但Cd-MTs的诱导量远高于Hg-MTs。由于鳃易于累积重金属,并诱导产生大量的MTs。因此,鱼鳃可作为水体微量重金属污染的重要检测器官。
     第三章以不同形态及不同浓度镉作为胁迫液,研究培养液中的镉在芥菜植株不同组织的分布、累积规律及在其体内的结合形态。结果表明:镉在芥菜植株的累积顺序为根>叶>茎;芥菜对不同镉形态的吸收能力不同,表现为:柠檬酸镉>氯化镉>硝酸镉>EDTA-镉;随着胁迫浓度的增大,芥菜各组织累积的Cd量也显著增大。镉在芥菜组织中的结合形态主要以植物螯合肽(PCs)、类金属硫蛋白(MT-like)及大分子量的蛋白结合形态(HMM),且随着胁迫液镉浓度的增大,HMM含量显著增大。
More and more attention has been paid to the heavy metal pollution of food in recent years. However, the researches have been mostly restricted in the determination of the total quantities of heavy metals in food samples. There has been little research about the important chemical species of the heavy metals in food samples. Therefore, in the present study, the absorption and accumulation of heavy metals in fish and vegetables exposed to heavy metals respectively are measured by inductively coupled plasma mass spectrometry (ICP-MS).In addition, the multimetal-binding fractions in the samples are investigated with the hyphenated technique of size-exclusion chromatography (SEC) and ICP-MS. The results may be useful for the further studies about reacting mechanisms of heavy metals of the aquatic products and plants in contaminative environment.
     The full thesis consists of three chapters: 1. review of heavy metal contamination and food safety; 2. investigation into metal distribution, accumulation and metal-binding metallothioneins in carp exposed in waterborne heavy metals; 3. investigation of cadmium distribution and Cd-binding fractions in mustard cultured in cadmium solution.
     In the first chapter, the danger and the present situation of heavy metal contamination in foods were reviewed. The discussion mainly focused on the analytical methods of atomic spectrometry generally used in the present for trace heavy metals in foods, and the hyphenated techniques of high performance liquid chromatogram (HPLC) and inductively coupled plasma mass spectrometry (ICP-MS) used for the speciation analysis of heavy metals.
     In the second chapter, the bioaccumulation of metals and induction of metallothioneins in carp co-exposed to cadmium, mercury and lead were investigated. The results indicated that the accumulation order of three heavy metals was as follows: gills>kidneys> livers>muscle; the amount of MTs induced in fish tissues increased with the longer exposure time. Gill would significantly assimilate heavy metals and the assimilated metals in the gill caused higher MTs concentrations in this organ, therefore, MTs in gill could be used as a marker to reflect the toxic metal pollution
     In the third chapter, the absorption and accumulation of cadmium in mustard stressed with different species and different concentrations of cadmium were investigated. Meanwhile, the cadmium-binding fractions in mustard were analyzed with the hyphenated technique mentioned above. The results indicated that the accumulation order of Cd was ranged as roots>leaves>stems. The main (Cd、Zn)-binding fractions included high molecular mass (HMM), MT-like and phytochelatins (PCs). Comparing with the content of PCs and MT-like, the amount of HMM induced in roots of mustard increased significantly with the higher stressed Cd concentrations.
引文
[1] 梁称福,陈正法,刘明月.蔬菜重金属污染研究进展[J].湖南农业科学, 2002,22(4):45-48
    [2] Christelle P,Francis F,Christophe W.Heavy Metals in Soil, Crops and Grass as a Source of Human Exposure in the Former Mining Areas [J].heavy metals, 2006, 256(15):159-167.
    [3] 梁惠宁,黄荣峥,姜岳明.铅对儿童健康影响的研究进展[J].中国公共卫生,2006,22(1):116-117.
    [4] 张永志,王钢军.浙江省主要城市市场中的水产品重金属含量调查研究[J].广东微量元素科学,2004,11(6):56-60.
    [5] 孟晓红,贾瑛,付超然.重金属稀土元素污染在水生物体内的生物富集[J].农业环境保护,2000,19(1):50-52.
    [6] 任群,赵肃,邱玉鹏.镉污染区居民肾功能损害的研究[J].环境与健康杂志,2006,23(3):202-205.
