茶多酚修饰石墨烯及其橡胶复合材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨烯是由单层sp2杂化碳原子紧密堆积成二维蜂窝状晶格结构碳材料。石墨烯特殊的单原子层结构决定了其独特的物理性质,如高强度,高模量,高导热性能,高电子迁移率,高比表面积和高阻隔性能等。石墨烯表现出来的独特电子与物理特性,使其在聚合物复合材料中具有重要的应用前景。石墨烯的表面修饰是制备聚合物/石墨烯复合材料的关键。通过氧化石墨烯的还原和改性是制备修饰石墨烯最有效的方法之一。天然植物提取物中有许多化学物具有特殊的还原特性,且绿色环保,在修饰石墨烯的制备上具有独特的优势。本研究采用天然的绿茶提取物——茶多酚(TP)作为石墨烯的修饰剂,制备了多酚及其衍生物修饰的石墨烯。深入研究了这些功能化石墨烯的制备方法,修饰机理和微观结构。将这些功能化石墨烯与橡胶复合制备了橡胶/石墨烯复合材料,详细研究了这些功能化石墨烯对橡胶力学性能、导电性能的影响。这些研究对石墨烯功能材料和橡胶材料的增强和功能化具有重要的理论意义和实践价值。
     作为一类环境友好、低成本的植物单宁,TP被证实是氧化石墨烯(GO)的有效还原剂和理想修饰剂。这种方法制备的修饰石墨烯(TPG)具有制备工艺简单,可放大制备,价格低廉和绿色环保等优点。TPG具有很高的导电性,且能够稳定分散在水、醇类和一些极性溶剂中。揭示了TP还原GO和稳定石墨烯的机理。TP中B环和C环的没食子单元与GO经两步亲核加成反应和消除反应之后,将GO的环氧基修复为双键结构,同时没食子单元被氧化为邻醌类没食子衍生物结构。TP稳定石墨烯的机理主要是TP与石墨烯之间通过的π-π相互作用和空间位阻效应。
     通过TPG表面的邻醌与巯基之间的Michael加成反应,进一步制备了具有硫醚结构的STPG。详细研究了STPG的制备条件、反应机理和结构。结果表明STPG具有更加宽泛的有机溶解性;利用TPG表面的酚结构单元与胺/甲醛之间的Mannich反应,在TPG表面引入了聚醚胺低聚物,制得了Mannich缩合物(醛胺聚合物)修饰的石墨烯JTPG。JTPG具有极优异的水溶性和有机溶解性。通过真空辅助抽滤,可以将JTPG加工成石墨烯杂化膜材料,这种石墨烯杂化膜表现出极高的综合性能,拉伸强度达到275MPa,断裂伸长率8%,导电率约为700S/m。
     采用乳液共混法制备了丁苯吡橡胶(VPR)/TPG和丁苯橡胶(SBR)/TPG复合材料。研究发现,TPG可以高效地增强VPR和SBR。TPG还可以高效提高SBR的耐磨性,表现出对VPR的自硫化作用。通过溶液法制备了JTPG母料,并通过熔体加工(开炼)制备了SBR/JTPG和NBR/JTPG复合材料。通过溶液法制备了过氧化物和硫黄硫化的NBR/JTPG复合材料。详细研究了这些复合材料的结构和性质。通过溶液法制备的硫黄硫化NBR/JTPG复合材料具有更明显更优异的分散,也表现出更高的增强效率。通过溶液法制备的过氧化物硫化NBR/JTPG复合材料具有优异的导电性能,其导电阈值低至0.23vol%。
Graphene, composed of single-layer sp~2hybridized carbon atoms, is a carbonaceousmaterial with two-dimensional honeycomb lattice structure. For it’s special single carbonatomic layer structure, graphene possesses a number of unique physical properties, such ashigh strength, high modulu, high thermal conductivity, high electron mobility, high specificsurface area and high barrier performance, and such exceptional performance makes grapheneespecially promising in the fabrication of the polymer composites. One of the key issues infabricating the polymer/graphene composites is the surface functionalization for graphene.While the reduction and decoration of graphene oxide (GO) is one of the most effectivemethods for the fabrication of the functionalized graphene. In this study, tea polyphenols (TP)which is the extract of natural green tea, was used as both reducer and modifier for GO topreparing the functionalized graphene (TPG). We have investigated the preparation process,functionalized mechanism and microstructure of TPG. Then, TPG was used to fabricate therubber/TPG composites. The mechanical properties and electrical conductivity of rubber/TPGcomposites were studied. These studies are believed to be of great importance theoreticallyand practically in view of the reinforcement and functionlization of the rubber materials.
     As a kind of plant-based tannin, the low cost and environmentally friendly TP wasverified to be effective reducer and modifier for GO. This method possesses many attractingcharacteristics such as facile process, scalable, low cost and environmentally friendly. TPGexhibits considerably high electrical conductivity and excellent dispersity in water, alcoholsand some other polar solvents. The reduction mechanism of TP towards GO was disclosed.The B ring and C ring in the galloyl units of TP are oxidized to orthoquinone through a twostep SN2nucleophilic reaction followed by one-step elimination. At the same time, the epoxygroups in GO are repaired to carbon-carbon double bond. The main stabilization mechanismsof TPG are disclosed to be the π-π interaction and the steric hindrance provided by the TP ongraphene layer.
     Through the Michael addition between orthoquinones on TPG and a thiol, STPG whichconsisting sulfide structures was prepared. The preparation condition, reaction mechanism and mircrostructure of STPG were investigated. The results show that STPG has a broaderspectrum of solubility than TPG. In addition, taking advantage of the polyphenol group onTPG, the Mannich condensation between TPG and Jeffamine/formaldehyde was performed.JTPG decorated with the Mannich condensate was accordingly resulted. Except for theexcellent solubility in both water and organic solvent, JTPG can also be fabricated intopaper-like materials by vaccum-assisted filtration. The resulted hybrid film exhibits superiorperformance combination. For example, the tensile strength, break strain and electricalconductivity were measured to be275MPa,8%and700S/m, respectively.
     Butadiene-styrene-vinyl pyridine rubber (VPR)/TPG composites and styrene-butadienerubber (SBR)/TPG composite were prepared by latex co-coagulation method. TPG wasdemonstrated to be very effective in strengthening the VPR and SBR. TPG was found to beespecially effective in endowing SBR with unusual abrasion resistance. Interestingly,VPR/TPG composites may be vulcanized in absence of additional curing agents. TheSBR/JTPG and NBR/JTPG composites were prepared by melt compounding the gums with aJTPG master batch which was prepared by mixing JTPG and NBR in acetone. TheNBR/JTPG composites could also be prepared by blending JTPG and NBR in acetone,followed by curing with peroxide or sulfur. The structures and properties of these compositeswere investigated. For the NBR/JTPG systems, the composites prepared by solution methodpossess much better dispersion of graphene and consequently much higher reinforcingefficiency. The solution processed NBR/JTPG composites cured with peroxide exhibitsignificantly increased electrical conductivity. The percolation threshold of these compositeswas determined to be as low as0.23vol%。
引文
[1] Novoselov K.S., Geim A.K., Morozov, S.V., et al., Electric field effect in atomically thincarbon films [J]. Science,2004.306(5296):666-669.
    [2] Novoselov K.S., Jiang D., Schedin F., et al., Two-dimensional atomic crystals [J].Proceedings of the National Academy of Sciences of the United States of America,2005.102(30):10451-10453.