    [7] Singh S,Kumar M.Heavy metal lord of soil, water and vegetables in periurban Delhi [J].Environmental Monitoring and Assessment, 2006, 12(8):79–91.
    [8] George A,Kachenko S,Balwant S. Heavy metals contamination in vegetables grown in urban and metal smelter contaminated sites in Australia [J].Water, Air, and Soil Pollution, 2006, 16(9):101-123.
    [9] Kamnev A,Colina M,Renou G. Atomic Absorption Spectroscopic Investigation of the Mineral Fraction of Pectins Obtained from Pumpkin and Sugar Beet [J].Monatshefte fiir Chemie, 1997, (12)8:211-216.
    [10] 于春兰,薛美琴. 蔬菜基地土壤重金属污染现状调查与研究[J].蔬菜, 2006,5:42-43.
    [11] 郑国璋, 岳乐平,李智佩.关中平原黑惠灌区土壤重金属污染调查与评价[J].土壤通报,2006,37(2):337-340.
    [12] 刘玉燕,刘敏.城市土壤重金属污染特征分析[J].土壤通报,2006,37(2): 184-189.
    [13] 王丽凤,白俊贵.沈阳市蔬菜污染调查及防治途径研究[J].农业环境保护, 1994,13(2):84-88.
    [14] 李立君 , 段敏 , 王西玲 . 陕西苹果园土壤重金属含量水平及其评价 [J]. 果 树 学报,2004,21(2):103-105.
    [15] 赵锁劳,段敏 , 马往校, 等 . 西安市蔬菜中重金属污染调查研究 [J]. 水 土 保 持 学 报 , 2002,16(4):112-116.
    [16] 李其林,刘光德.重庆市蔬菜地土壤重金属特征研究[J].中国生态农业学报, 2005,13(4):142-146.
    [17] 李霞,席玉英,刘子川.太原地区食用蔬菜中有害重金属铅、镉含量的分析研究[J]. 山西农业科学,2OO2,3O(2):70-72.
    [18] 何江华,柳勇,王少毅,等.广州市郊区菜园主要蔬菜的重金属含量[J].园艺学报, 2002,30(2):290.
    [19] 谢正苗,李静,徐建明,等.杭州市郊蔬菜基地土壤和蔬菜中 Pb、Zn 和 Cu 含量的环境质量评价[J].环境科学,2006,27(4):742-747.
    [20] 赵玲,马永军,董爱平.宁波农业生态环境污染现状[J].研究农业环境与发展, 2002,24(2):15-18.
    [21]袁大伟,雷萍,孙锡娟,等.上海市郊主要设施蔬菜园艺场土壤、灌溉水环境质量现状及评价[J].上海蔬菜,2001,16(2):33-35.
    [22]黄金煌,王果.疏菜对土壤镉富集能力的研究[J].福建农业利技,2001,(3):17-18.
    [23]孙德文,詹勇,许梓荣.重金属对鱼类危害作用的研究[J].水利渔业报,2003,23(2):4-6.
    [24]杨美兰,贾晓平,陆超华.北部湾主要经济鱼类体中的重金属[J].海洋通报,1990,5(9):39-46.
    [25]梁涛,曹军.铜铅被鱼吸收过程中的相互作用[J].应用生态学报,2000,11(4):621-624.
    [26]陆超华.南海北部海域经济鱼类的重金属含量与分布研究[J].中国水产科学,1994,1(2):60-70.
    [27]孟晓红,贾瑛,付超然.重金属稀土元素污染在水生物体内的生物富集[J].农业环境保护,2000,19(1):50-52.
    [28]张秀云,孙成渤.养鱼池水质与鱼肉中重金属污染的关系[J].城市环境与城市生态,1998,11(1):43-46.
    [29]刘长发,陶澍,曹军,等.铜和铅在污水鱼塘中鱼体内的蓄积[J].环境科学研究,1999,12(4):57-60.
    [30]金彩杏,陈雪昌,郭远明.微波消解GF-AAS法测定贝类产品中铅和镉[J].理化检验化学分册,2005,41(7):140-143.
    [31]乔英,丁艳霞,董学畅.原子吸收和原子荧光光谱法测定灵芝中的重金属含量[J].西南民族大学学报(自然科学版),2006,15(4):315-318.
    [32]穆丽,唐清,瞻月晨.原子吸收法测定马齿苋中八种矿物元素[J].食品研究与开发,2006,26(4):138-142.
    [33]葛家春,严华伟,朱晓华.氢化物原子荧光法测定水产品中的砷、汞[J].水产养殖,2004,25(2):150-155.
    [34]郭彦军.应用氢化物原子荧光法同时测定蔬菜中的砷和汞[J].现代科学仪器,2004(4):120-121.
    [35]范柯.端视ICP-AES法测定酒中六种重金属[J].中国公共卫生,2000,16(7):639.
    [36]李光,李春野,宋黎军.电感耦合等离子体发射光谱法测定奶粉中的9种元素[J].卫生研究,2006,35(2):139-142.
    [37]谢华林.微波消解电感耦合等离子体发射光谱法同时测定水产品中铅镉铬汞砷硒有害元素的研究[J].食品科学,2002,23(2):108-120.
    [38]黄志勇.电感耦合等离子体质谱(icp-MS)技术及其应用[J].厦门科技,2004,4:6-8.
    [39] Jarvis KE,Gray AL, Houk RS.Handbook of inductively Coupled Plasma Mass Spectrometry (电感耦合等离子体质谱手册)[M],Beijing: Press of Atomic Energy,1997:10.
    [40]杨振宇,唐建民.开放式微波消化-ICP-MS法快速测定食品中多种微量元素[J].光谱实验室,2005,22(2):322-328.
    [41]刘丽萍,毛红,张妮娜.电感耦合等离子体质谱法(ICP-MS)测定运动员食品中铅、砷、镉、铜[J].质谱学报,2006,27(2):89-93.
    [42]刘江晖.ICP—MS法测定海产品中汞含量[J].理化分析化学分册,2006,42:207-208.
    [43] Helabbary WH.Determination of 12 elements in Egyptian cigarette tobacco by instrumental neutron activation analysis [J]. Modelling, Measurement and Control, 2001, 62(122):61-68.
    [44] Hirschfeld T. hyphenated technique for speciation analysis [J].Anal.Chem, 1980, 52:297-305.
    [45] Joanna SL,Michiel C.Interferences in Ultratrace Speciation of Organolead and Organotin by Gas Chromatography with Atomic Spectrometric Detection [J].Mikrochim.Acta,1994,113:287-298.
    [46] 逯海,王军,赵墨田.有机铅形态分析用气相-氢气发生-电热原子吸收联用装置[J].质谱学报,2006,27(7):7-8.
    [47] Walsh K,Dunstan RH,Murdoch RN.Differential Bioaccumulation of Heavy Metals and OrganopoHutants in the Soft Tissue and Shell of the Marine Gastropod, Austrocochlea constricta[J].Arch Environ Contam Toxicol, 1995, 28: 35-39.
    [48] Uwe H.Determination of Methylmercury in Organic Matrices with Gas Chromatography/Atomic Absorption Spectrometry [J].Mikrochim Acta, 1992, 109: 131-132.
    [49] Rubio R,Padro A.Determination of different speciation of As in the water samples [J].Analytical Chimica Acta,1993,283(1):160-166.
    [50] Chausseau MC,Roussel N,Gilon JM.Optimization of HPLC-ICP-AES for the determination of arsenic species [J].Fresenius J Anal Chem,2000,366:476-480.
    [51] Nada A,Wahab M, Sroor A.Heavy metals and rare earth elements source sink in some Egyptian cigarettes as determined by neutron activation analysis [J].Applied Radiation and Isotopes, 1999, 51(1):1312-1361.
    [52] Raimund W,Celine WB.Comparison of GC-ICP-MS and HPLC-ICP-MS for species-specific isotope dilution analysis of tributyltin in sediment after accelerated solvent extraction [J]. Anal Bioanal Chem, 2003, 77:140-148.
    [53] Jason A,Day AP,Vonderheide A.Study of method robustness for arsenic speciation in drinking water samples by anion exchange HPLC-ICP-MS [J].Anal Bioanal Chem, 2002, 373:664-668.
    [54] Mari PK, Pentti KG.Speciation of chromium by coupled column HPLC-ICP- -MS the effects of interfering ions [J]. Fresenius J Anal Chem, 1996, 355:716-718.