    [3] Zhang Y., Tan Y., Stormer H., et al., Experimental observation of the quantum Hall effectand Berry's phase in graphene [J]. Nature,2005.438(7065):201-204.
    [4] Lee C., We X. i, Kysar J.W., et al., Measurement of the Elastic Properties and IntrinsicStrength of Monolayer Graphene [J]. Science,2008.321(5887):385-388.
    [5] Xu Y.F., Liu Z.B., Zhang X.L., et al., A Graphene Hybrid Material CovalentlyFunctionalized with Porphyrin: Synthesis and Optical Limiting Property [J]. AdvancedMaterials,2009.21(12):1275-1279.
    [6] Ghosh S., Calizo I., Teweldebrhan D., et al., Extremely high thermal conductivity ofgraphene: Prospects for thermal management applications in nanoelectronic circuits [J].Applied Physics Letters,2008.92(15):121911-121913.
    [7] Stoller M., S. Park Y. Zhu, et al., Graphene-based ultracapacitors [J]. Nano Letters,2008.8(10):3498-3502.
    [8] Wu Z.S., Ren W.C., Wen L., et al., Graphene Anchored with Co3O4Nanoparticles asAnode of Lithium Ion Batteries with Enhanced Reversible Capacity and CyclicPerformance [J]. ACS Nano,2010.4(6):3187-3194.
    [9]朱宏伟,徐志平,谢丹,石墨烯结构制备方法与性能表征[M].北京,清华大学出版社,2011.
    [10] Geim A.K. and Novoselov K.S., The rise of graphene [J]. Nature Materials,2007.6(3):183-191.
    [11] Bao Q.L., Zhang H., Wang Y., et al., Atomic-Layer Graphene as a Saturable Absorber forUltrafast Pulsed Lasers [J]. Advanced Functional Materials,2009.19(19):3077-3083.
    [12] Bolotin, K.I., Sikes K., Jiang Z., et al., Ultrahigh electron mobility in suspendedgraphene [J]. Solid State Communications,2008.146(9):351-355.
    [13] Kim K.S., Zhao Y., Jang H., et al., Large-scale pattern growth of graphene films forstretchable transparent electrodes [J]. Nature,2009.457(7230):706-710.
    [14] Wang Z., Shi Q., Li Q., et al., Z-shaped graphene nanoribbon quantum dot device [J].Applied Physics Letters,2007.91(5):053109-053109-3.
    [15] Liang X., Fu Z., and Chou S.Y., Graphene transistors fabricated via transfer-printing indevice active-areas on large wafer [J]. Nano Letters,2007.7(12):3840-3844.
    [16] Chen J.H., Ishigami M., Jang C., et al., Printed graphene circuits [J]. Advanced Materials,2007.19(21):3623-3627.
    [17] Nair R., Blake P., Grigorenko A., et al., Fine structure constant defines visualtransparency of graphene [J]. Science,2008.320(5881):1308-1308.
    [18] Ni Z., Wang H., Kasim J., et al., Graphene thickness determination using reflection andcontrast spectroscopy [J]. Nano Letters,2007.7(9):2758-2763.
    [19] Liang J.J., Huang Y., Zhang L., et al., Molecular-Level Dispersion of Graphene intoPoly(vinyl alcohol) and Effective Reinforcement of their Nanocomposites [J]. AdvancedFunctional Materials,2009.19(14):2297-2302.
    [20] Kuilla T., Yao S. Bhadra D., et al., Recent advances in graphene based polymercomposites [J]. Progress in Polymer Science,2010.35(11):1350-1375.
    [21] Kang X., Wang J., Wu H., et al., Glucose Oxidase-graphene-chitosan modified electrodefor direct electrochemistry and glucose sensing [J]. Biosensors and Bioelectronics,2009.25(4):901-905.
    [22] Li F.H., Chai J., Yang H.F., et al., Synthesis of Pt/ionic liquid/graphene nanocompositeand its simultaneous determination of ascorbic acid and dopamine [J]. Talanta,2010.81(3):1063-1068.
    [23] Su C.Y., Xu Y.P., Zhang W.J., et al., Electrical and Spectroscopic Characterizations ofUltra-Large Reduced Graphene Oxide Monolayers [J]. Chemistry of Materials,2009.21(23):5674-5680.
    [24] Qi X.Y., Pu K.Y., Li H., et al., Amphiphilic Graphene Composites [J]. AngewandteChemie-International Edition,2010.49(49):9426-9429.
    [25] Sengupta, Bhattacharya R., Bandyopadhyay M., S., et al., A review on the mechanicaland electrical properties of graphite and modified graphite reinforced polymercomposites [J]. Progress in Polymer Science,2011.36(5):638-670.
    [26] Haslam E., Plant polyphenols: vegetable tannins revisited [M]. UK: CUP Archive,1989.
    [27] Harborne J.B., Methods in plant biochemistry. Volume1. Plant phenolics [M]. UK:Academic Press Ltd,1989
    [28] Okuda T., Yoshida T., and Hatano T., Classification of oligomeric hydrolysable tanninsand specificity of their occurrence in plants [J]. Phytochemistry,1993.32(3):507-521.
    [29] Happe P.J., Jenkins K.J., Starkey E.E., et al., Nutritional quality and tannin astringency ofbrowse in clear-cuts and old-growth forests [J]. The Journal of Wildlife Management,1990.54(4):557-566.
    [30] Loeb H., Vandenplas Y., Würsch P., et al., Tannin-rich carob pod for the treatment ofacute-onset diarrhea [J]. Journal of Pediatric Gastroenterology and Nutrition,1989.8(4):480-485.
    [31] Trouillas P., Calliste C.A., Allais D.P., et al., Antioxidant, anti-inflammatory andantiproliferative properties of sixteen water plant extracts used in the Limousincountryside as herbal teas [J]. Food Chemistry,2003.80(3):399-407.
    [32] Nonaka G.i., Hayashi M., Tanaka T., et al., Tannins and related compounds. XCII.Isolation and characterization of cyanogenic ellagitannins, aleurinins A and B, and arelated O-glycosidic ellagitannin, aleurinin C, from Aleurites fordii Hemsley [J].Chemical and Pharmaceutical Bulletin,1990.38(4):861-865.
    [33] Haslam E., Natural polyphenols (vegetable tannins) as drugs: possible modes of action[J]. Journal of Natural Products,1996.59(2):205-215.
    [34] Siebert K.J. and Lynn P., Mechanisms of beer colloidal stabilization [J]. Journal of theAmerican Society of Brewing Chemists,1997.55(2):73-78.
    [35] Khanbabaee K. and Ree T. van, Tannins: Classification and definition [J]. NaturalProduct Reports,2001.18(6):641-649.
    [36] Yanagida A., Kanda T., Shoji T., et al., Fractionation of apple procyanidins bysize-exclusion chromatography [J]. Journal of Chromatography A,1999.855(1):181-190.
    [37] Ferreira D. and Li X.C., Oligomeric proanthocyanidins: naturally occurringO-heterocycles [J]. Natural Product reports,2000.17(2):193-212.
    [38]杨贤强,王跃飞,陈留记,茶多酚化学[M].上海,上海科学出版社,2003.
    [39] Pelillo M., Bonoli M., Biguzzi B., et al., An investigation in the use of HPLC with UVand MS-electrospray detection for the quantification of tea catechins [J]. Food Chemistry,2004.87(3):465-470.