    [55] Raimund W.Determination of inorganic arsenic in white fish using microwave-assisted alkaline alcoholic sample dissolution and HPLC-ICP-MS [J].Anal and Bio Chem, 2005, 381(1):259-368.
    [56] 何小青,刘湘生. HPLC-ICP-MS 联用技术应用于砷的形态分析[J]. 现代科学仪器,2004,4:33-37.
    [57] 陈登云,刘娜,张兰英.应用 HPLC-ICP-MS 联用技术进行 Hg 的形态分析研究[J].环境化学,2005,24(1):110-104.
    [58] Adel M.Distribution, accumulation and chemical speciation in vegetable [J]. plant,2005,45:154-159.
    [59] 陈龙.金属硫蛋白的性质、结构和生理学功能[J]. 周口师专学报,1996,13(3):59-62.
    [60] 张 桂 香 . 金 属 硫 蛋 白 的 功 能 及 应 用 前 景 [J]. 烟 台 师 范 学 院 学 报 ( 自 然 科 学 版 ) , 2005,21(1):142-145.
    [61] 刘志勇,魏国林.金属硫蛋白研究进展[J].江西科学 2004,22(2):104-109.
    [62] 田晓华,郭军华.金属硫蛋白的研究进展[J].国外医学:药学分册,2005,32(2):119-124.
    [63] 林梵,任宏伟,茹炳根.鱼体内金属硫蛋白与水环境关系的研究[J].北京大学学报(自然科学版),2001,37(6):779-783.
    [64] Sarkar A,Shrivastava S.Molecular Biomarkers: Their significance and application in marine pollution monitoring[J].Ecotoxicology,2006,7(6):79-83.
    [65] Kowk LL,Judy W,King MC.Metal toxicity and metallothionein gene expression studies in common carp and tilapia[J].Marine Environmental Research,1998,46(15):563-566.
    [66] Amiarda JC,Amiard TC,Barka C.Metallothioneins in aquatic invertebrates: Their role in metal detoxification and their use as biomarkers [J].Aquatic Toxicology, 2006, 76:160-202.
    [67] Wagner K,Mcdaniel RD.Collection and preparation of side stream cigarette smoke for trace elemental determinations by graphite furnace atomic absorption spectrometry and inductively coupled plasma mass spectrometry [J].AOAC Inter, 2001, 84(6):1934-1940.
    [68] Heidi GI,Karen VC,Freddy C.Anion-exchange high performance liquid chromatography hyphenated to inductively coupled plasma -isotope dilution-time-of-flight mass spectrometry for speciation analysis of metal complexes with metallothionein isoforms in gibel carp (Carassius auratus gibelio) exposed to environmental metal pollution[J].Journal of Chromatography,2006,15(5):459-470.
    [69] Harrington CF,Vidler DS, Watts MJ.Potential for using isotopically altered metalloproteins in species-specificisotope dilution analysis of proteins by HPlC coupled to inductively coupled plasma massspectrometry [J], Analytical Chemistry,2005, 77:4034-4041.
    [70] Jackson B,Shaw PA,Hopkins WP.Trace element speciation in largemouth bass (Micropterus salmoides) from a fly ash settling basin by liquid chromatography-ICP-MS[J].Anal and Biol Chem,2004,19:203-211.
    [71] Hyllandt K,Haux C,Hogstrand C.Properties of cod metallothionein, its presence in different tissues andeffects of Cd and Zn treatment[J].Fish Physiology and Biochemistry,1994,13(1):81-91
    [72] Galli U,Schuepp H, Brunold C.Heavy metal binding by mycorrhizal fungi[J]. Physiol Plant, 1994, 92:364-368.
    [73] Zenk MH.Heavy metal detoxification in higher plants-a review [J].Gene, 1996, 179: 21-30.
    [74] Waters ER,Lee GJ,Vierling E.Evolution, structure and function of the small heat-shock proteins in plants [J].Exp Bot, 1996, 47:325-338.
    [75] Smirnoff N,Cumbes QJ.Hydroxyl radical scavenging activity in compatible solutes [J]. Phytochemistry, 1989, 28:1057-1060.
    [76] Vande WA.Novel mitochondrial oxidoreductase required for phytochelatin accumulation and cadmium tolerance in fission yeast [J]. Exp Bot, 1995, 48:96-108.
    [77] Shah K,Dubey RS.Effect of cadmium on praline accumulation and ribonuclease activity in rice seedlings: role of proline as a possible enzyme protectant [J].Biol Plant, 1997, 40:121-130.
    [78] Chen Y,Huerta AJ.Effects of sulfur nutrition on photosynthesis in cadmium-treated barley seedlings [J]. Plant Nutr, 1997, 20:845-856.
    [79] Ahner JC.the heavy metal-binding peptides of plant [J].plant physiology and moleculer biology, 1990, 41:553-575.
    [80] Deb DB,Santra SC.Bioaccumulation of metals in fishes: an in vivo experimental study of a sewage fed ecosystem [J].The Environmentalist, 1997,26(17):27-32.
    [81] Watanabe I,Kunito T,Tanabe S.Accumulation of Heavy Metals in Caspian Seals (Phoca caspica)[J].Environ Contam Toxicol, 2002,15(43):109-120
    [82] Hulya KA, Erhan U.Heavy Metal Concentrations in Water, Sediment, Fish and Some Benthic Organisms from Tigris River [J].Environ Monit Assess, 2006, 26:365-361.
    [83] 周 辉 名 , 吴 志 强 , 袁 乐 洋 . 三 种 重 金 属 对 鲤 鱼 幼 鱼 的 毒 性 和 积 累 [J]. 中 国 卫 生 检疫,2005,29(3):292-295.
    [84] 周辉名,吴志强.三种重金属对链鱼幼鱼的毒性和积累[J].中国卫生检疫,2004,28(2):29-35.
    [85] Hans DS, Bart DW, Richard LK.Dynamics of (Cd, Zn)–metalloth -ioneins in gills, liver and kidney of common carp Cyprinus carpio during cadmium exposure [J]. Aquatic Toxicology, 2001, 52:269-281.
    [86] Kuroshima R.Cadmium accumulation in the mummichog Fundulus heteroclitus,adapted to various salinities[J].Bull Environ Contaim Toxicol,1992,49(5):680-685.
    [87] Buckley JT,Roch M,Carter MJ.Chronic exposure of coho salmon to sublethal concentrations of copper,Effect on growth,on accumulation and distribution of copper,and on copper tolerance[J],Comp Biochem Physiol C,1982,72(1):15-19.
    [88] 张 博 润 , 蔡 向 荣 , 怀 文 辉 . 金 属 硫 蛋 白 的 研 究 进 展 及 应 用 前 景 [J]. 微 生 物 学 通报,1999,26(5):355-357.
    [89] Lam H, Westernhagn HV.Correlation between Cadmium Concentration in the water and tissue residue levels in dab, limanda L, and plaice, pleuronectes platessa L [J].J Mar Biol Ass, 1980, 60:45-48.
    [90] Lam H, Westernhagn HV.Correlation between Cadmium Concentration in the water and tissue residue levels in dab, limanda L, and plaice, pleuronectes platessa L [J].J Mar Biol Ass, 1980, 60:45-48.
    [91] 孙瑾,陈春英,李柏.北京市场 4 种食用淡水鱼的总汞和甲基汞的含量分析[J].卫生研究,2006,35(6):722-726.
    [92] 关海红,蔺玉华.鲤鱼鳃组织结构及鳃对重金属离子的耐受性[J].水产学杂志,2004,17(1):68-70.
    [93] Alves PE, Haux C.Increased hepatic metallothionein content correlates to cadmium acc umulation in environmentally exposed perch [J].Aquatic Toxicology, 1999, 25:231-242.
    [94] Brigitte B,Catherine M,Thierry P.Metallothionein concentration in sponges (Spongia officinalis) as a biomarker of metal contamination[J].Comparative Biochemistry and Physiology,2005,141:306 -313.
    [95] Sarkar A,Ray D.Molecular Biomarkers: Their significance and application in marine pollution monitoring [J].Ecotoxicology,2006,12(26):1425-1430.
    [96] 马桂云,韩士群,严少华.镉在鲫鱼体内积累规律及 BP 人工神经网络模型预测[J].公共卫生,2003,6:96-99.
    [97] Has SD,Bogut S.Heavy Metal Profile in Five Fish Species Included in Human Diet, Domiciled in the End Flow of River Neretva (Croatia)[J]. Arch Environ Contam Toxicol, 2006,26(50):545-551.