    [40] Kuttan R., Anti-diabetic activity of green tea polyphenols and their role in reducingoxidative stress in experimental diabetes [J]. Journal of Ethnopharmacology,2002.83(1):109-116.
    [41] Wang Z.Y., Cheng S.J., Zhou Z.C., et al., Antimutagenic activity of green teapolyphenols [J]. Mutation Research/Genetic Toxicology,1989.223(3):273-285.
    [42] Chen C., Tang H.R., Sutcliffe L.H., et al., Green tea polyphenols react with1,1-diphenyl-2-picrylhydrazyl free radicals in the bilayer of liposomes: direct evidencefrom electron spin resonance studies [J]. Journal of Agricultural and Food Chemistry,2000.48(11):5710-5714.
    [43] Tipoe G.L., Leung T.M., Hung M.W., et al., Green tea polyphenols as an anti-oxidant andanti-inflammatory agent for cardiovascular protection [J]. Cardiovascular&Haematological Disorders-Drug Targets,2007.7(2):135-144.
    [44] Helal A., Tagliazucchi D., Conte A., et al., Antioxidant properties of polyphenolsincorporated in casein/sodium caseinate films [J]. International Dairy Journal,2012.25(1):10-15.
    [45] Hagenah S. and Gross G.G., Biosynthesis of1,2,3,6-tetra-O-galloyl-β-d-glucose [J].Phytochemistry,1993.32(3):637-641.
    [46] Liao X., Lu Z., Zhang M., et al., Adsorption of Cu (II) from aqueous solutions by tanninsimmobilized on collagen [J]. Journal of Chemical Technology and Biotechnology,2004.79(4):335-342.
    [47] Tanaka T., Structure, Property, and function of plant polyphenol [J]. Foods and FoodIngredients Journal of Japan,1999.180:64-70.
    [48] Tanaka T., Kusano R., and Kouno I., Synthesis and antioxidant activity of novelamphipathic derivatives of tea polyphenol [J]. Bioorganic&Medicinal ChemistryLetters,1998.8(14):1801-1806.
    [49] Juan Y.C., Chang C.C., Tsai W.J., et al., Pharmacological evaluation of insulin mimeticnovel suppressors of PEPCK gene transcription from Paeoniae Rubra Radix [J]. Journalof Ethnopharmacology,2011.137(1):592-600.
    [50] Matsuo T. and Itoo S., A model experiment for de-astringency of persimmon fruit withhigh carbon dioxide treatment: in vitro gelation of kaki-tannin by reacting withacetaldehyde [J]. Agricultural and Biological Chemistry,1982.46(3):683-689.
    [51] Waghorn G., Ulyatt M., John A., et al., The effect of condensed tannins on the site ofdigestion of amino acids and other nutrients in sheep fed on Lotus corniculatus L [J].British Journal of Nutrition,1987.57(01):115-126.
    [52] Laks P.E., Flavonoid biocides: phytoalexin analogues from condensed tannins [J].Phytochemistry,1987.26(6):1617-1621.
    [53] Shibata M. and Nakai K., Preparation and Properties of Biocomposites Composed ofBio-Based Epoxy Resin, Tannic Acid, and Microfibrillated Cellulose [J]. Journal ofPolymer Science Part B-Polymer Physics,2010.48(4):425-433.
    [54] Soto R., Freer J., and Baeza J., Evidence of chemical reactions between di-andpoly-glycidyl ether resins and tannins isolated from Pinus radiata D. Don bark [J].Bioresource Technology,2005.96(1):95-101.
    [55] Quideau S., Feldman K.S., and Appel H.M., Chemistry of Gallotannin-Derivedo-Quinones: Reactivity toward Nucleophiles [J]. The Journal of Organic Chemistry,1995.60(16):4982-4983.
    [56] Feldman K.S., Quideau S., and Appel H.M., Galloyl-Derived Orthoquinones as ReactivePartners in Nucleophilic Additions and Diels-Alder Dimerizations: A Novel Route to theDehydrodigalloyl Linker Unit of Agrimoniin-Type Ellagitannins [J]. The Journal ofOrganic Chemistry,1996.61(19):6656-6665.
    [57] Tian X., Li J., and Pan S., Facile synthesis of single-crystal silver nanowires through atannin-reduction process [J]. Journal of Nanoparticle Research,2009.11(7):1839-1844.
    [58] Huang X., Wu H., Liao X., et al., One-step, size-controlled synthesis of goldnanoparticles at room temperature using plant tannin [J]. Green Chemistry2010.12(3):395-399.
    [59] Zhou M., Wang Y.L., Zhai Y.M., et al., Controlled Synthesis of Large-Area and PatternedElectrochemically Reduced Graphene Oxide Films [J]. Chemistry-a European Journal,2009.15(25):6116-6120.
    [60] Hagerman A.E., Riedl K.M., Jones G.A., et al., High molecular weight plantpolyphenolics (tannins) as biological antioxidants [J]. Journal of Agricultural and FoodChemistry,1998.46(5):1887-1892.
    [61] Su C.Y., Xu Y., Zhang W., et al., Highly Efficient Restoration of Graphitic Structure inGraphene Oxide Using Alcohol Vapors [J]. ACS Nano,2010.4(9):666-669.
    [62] Bors W., Michel C., and Stettmaier K., Structure-activity relationships governingantioxidant capacities of plant polyphenols [M]. Methods in enzymology,2001.335:166-180.
    [63] Bors W., Michel C., and Stettmaier K., Electron Paramagnetic Resonance Studies ofRadical Species of Proanthocyanidins and Gallate Esters [J]. Archives of Biochemistryand Biophysics,2000.374(2):347-355.
    [64] Zhu H., Du M.L., Zou M.L., et al., Facile and green synthesis of well-dispersed Aunanoparticles in PAN nanofibers by tea polyphenols [J]. Journal of Materials Chemistry,2012.22(18):9301-9307.
    [65] Zhu H., Du M.L., Zou M.L., et al., Green synthesis of Au nanoparticles immobilized onhalloysite nanotubes for surface-enhanced Raman scattering substrates [J]. DaltonTransactions,2012.41:10465-10471.
    [66] Li X., Cai W., An J., et al., Large-area synthesis of high-quality and uniform graphenefilms on copper foils [J]. Science,2009.324(5932):1312-1314.
    [67] Berger C., Song Z., Li T., et al., Ultrathin epitaxial graphite:2D electron gas propertiesand a route toward graphene-based nanoelectronics [J]. The Journal of PhysicalChemistry B,2004.108(52):19912-19916.
    [68] Rollings E., Gweon G.H., Zhou S., et al., Synthesis and characterization of atomicallythin graphite films on a silicon carbide substrate [J]. Journal of Physics and Chemistry ofSolids,2006.67(9):2172-2177.
    [69] Jiao L., Zhang L., Wang X., et al., Narrow graphene nanoribbons from carbon nanotubes[J]. Nature,2009.458(7240):877-880.
    [70] Choucair M., Thordarson P., and Stride J.A., Gram-scale production of graphene basedon solvothermal synthesis and sonication [J]. Nature Nanotechnology,2008.4(1):30-33.
    [71] Cai M., Thorpe D., Adamson D.H., et al., Methods of graphite exfoliation [J]. Journal ofMaterials Chemistry,2012.22(48):24992-25002.
    [72] Hernandez Y., Nicolosi V., Lotya M., et al., High-yield production of graphene byliquid-phase exfoliation of graphite [J]. Nature Nanotechnology,2008.3(9):563-568.
    [73] McAllister M.J., Li J.L., Adamson D.H., et al., Single sheet functionalized graphene byoxidation and thermal expansion of graphite [J]. Chemistry of Materials,2007.19(18):4396-4404.
    [74] Du Q., Zheng M., Zhang L., et al., Preparation of functionalized graphene sheets by alow-temperature thermal exfoliation approach and their electrochemical supercapacitivebehaviors [J]. Electrochimica Acta,2010.55(12):3897-3903.
    [75] Chen W.F., Yan L.F., and Bangal P.R., Chemical Reduction of Graphene Oxide toGraphene by Sulfur-Containing Compounds [J]. Journal of Physical Chemistry C,2010.114(47):19885-19890.
    [76] Fernandez Merino M.J., Guardia L., Paredes J.I., et al., Vitamin C Is an Ideal Substitutefor Hydrazine in the Reduction of Graphene Oxide Suspensions [J]. Journal of PhysicalChemistry C,2010.114(14):6426-6432.
    [77] Gao J., Liu F., Liu Y.L., et al., Environment-Friendly Method To Produce Graphene ThatEmploys Vitamin C and Amino Acid [J]. Chemistry of Materials,2010.22(7):2213-2218.
    [78] Pham V.H., Pham H.D., Dang T.T., et al., Chemical reduction of an aqueous suspensionof graphene oxide by nascent hydrogen [J]. Journal of Materials Chemistry,2012.22(21):10530-10536.
    [79] Pei S. and Cheng H.M., The reduction of graphene oxide [J]. Carbon,2012.50(9):3210-3228.
    [80] Dhakate S., Chauhan N., Sharma S., et al., An approach to produce single and doublelayer graphene from re-exfoliation of expanded graphite [J]. Carbon,2011.49(6):1946-1954.
    [81] Guardia L., Fernandez Merino M., Paredes J., et al., High-throughput production ofpristine graphene in an aqueous dispersion assisted by non-ionic surfactants [J]. Carbon,2011.49(5):1653-1662.
    [82] Lv W., Tang D.M., He Y.B., et al., Low-temperature exfoliated graphenes:vacuum-promoted exfoliation and electrochemical energy storage [J]. ACS Nano,2009.3(11):3730-3736.
    [83] Li X., Zhang G., Bai X., et al., Highly conducting graphene sheets andLangmuir–Blodgett films [J]. Nature Nanotechnology,2008.3(9):538-542.
    [84] Zhang J.L., Yang H.J., Shen G.X., et al., Reduction of graphene oxide via L-ascorbic acid[J]. Chemical Communications,2010.46(7):1112-1114.
    [85] Park S. and Ruoff R.S., Chemical methods for the production of graphenes [J]. NatureNanotechnology,2009.4(4):217-224.
    [86] Dreyer D.R., Park S., Bielawski C.W., et al., The chemistry of graphene oxide [J].Chemical Society Reviews,2010.39(1):228-240.
    [87] Li D., Muller M. B., Gilje S., et al., Processable aqueous dispersions of graphenenanosheets [J]. Nature Nanotechnology,2008.3(2):101-105.
    [88] Stankovich S., Dikin D.A., Dommett G.H.B., et al., Graphene-based composite materials[J]. Nature,2006.442(7100):282-286.
    [89] Viet H.P., Tran V.C., Nguyen-Phan T.D., et al., One-step synthesis of superior dispersionof chemically converted graphene in organic solvents [J]. Chemical Communications,2010.46(24):4375-4377.
    [90] Dreyer D.R., Murali S., Zhu Y.W., et al., Reduction of graphite oxide using alcohols [J].Journal of Materials Chemistry,2011.21(10):3443-3447.
    [91] Wang G.X., Yang J., Park J., et al., Facile synthesis and characterization of graphenenanosheets [J]. Journal of Physical Chemistry C,2008.112(22):8192-8195.
    [92] Shin H.J., Kim K.K., Benayad A., et al., Efficient Reduction of Graphite Oxide bySodium Borohydrilde and Its Effect on Electrical Conductance [J]. Advanced FunctionalMaterials,2009.19(12):1987-1992.
    [93] Xu L.Q., Yang W.J., Neoh K.G., et al., Dopamine-Induced Reduction andFunctionalization of Graphene Oxide Nanosheets [J]. Macromolecules,2010.43(20):8336-8339.
    [94] Fan X.B., Peng W.C., Li Y., et al., Deoxygenation of Exfoliated Graphite Oxide underAlkaline Conditions: A Green Route to Graphene Preparation [J]. Advanced Materials,2008.20(23):4490-4493.
    [95] Pei S., Zhao J., Du J., et al., Direct reduction of graphene oxide films into highlyconductive and flexible graphene films by hydrohalic acids [J]. Carbon,2010.48:4466-4474.
    [96] Fan Z.J., Wang K., Wei T., et al., An environmentally friendly and efficient route for thereduction of graphene oxide by aluminum powder [J]. Carbon,2010.48(5):1686-1689.
    [97] Fan Z.J., Kai W., Yan J., et al., Facile Synthesis of Graphene Nanosheets via FeReduction of Exfoliated Graphite Oxide [J]. ACS Nano,2010.5(1):191-198.
    [98] Chen, W.F., Yan L.F., and Bangal P.R., Preparation of graphene by the rapid and mildthermal reduction of graphene oxide induced by microwaves [J]. Carbon,2010.48(4):1146-1152.
    [99] Lu J., Yang J.X., Wang J.Z., et al., One-Pot Synthesis of Fluorescent CarbonNanoribbons, Nanoparticles, and Graphene by the Exfoliation of Graphite in IonicLiquids [J]. ACS Nano,2009.3(8):2367-2375.
    [100] Stankovich S., Dikin D.A., Piner R.D., et al., Synthesis of graphene-based nanosheetsvia chemical reduction of exfoliated graphite oxide [J]. Carbon,2007.45(7):1558-1565.
    [101] Yang H., Shan C., Li,F. et al., Covalent functionalization of polydispersechemically-converted graphene sheets with amine-terminated ionic liquid [J]. ChemicalCommunications,2009,26:3880-3882.
    [102] Shan C., Yang H., Han D., et al., Water-soluble graphene covalently functionalized bybiocompatible poly-L-lysine [J]. Langmuir,2009.25(20):12030-12033.
    [103] Salavagione H.J., Martinez G., and Ellis G., Recent Advances in the CovalentModification of Graphene With Polymers [J]. Macromolecular Rapid Communications,2011.32(22):1771-1789.
    [104] Kim K.S., Tarakeshwar P., and Lee J.Y., Molecular Clusters of pi-Systems: TheoreticalStudies of Structures, Spectra, and Origin of Interaction Energies [J]. Chemical Reviews,2000.100(11):4145-4186.
    [105] Riley K.E., Pitona k M., Jurec ka P., et al., Stabilization and structure calculations fornoncovalent interactions in extended molecular systems based on wave function anddensity functional theories [J]. Chemical Reviews,2010.110(9):5023-5063.
    [106] Georgakilas V., Otyepka M., Bourlinos A.B., et al., Functionalization of Graphene:Covalent and Non-Covalent Approaches, Derivatives and Applications [J]. ChemicalReviews,2012.112(11):6156-6214.
    [107] Liu Z.B., Xu Y.F., Zhang X.Y., et al., Porphyrin and fullerene covalently functionalizedgraphene hybrid materials with large nonlinear optical properties [J]. The Journal ofPhysical Chemistry B,2009.113(29):9681-9686.