    [98] Cinier JD, Liu Y, Klaassen CD.Protective effect of metallothionein against the toxicity of cadmium and other metals[J].Toxicology,2001,163(23):93-100.
    [99] Alves LC, Glover CN.Wood Dietary Pb Accumulation in Juvenile Fresh- -water Rainbow Trout (Oncorhynchus mykiss)[J].Arch Environ Contam Toxicol, 2006, 17(51):615-625.
    [100] Schcn S,Kojima Y.Differential role of metallothionein on Zn, Cd and Cu accumulation in hepatic cytosol of Fishes[J].Mol Life Sci,1997,11(53):267-270.
    [101] Smaoui DW, Amiardc JC.Variation of metallothioneins in gills of the clam Ruditapes decussates from the Gulf of Gabe [J].Comparative Biochemistry and Physiology, 2004, 139:181-188.
    [102] Christine CC, Michelle PR, Daniel G.Cadmium Bioaccumulation in Carp (Cyprinus carpio) Tissues during Long-Term High Exposure: Analysis by Inductively Coupled Plasma-Mass Spectrometry [J].Ecotoxicology and Environmental Safety, 1997, 38(2):137-143.
    [103] Cosson S, Amiard JH.Cadmium metabolism in the clam Ruditapes decussata: the role of metallothioneins [J].Aquat Toxicol, 1993, 27:315-334.
    [104] Ng YT, Wang WX.Detoxification and effects of Ag, Cd, and Zn pre-exposure on metal uptake kinetics in the clam Ruditapes philippinarum [J]. Mar Ecol, 2004, 268:161-172.
    [105] Park M.Metallothioneins: historical review and state of knowledge [J]. Comp Biochem Physiol, 1998, 46:243-254.
    [106] Smet T,Koizumi S.Separation and purification of (Cd, Cu, Zn)-metalloth- -ionein in carp hepato-pancreas [J].Comp Biochem Physiol,1982, 73C:121-127.
    [107] Mazon AF, Fernandes MN.Toxicity and Differential Tissue Accumulation of Copper in the Tropical Freshwater Fish, Prochilodus scrofa (Prochilodontidae) [J]. Environ Contam Toxicol,1999, 63:797-804.
    [108] Wu SM,Weng CF,Yu MJ.Cadmium-Inducible Metallothionein in Tilapia (Oreochromis mossambicus)[J].Environ Contam Toxicol, 1999, 62:758-768.
    [109] Bebianno MJ,Nott JA,Langston WS.Cadmium metabolism in the clam Ruditapes decussata:the role of metallothioneins[J].Aquat Toxicol,1993,27:315-334.
    [110] 龙新宪,杨肖娥,倪吾钟.重金属污染土壤修复技术研究的现状与展望[J].应用生态学报,2002,13(6):757-762.
    [111] 唐书源,张鹏程,赵治书.重庆蔬菜的安全质量研究[J].云南地理研究,2003,15(4):66-71.
    [112] 魏秀国,何江华,陈俊坚.广州市蔬菜地土壤重金属污染状况凋查及评价[J].土壤与环境,2002,11(3):252-254.
    [113] Grill E.Phytochelations: the principal heavy metal complexing peptides of higher plant [J]. Science, 1985, 230:674-676.
    [114] Keltjens WG, Das AK. Phytochelatins as biomarkers for heavy metal stress in maize and wheat: combined effects of copper and Cadmium [J].Plant and Soil, 1998, 203:119-126.
    [115] Zohri M,Cabala R, Frank H.Quantification of phytochelatins in plants by reversed-phase HPLC-ESI-MS-MS [J].Anal Bioanal Chem, 2005, 382:1871-1876.
    [116] Morelli E,Pratesi E.Production of Phytochelatins in the Marine Diatom Phaeodactylum tricornutum in Response to Copper and Cadmium [J].Exposure Environ Contam Toxicol,1997,59:657-664.
    [117] Barcelo J, Poschenrieder P.Plant water relations as affected by heavy metal stress: a review [J].Plant Nutr, 1990, 13, 1-37.
    [118] Antosiewicz D, Schachtman DC.Plant root cDNA that enhances heavy metal uptake into yeasts [J].Plant Physiol, 1996, 24:111-130.