    [108] Yang Y., Wang J., Zhang J., et al., Exfoliated graphite oxide decorated by PDMAEMAchains and polymer particles [J]. Langmuir,2009.25(19):11808-11814.
    [109] Lee S.H., Dreyer D.R., An J., et al., Polymer Brushes via Controlled, Surface‐InitiatedAtom Transfer Radical Polymerization (ATRP) from Graphene Oxide [J].Macromolecular Rapid Communications,2010.31(3):281-288.
    [110] Gon alves G., Marques P.A., Barros-Timmons A., et al., Graphene oxide modified withPMMA via ATRP as a reinforcement filler [J]. Journal of Materials Chemistry,2010.20(44):9927-9934.
    [111] Li G.L., Liu G., Li M., et al., Organo-and Water-Dispersible Graphene Oxide PolymerNanosheets for Organic Electronic Memory and Gold Nanocomposites [J]. The Journalof Physical Chemistry C,2010.114(29):12742-12748.
    [112] Etmimi H.M., Tonge M.P., and Sanderson R.D., Synthesis and characterization ofpolystyrene‐graphite nanocomposites via surface RAFT‐mediated miniemulsionpolymerization [J]. Journal of Polymer Science Part A: Polymer Chemistry,2011.49(7):1621-1632.
    [113] Stankovich S., Piner R.D., Nguyen S.T., et al., Synthesis and exfoliation ofisocyanate-treated graphene oxide nanoplatelets [J]. Carbon,2006.44(15):3342-3347.
    [114] Yang H., Shan C., Li F., et al., Covalent functionalization of polydispersechemically-converted graphene sheets with amine-terminated ionic liquid [J]. ChemicalCommunications,2009,26:3880-3882.
    [115] Wang Y., Shi Z., Fang J., et al., Graphene oxide/polybenzimidazole compositesfabricated by a solvent-exchange method [J]. Carbon,2011.49(4):1199-1207.
    [116] Park S., Dikin D.A., Nguyen S.T., et al., Graphene oxide sheets chemically cross-linkedby polyallylamine [J]. The Journal of Physical Chemistry C,2009.113(36):15801-15804.
    [117] Tang Z., Zhang L., Zeng C., et al., General route to graphene with liquid-like behaviorby non-covalent modification [J]. Soft Matter,2012.8(35):9214-9220.
    [118] Zeng C., Tang Z., Guo B., et al., Supramolecular ionic liquid based on graphene oxide[J]. Physical Chemistry Chemical Physics,2012.14(28):9838-9845.
    [119] Zheng Q., Geng Y., Wang S., et al., Effects of functional groups on the mechanical andwrinkling properties of graphene sheets [J]. Carbon,2010.48:4315-4322.
    [120] Xu Y.X., Bai H., Lu G.W., et al., Flexible graphene films via the filtration ofwater-soluble noncovalent functionalized graphene sheets [J]. Journal of the AmericanChemical Society,2008.130(18):5856-5857.
    [121] Li F.H., Bao Y., Chai J., et al., Synthesis and Application of Widely Soluble GrapheneSheets [J]. Langmuir,2010.26(14):12314-12320.
    [122] Fang M., Long L. A., Zhao W.F., et al., pH-Responsive Chitosan-Mediated GrapheneDispersions [J]. Langmuir,2010.26(22):16771-16774.
    [123] Liu J., Fu S., Yuan B., et al., Toward a Universal―Adhesive Nanosheet‖for theAssembly of Multiple Nanoparticles Based on a Protein-Induced Reduction/Decorationof Graphene Oxide [J]. Journal of the American Chemical Society,2010.132(21):7279-7281.
    [124] Zhang Y., Mori T., Niu L., et al., Non-covalent doping of graphitic carbon nitridepolymer with graphene: controlled electronic structure and enhanced optoelectronicconversion [J]. Energy&Environmental Science,2011.4(11):4517-4521.
    [125] Bai H., Xu Y., Zhao L., et al., Non-covalent functionalization of graphene sheets bysulfonated polyaniline [J]. Chemical Communications,2009(13):1667-1669.
    [126] Lei Y., Tang Z., Liao R., et al., Hydrolysable tannin as environmentally friendly reducerand stabilizer for graphene oxide [J]. Green Chemistry,2011.13(7):1655-1658.
    [127] Liao R., Tang Z., Lei Y., et al., Polyphenols Reduced Graphene Oxide: Mechanism andDerivatization [J]. The Journal of Physical Chemistry C,2011.115(42):20740-20746.
    [128] Wang Y., Shi Z.X., and Yin J., Facile Synthesis of Soluble Graphene via a GreenReduction of Graphene Oxide in Tea Solution and Its Biocomposites [J]. ACS AppliedMaterials&Interfaces,2011.3(4):1127-1133.
    [129] Chen L., Lu L., Wu D., et al., Silicone rubber/graphite nanosheet electrically conductingnanocomposite with a low percolation threshold [J]. Polymer Composites,2007.28(4):493-498.
    [130] Pojanavaraphan T. and Magaraphan R., Prevulcanized natural rubber latex/clay aerogelnanocomposites [J]. European Polymer Journal,2008.44(7):1968-1977.
    [131] Chen L., Chen G., and Lu L., Piezoresistive Behavior Study on Finger‐Sensing SiliconeRubber/Graphite Nanosheet Nanocomposites [J]. Advanced Functional Materials,2007.17(6):898-904.
    [132] Das A., Kasaliwal G.R., Jurk R., et al., Rubber composites based on graphenenanoplatelets, expanded graphite, carbon nanotubes and their combination: Acomparative study [J]. Composites Science and Technology,2012.72(16):1961-1967.
    [133] Galimberti M., Rubber-clay Nanocomposites: Science, Technology, and Applications[M]. US: Wiley,2011.
    [134] Potts J.R., Dreyer D.R., Bielawski C.W., et al., Graphene-based polymernanocomposites [J]. Polymer,2011.52(1):5-25.
    [135] Njuguna J. and Pielichowski K., Polymer nanocomposites for aerospace applications:properties [J]. Advanced Engineering Materials,2003.5(11):769-778.
    [136] Hussain F., Hojjati M., Okamoto M., et al., Review article: polymer-matrixnanocomposites, processing, manufacturing, and application: an overview [J]. Journal ofComposite Materials,2006.40(17):1511-1575.
    [137] Ramanathan T., Abdala A.A., Stankovich S., et al., Functionalized graphene sheets forpolymer nanocomposites [J]. Nature Nanotechnology,2008.3(6):327-331.
    [138] Higginbotham A.L., Lomeda J.R., Morgan A.B., et al., Graphite Oxide Flame-RetardantPolymer Nanocomposites [J]. ACS Applied Materials&Interfaces,2009.1(10):2256-2261.
    [139] Vadukumpully S., Paul J., Mahanta N., et al., Flexible conductive graphene/poly(vinylchloride) composite thin films with high mechanical strength and thermal stability [J].Carbon,2011.49(1):198-205.
    [140] Fan H.L., Wang L.L., Zhao K.K., et al., Fabrication, Mechanical Properties, andBiocompatibility of Graphene-Reinforced Chitosan Composites [J]. Biomacromolecules,2010.11(9):2345-2351.
    [141] Cao Y., Feng J., and Wu P., Preparation of organically dispersible graphene nanosheetpowders through a lyophilization method and their poly (lactic acid) composites [J].Carbon,2010.48(13):3834-3839.