    [119] Bachmair BA, Grant CJ.Martin.Induction and lose of cadmium tolerance in Holcus lanatusL and other grasses [J].New Phytol, 1986, 102:575-587.
    [120] Jarosaw G, Edward A.Selection in vitro and accumulation of phytochelatins in cadmium tolerant cell line of cucumber (Cucumis sativus) [J].Plant Cell Tissue and Organ Culture, 2005, 80:59-67.
    [121] Kochian LV, Shaff JE.Development, characterization, and application of a cadmium-selective microelectrode for the measurement of cadmium fluxes in roots of Thlaspi species and wheat [J].Plant Physiol, 1998, 116:1393-1401.
    [122] Strasdeit H, Duhme AK, Kneer R.Evidence for discrete Cd (SCys) 4 units in cadmium phytochelatin complexes from EXAFS spectroscopy [J]. Chem Soc Chem Commun, 1991, 16:1129-1130.
    [123] Alcantara E,Romera FJ,Guardia DL.Effects of heavy metals on both induction and function of root Fe (III) reductase in Fe-deficient cucumber (Cucumis sativus L) plants [J].Exp Bot, 1994, 45:1893-1898.
    [124] Aidid SB,Okamoto H.Responses of elongation rate,turgor pressure and cell wall extensibility of stem cells of impatiens balsamina to lead, cadmium and zinc[J].BioMetals,1993,6:245-249.
    [125] Cataldo DA, Garland TR, Wildung RE.Cadmium uptake kinetics in intact soybean plants [J].Plant Physiol, 1983, 73:844-848.
    [126] Antosiewicz D, Schachtman D, Clemens S.Plant root cDNA that enhances heavy metal uptake into yeasts [J].Plant Physiol, 1993, 26:111-130.
    [127] Hart JJ, Welch RM, Norvell WA.Characterization of cadmium binding, uptake, and translocation in intact seedlings of bread and durum wheat cultivars [J]. Plant Physiol, 1998, 116:1413-1420.
    [128] Fuhrer J.Early effects of excess cadmium uptake in Phaseolus ulgaris [J]. Plant Cell Environ, 1982, 5:263-270.
    [129] Brown SL, Chaney RL, Angle JS.Phytoremediation potential of Thlaspi caerulescens and bladder campion for zinc- and cadmium-contaminated soils [J].Environ Qual, 1994, 23:1151-1157.
    [130] Galli U, Schuepp H, Brunold C.Heavy metal binding by mycorrhizal fungi [J]. Physiol Plant, 1994, 92:364-368.
    [131] Howe R,Evans RL,Ketteridge SW.Copper-binding proteins in ectomycor- -rhizal fungi [J].New Phytol, 1997, 135:123-131.
    [132] Howden R, Goldsbrough PB, Andersen CS.Cadmium-sensitive, cadmutants of Arabidopsis thaliana are phytochelatin deficient [J].Plant Physiol, 1995, 107:1059-1066.
    [133] Jarosaw G, Edward A.Selection in vitro and accumulation of phytochelatins in cadmium tolerant cell line of cucumber (Cucumis sativus)[J].Plant Cell Tissue and Organ Culture,2005,80:59-67.
    [134] Wojcik M, Tukiendorf A.Cadmium uptake, localization and detoxification in Zea mays [J].Biologia Plantarum, 2005, 63:653-660.
    [135] Leita L, Contin M, Maggioni A.Distribution of cadmium and induced Cd-binding proteins in roots, stems and leaves of Phaseolus Vulgaris [J]. Plant Sci, 1991, 77:139-147.
    [136] Delhaize E,Jackson PJ, Lujan LD.Poly(g-glutamylcysteinyl)glycine synthesis in Datura innoxia and binding with cadmium[J].Plant Physio, 1989,89:700-706.
    [137] Sanita DT, Lambardi L, Pazzagli M.Response to cadmium in carrot in vitro plants and cell suspension cultures [J].Plant Sci, 1998, 137:119-129.
    [138] 李彬. 环境和生物样品中镉的形态分析[D].厦门:厦门大学,2002.
    [139] Clarkson DT, Luttge U. Mineral nutrition: Divalent cations, transport and compartmentalization [J].Progr Bot, 1989, 51:93-112.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700