    [142] Zhao X., Zhang Q.H., Chen D.J., et al., Enhanced Mechanical Properties ofGraphene-Based Poly(vinyl alcohol) Composites [J]. Macromolecules,2010.43(5):2357-2363.
    [143] Tang Z., Kang H., Shen Z., et al., Grafting of polyester onto graphene for electricallyand thermally conductive composites [J]. Macromolecules,2012.45(8):3444-3451.
    [144] Liao R., Lei Y., Wan J., et al., Dispersing Graphene in Hydroxypropyl Cellulose byUtilizing its LCST Behavior [J]. Macromolecular Chemistry and Physics,2012.213(13):1370-1377.
    [145] Wang L., Liao R., Tang Z., et al., Sodium deoxycholate functionalized graphene and itscomposites with polyvinyl alcohol [J]. Journal of Physics D: Applied Physics,2011.44:445302.
    [146] Tang Z., Lei Y., Guo B., et al., The use of rhodamine B-decorated graphene as areinforcement in polyvinyl alcohol composites [J]. Polymer,2011.53(2):673-680.
    [147] Tang Z., Zeng C., Lei Y., et al., Fluorescent whitening agent stabilized graphene and itscomposites with chitosan [J]. Journal of Materials Chemistry,2011.21(43):17111-17118.
    [148] Park S., An J., Jung I., et al., Colloidal suspensions of highly reduced graphene oxide ina wide variety of organic solvents [J]. Nano letters,2009.9(4):1593-1597.
    [149] Li D., Müller M.B., Gilje S., et al., Processable aqueous dispersions of graphenenanosheets [J]. Nature Nanotechnology,2008.3(2):101-105.
    [150] Zhang L., Wang Y., Wang Y., et al., Morphology and mechanical properties ofclay/styrene‐butadiene rubber nanocomposites [J]. Journal of Applied Polymer Science,2000.78(11):1873-1878.
    [151] Wang Y., Zhang L., Tang C., et al., Preparation and characterization of rubber–claynanocomposites [J]. Journal of Applied Polymer Science,2000.78(11):1879-1883.
    [152] Wu Y.P., Wang Y.Q., Zhang H.F., et al., Rubber–pristine clay nanocomposites preparedby co-coagulating rubber latex and clay aqueous suspension [J]. Composites Science andTechnology,2005.65(7):1195-1202.
    [153] Varghese S. and Karger-Kocsis J., Natural rubber-based nanocomposites by latexcompounding with layered silicates [J]. Polymer,2003.44(17):4921-4927.
    [154] Valadares L., Leite C., and Galembeck F., Preparation of naturalrubber–montmorillonite nanocomposite in aqueous medium: evidence forpolymer–platelet adhesion [J]. Polymer,2006.47(2):672-678.
    [155] Ozbas B., O'Neill C.D., Register R.A., et al., Multifunctional elastomer nanocompositeswith functionalized graphene single sheets [J]. Journal of Polymer Science Part B:Polymer Physics,2012.50(13):910-916.
    [156] Zhan Y.H., Wu J.K., Xia H.S., et al., Dispersion and Exfoliation of Graphene in Rubberby an Ultrasonically-Assisted Latex Mixing and In situ Reduction Process [J].Macromolecular Materials and Engineering,2011.296(7):590-602.
    [157] Bai X., Wan C., Zhang Y., et al., Reinforcement of hydrogenated carboxylatednitrile–butadiene rubber with exfoliated graphene oxide [J]. Carbon,2011.49(5):1608-1613.
    [158] Singh V.K., Shukla A., Patra M.K., et al., Microwave absorbing properties of athermally reduced graphene oxide/nitrile butadiene rubber composite [J]. Carbon,2012.50(6):2202-2208.
    [159] Potts J.R., Shankar O., Murali S., et al., Latex and two-roll mill processing ofthermally-exfoliated graphite oxide/natural rubber nanocomposites [J]. CompositesScience and Technology,2012.74(24):166-172.
    [160] Ozbas B., Toki S., Hsiao B.S., et al., Strain‐induced crystallization and mechanicalproperties of functionalized graphene sheet‐filled natural rubber [J]. Journal of PolymerScience Part B: Polymer Physics,2012.50(10):718-723.
    [161] Zhan Y., M. Lavorgna, Buonocore G., et al., Enhancing electrical conductivity of rubbercomposites by constructing interconnected network of self-assembled graphene withlatex mixing [J]. Journal of Materials Chemistry,2012.22(21):10464-10468.
    [162] Berger C., Song Z.M., Li X.B., et al., Electronic confinement and coherence inpatterned epitaxial graphene [J]. Science,2006.312(5777):1191-1196.
    [163] Lomeda J.R., Doyle C.D., Kosynkin D.V., et al., Diazonium Functionalization ofSurfactant-Wrapped Chemically Converted Graphene Sheets [J]. Journal of the AmericanChemical Society,2008.130(48):16201-16206.
    [164] Huang X., Wu H., Liao X.P., et al., One-step, size-controlled synthesis of goldnanoparticles at room temperature using plant tannin [J]. Green Chemistry,2010.12(3):395-399.
    [165] Valcic S., Burr J.A., Timmermann B.N., et al., Antioxidant chemistry of green teacatechins. New oxidation products of (-)-epigallocatechin gallate and (-)-epigallocatechinfrom their reactions with peroxyl radicals [J]. Chemical Research in Toxicology,2000.13(9):801-810.
    [166] Sang S.M., Lambert J.D., Hong J., et al., Synthesis and structure identification of thiolconjugates of (-)-epigallocatechin gallate and their urinary levels in mice [J]. ChemicalResearch in Toxicology,2005.18(11):1762-1769.
    [167] Charlton A.J., Haslam E., and Williamson M.P., Multiple conformations of theproline-rich protein/epigallocatechin gallate complex determined by time-averagednuclear Overhauser effects [J]. Journal of the American Chemical Society,2002.124(33):9899-9905.
    [168] Chen P., Tan Y., Sun D., et al., A novel long-chain acyl-derivative ofepigallocatechin-3-O-gallate prepared and purified from green tea polyphenols [J].Journal of Zhejiang University Science,2003.4(6):714-718.
    [169] Palermo C.M., Hernando J.I.M., Dertinger S.D., et al., Identification of potential arylhydrocarbon receptor antagonists in green tea [J]. Chemical Research in Toxicology,2003.16(7):865-872.
    [170] Lo C.Y., Li S.M., Tan D., et al., Trapping reactions of reactive carbonyl species with teapolyphenols in simulated physiological conditions [J]. Molecular Nutrition&FoodResearch,2006.50(12):1118-1128.
    [171] Xu J., Sandstrom C., Janson J.C., et al., Chromatographic retention of epigallocatechingallate on oligo-beta-cycloclextrin coupled sepharose media investigated using NMR [J].Chromatographia,2006.64(1-2):7-11.
    [172] Gradisar H., Pristovsek P., Plaper A., et al., Green tea catechins inhibit bacterial DNAgyrase by interaction with its ATP binding site [J]. Journal of Medicinal Chemistry,2007.50(2):264-271.
    [173] Han D.W., Matsumura K., Kim B., et al., Time-dependent intracellular trafficking ofFITC-conjugated epigallocatechin-3-O-gallate in L-929cells [J]. Bioorganic&Medicinal Chemistry,2008.16(22):9652-9659.
    [174] Kim E.Y., Pai T.K., and Han O., Effect of Bioactive Dietary Polyphenols on ZincTransport across the Intestinal Caco-2Cell Monolayers [J]. Journal of Agricultural andFood Chemistry,2011.59(8):3606-3612.
    [175] Cote L.J., Cruz-Silva R., and Huang J.X., Flash Reduction and Patterning of GraphiteOxide and Its Polymer Composite [J]. Journal of the American Chemical Society,2009.131(31):11027-11032.
    [176] Pumera M., Graphene-based nanomaterials and their electrochemistry [J]. ChemicalSociety Reviews,2010.39(11):4146-4157.
    [177] Levkin P.A., Svec F., and Frechet J.M.J., Porous Polymer Coatings: a VersatileApproach to Superhydrophobic Surfaces [J]. Advanced Functional Materials,2009.19(12):1993-1998.
    [178] Moulton M.C., Braydich-Stolle L.K., Nadagouda M.N., et al., Synthesis,characterization and biocompatibility of―green‖synthesized silver nanoparticles usingtea polyphenols [J]. Nanoscale,2010.2(5):763-770.
    [179] Wang K., Wang L., Wu J.S., et al., Preparation of highly exfoliated epoxy/claynanocomposites by "slurry compounding": Process and mechanisms [J]. Langmuir,2005.21(8):3613-3618.
    [180] Wang S., Yu D., Dai L., et al., Polyelectrolyte-Functionalized Graphene as Metal-FreeElectrocatalysts for Oxygen Reduction [J]. ACS Nano,2011.5(8):6202-6209.
    [181] Tang Z., Wu X., Guo B., et al., Preparation of butadiene–styrene–vinyl pyridinerubber–graphene oxide hybrids through co-coagulation process and in situ interfacetailoring [J]. Journal of Materials Chemistry,2012.22(15):7492-7501.
    [182] Wang F.C., Feve M., Lam T.M., et al., FTIR analysis of hydrogen bonding inamorphous linear aromatic polyurethanes. I. Influence of temperature [J]. Journal ofPolymer Science Part B: Polymer Physics,1994.32(8):1305-1313.
    [183] Lin S.Y., Chen K.S., and Liang R.C., Thermal micro ATR/FT-IR spectroscopic systemfor quantitative study of the molecular structure of poly (N-isopropylacrylamide) inwater [J]. Polymer,1999.40(10):2619-2624.
    [184] Liu Y.T., Xie X.M., and Ye X.Y., High-concentration organic solutions of poly(styrene-co-butadiene-co-styrene)-modified graphene sheets exfoliated from graphite [J].Carbon,2011.49(11):3529-3537.
    [185] Fang M., Wang K., Lu H., et al., Covalent polymer functionalization of graphenenanosheets and mechanical properties of composites [J]. Journal of Materials Chemistry,2009.19(38):7098-7105.
    [186] Casiraghi C., Doping dependence of the Raman peaks intensity of graphene close to theDirac point [J]. Physical Review B,2009.80(23):233407.
    [187] Uyama H., Kurioka H., and Kobayashi S., Preparation of polyphenol particles byperoxidase-catalyzed dispersion polymerization [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1999.153(1):189-194.
    [188] Uyama H., Kurioka H., Sugihara J., et al., Enzymatic Synthesis and Thermal Propertiesof a New Class of Polyphenol [J]. Bulletin of the Chemical Society of Japan,1996.69(1):189-193.
    [189] Kurioka H., Uyama H., and Kobayashi S., Peroxidase-Catalyzed DispersionPolymerization of Phenol Derivatives [J]. Polymer Journal,1998.30(6):526-529.
    [190] Bulpett D.A., Comeau B., and Goguen D.S., Rubber compositions comprisingbenzoquinones and the use thereof in golf balls [P], US:20070213442A1,2009.
    [191] Katritzky A.R., Fedoseyenko D., Mohapatra P.P., et al., Reactions of p-Benzoquinonewith S-Nucleophiles [J]2012,44(21):777-785.
    [192] Khan M., Friction, wear and mechanical properties of electron beam modifiedPTFE-based rubber compounds [D], PhD Thesis, TU Dresden,2009.
    [193] Payne A.R., The dynamic properties of carbon black‐loaded natural rubber vulcanizates.Part I [J]. Journal of Applied Polymer Science,1962.6(19):57-63.
    [194] Bokobza L. and Erman B., A theoretical and experimental study of filler effect onstress-deformation-segmental orientation relations for poly (dimethylsiloxane) networks[J]. Macromolecules,2000.33(23):8858-8864.
    [195] Hashima K. Nishitsuji, S., and Inoue T., Structure-properties of super-tough PLA alloywith excellent heat resistance [J]. Polymer,2010.51(17):3934-3939.
    [196] Thomas R., Yumei D., Yuelong H., et al., Miscibility, morphology, thermal, andmechanical properties of a DGEBA based epoxy resin toughened with a liquid rubber [J].Polymer,2008.49(1):278-294.
    [197] Dang Z.M., Wang L., Yin Y., et al., Giant Dielectric Permittivities in FunctionalizedCarbon‐Nanotube/Electroactive‐Polymer Nanocomposites [J]. Advanced Materials,2007.19(6):852-857.
    [198] Dang Z.M., Yuan J.K., Zha J.W., et al., Fundamentals, processes and applications ofhigh-permittivity polymer–matrix composites [J]. Progress in Materials Science,2012.57(4):660-723.
    [199] Zhang X., Liang G., Chang J., et al., The origin of the electric and dielectric behavior ofexpanded graphite-carbon nanotube/cyanate ester composites with very high dielectricconstant and low dielectric loss [J]. Carbon,2012.50(14):4995-5007.
    [200] Wu C., Huang X., Wu X., et al., TiO2-nanorod decorated carbon nanotubes forhigh-permittivity and low-dielectric-loss polystyrene composites [J]. Composites Scienceand Technology,2012.72(4):521-527.
    [201] Wu C., Huang X., Wang G., et al., Hyperbranched-polymer functionalization ofgraphene sheets for enhanced mechanical and dielectric properties of polyurethanecomposites [J]. Journal of Materials Chemistry,2012.22(14):7010-7019.
    [202] He S.J., Wang Y.Q., Wu Y.P., et al., Preparation, structure, performance, industrialisationand application of advanced rubber/clay nanocomposites based on latex compoundingmethod [J]. Plastics, Rubber and Composites,2010.39(1):33-42.
    [203] Li M.C., Deng X., and Cho U.R., Study on the Structure, Thermal Properties, andMechanical Properties of PMMA-grafted SBR/Clay Nanocomposites [J]. Journal ofComposite Materials,2010.44(10):1279-1288.
    [204] Edwards R.S. and Coleman K.S., Graphene synthesis: relationship to applications [J].Nanoscale,2013.5:38-51.
    [205] Luo B., Liu S., and Zhi L., Chemical Approaches toward Graphene‐BasedNanomaterials and their Applications in Energy‐Related Areas [J]. Small,2012.8(5):630-646.
    [206] Batzill M., The surface science of graphene: Metal interfaces, CVD synthesis,nanoribbons, chemical modifications, and defects [J]. Surface Science Reports,2012.67(3):83-115.
    [207] Rao C.N.R., Sood A.K., Subrahmanyam K.S., et al., Graphene: The NewTwo‐Dimensional Nanomaterial [J]. Angewandte Chemie International Edition,2009.48(42):7752-7777.
    [208] Weiss N.O., Zhou H., Liao L., et al., Graphene: An Emerging Electronic Material [J].Advanced Materials,2012.24(43):5782-5825.
    [209] Georgakilas V., Otyepka M., Bourlinos A.B., et al., Functionalization of Graphene:Covalent and Non-Covalent Approaches, Derivatives and Applications [J]. ChemicalReviews,2012.112(11):6156.
    [210] Niyogi S., Bekyarova E., Itkis M.E., et al., Spectroscopy of covalently functionalizedgraphene [J]. Nano Letters,2010.10(10):4061-4066.
    [211] Xu Y., Liu Z., Zhang X., et al., A graphene hybrid material covalently functionalizedwith porphyrin: synthesis and optical limiting property [J]. Advanced Materials,2009.21(12):1275-1279.
    [212] Yang H., Li F., Shan C., et al., Covalent functionalization of chemically convertedgraphene sheets via silane and its reinforcement [J]. Journal of Materials Chemistry,2009.19(26):4632-4638.
    [213] Colson J.W., Woll A.R., Mukherjee A., et al., Oriented2D covalent organic frameworkthin films on single-layer graphene [J]. Science,2011.332(6026):228-231.
    [214] Reuven D., Li H., Harruna I., et al., Self-assembly of metallopolymer guided bygraphene nanoribbons [J]. Journal of Materials Chemistry,2012.22:15689.
    [215] Reuven D., Suggs K., Williams M.D., et al., Self-Assembly of Biofunctional Polymeron Graphene Nanoribbons [J]. ACS Nano,2012.6(2):1011-1017.
    [216] Zhang S., Shao Y., Liao H., et al., Polyelectrolyte-induced reduction of exfoliatedgraphite oxide: a facile route to synthesis of soluble graphene nanosheets [J]. ACS Nano,2011.5(3):1785-1791.
    [217] Xu Y.X., Bai H., Lu G.W., et al., Flexible graphene films via the filtration ofwater-soluble noncovalent functionalized graphene sheets [J]. Journal of the AmericanChemical Society,2008.130(18):5856-5857.
    [218] Tang Z., Zeng C., Lei Y., et al., Fluorescent whitening agent stabilized graphene and itscomposites with chitosan [J]. Journal of Materials Chemistry,2011.21(43):17111-17118.
    [219] Kozhemyakina N.V., Englert J.M., Yang G., et al., Non‐Covalent Chemistry ofGraphene: Electronic Communication with Dendronized Perylene Bisimides [J].Advanced Materials,2010.22(48):5483-5487.
    [220] Sakakibara M., Harada I., Matsuura H., et al., Vibrational spectra and rotationalisomerism of some branched alkyl sulfides [J]. Journal of Molecular Structure,1978.49(1):29-42.
    [221] Hu Y.H., Chen C.Y., Wang C.C., et al., Living polymerization of styrene initiated bymercaptan/epsilon-caprolactam [J]. Journal of Polymer Science Part a-PolymerChemistry,2004.42(19):4976-4993.
    [222] Wu H., Huang X., Gao M., et al., Polyphenol-grafted collagen fiber as reductant andstabilizer for one-step synthesis of size-controlled gold nanoparticles and their catalyticapplication to4-nitrophenol reduction [J]. Green Chemistry,2011.13(3):651-658.
    [223] Wang G., Shen X., Wang B., et al., Synthesis and characterisation of hydrophilic andorganophilic graphene nanosheets [J]. Carbon,2009.47(5):1359-1364.
    [224] Mladenova R., Ignatova M., Manolova N., et al., Preparation, characterization andbiological activity of Schiff base compounds derived from8-hydroxyquinoline-2-carboxaldehyde and Jeffamines ED [J]. European Polymer Journal,2002.38(5):989-999.
    [225] Laobuthee A., Chirachanchai S., Ishida H., et al., Asymmetric mono-oxazine: aninevitable product from Mannich reaction of benzoxazine dimers [J]. Journal of theAmerican Chemical Society,2001.123(41):9947-9955.
    [226] Sundberg P., Larsson R., and Folkesson B., On the core electron binding energy ofcarbon and the effective charge of the carbon atom [J]. Journal of Electron Spectroscopyand Related Phenomena,1988.46(1):19-29.
    [227] Kuila T., S. Bose, Mishra A.K., et al., Chemical functionalization of graphene and itsapplications [J]. Progress in Materials Science,2012.57(7):1061-1105.
    [228] Dikin D.A., Stankovich S., Zimney E.J., et al., Preparation and characterization ofgraphene oxide paper [J]. Nature,2007.448(7152):457-460.
    [229] Chen C., Yang Q.H., Yang Y., et al., Self-assembled free-standing graphite oxidemembrane [J]. Advanced Materials,2009.21(29):3007-3011.
    [230] Gao Y., Liu L.Q., Zu S.Z., et al., The effect of interlayer adhesion on the mechanicalbehaviors of macroscopic graphene oxide papers [J]. ACS Nano,2011.5(3):2134-2141.
    [231] Chen H., Muller M.B., Gilmore K.J., et al., Mechanically strong, electrically conductive,and biocompatible graphene paper [J]. Advanced Materials,2008.20(18):3557-3561.
    [232] Park S., Lee K.S., Bozoklu G., et al., Graphene oxide papers modified by divalentions—Enhancing mechanical properties via chemical cross-linking [J]. ACS Nano,2008.2(3):572-578.
    [233] Park S., Dikin D.A., Nguyen S.T., et al., Graphene Oxide Sheets ChemicallyCross-Linked by Polyallylamine [J]. Journal of Physical Chemistry C,2009.113(36):15801-15804.
    [234] Park S., Mohanty N., Suk J.W., et al., Biocompatible, Robust Free‐Standing PaperComposed of a TWEEN/Graphene Composite [J]. Advanced Materials,2010.22(15):1736-1740.
    [235] Bielstein G., Some Aspects of High Temperature Vulcanization [J]. Rubber Chemistryand Technology,1961.34(1):319-333.
    [236] Fishbein L., Chemicals used in the rubber industry: An overview [J]. ScandinavianJournal of Work, Environment&Health,1983.9(2):7-14.
    [237] Kress K. and Mees F.S., Identification of Curing Agents in Rubber Products [J].Analytical Chemistry,1955.27(4):528-534.
    [238] Ohm R.F., Rubber chemicals [M]. New York, Wiley, Kirk-Othmer Encyclopedia ofChemical Technology,1997.
    [239] Tang Z., Sun D., Yang D., et al., Vapor grown carbon nanofiber reinforced bio-basedpolyester for electroactive shape memory performance [J]. Composites Science andTechnology,2012.75:15-21
    [240] Baskaran D., Mays J.W., and Bratcher M.S., Noncovalent and nonspecific molecularinteractions of polymers with multiwalled carbon nanotubes [J]. Chemistry of Materials,2005.17(13):3389-3397.
    [241] Nah C., Ryu H.J., Han S.H., et al., Fracture behaviour of acrylonitrile–butadienerubber/clay nanocomposite [J]. Polymer International,2001.50(11):1265-1268.
    [242] Kabilar P., Paneerselvam P., Gayathri M., et al., FTIR spectroscoptc study andantifungal activity of the medicinal plant glory lily (Gloriosa superba)[J]. Journal ofExperimental Sciences,2011.2(6):1-3.
    [243]陈维维,橡胶/勃姆石纳米复合材料的界面与性能研究[D],广州:华南理工大学2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700