氢氧化铝/层状硅酸盐阻燃沥青的制备及其协同阻燃机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沥青路面以其优良的路用性能和良好的行车舒适性,已在公路隧道中被广泛使用,但沥青易燃,一旦隧道着火,不仅会加剧火灾的蔓延,还会造成隧道路面的严重损坏,导致交通的长时间中断,并将造成大量的人员伤亡。为提高隧道沥青路面的防火性能,阻燃沥青及其混凝土的制备与应用已受到国内外的高度重视。添加阻燃剂是提高沥青阻燃性能一种重要方法。目前沥青阻燃剂主要是卤素阻燃剂和无机氢氧化物阻燃剂,卤素阻燃剂对沥青的阻燃效果较好,但在阻燃沥青混合料施工和沥青路面燃烧时会产生大量有毒、腐蚀性气体和烟雾,严重危害施工人员身体健康,并导致火灾发生时被困人员窒息身亡,而无机氢氧化物阻燃剂用量大,导致阻燃沥青成本较高,并对沥青混合料的路用性能带来不利影响。因此,开发抑烟、无毒、环保、成本低、综合性能好的阻燃沥青及其混合料已成为隧道阻燃沥青路面铺装亟待解决的课题。
     本文首先以不同产地和种类的基质沥青及SBS改性沥青为研究对象,采用氧指数、燃闪点和热性能对沥青的燃烧性能和热性能进行了评价,探讨了沥青化学组分与燃烧性能的关系;然后分别研究了无机氢氧化物、层状硅酸盐(膨胀蛭石、有机化蛭石、蒙脱土、有机化蒙脱土及累托石)以及无机氢氧化物/层状硅酸盐对SBS改性沥青和基质沥青氧指数、燃闪点和热性能的影响,并采用X-射线衍射(XRD)和热-质连用技术(TG-DSC-MS)对无机氢氧化物/层状硅酸盐的协同阻燃机理进行了探讨;最后,研究了无机氢氧化物/层状硅酸盐协同阻燃剂对沥青混合料的体积性能、路用性能和阻燃性能的影响。主要研究结论如下:
     (1)沥青的化学组分对氧指数影响很小,但对燃闪点影响较大,饱和分高的沥青,燃闪点较低,但如其胶质含量也较高,则其燃闪点也会较高;沥青的化学组分对其热性能也有明显影响,饱和分高的沥青,初始热失重温度较低。
     (2)SBS改性剂对沥青的燃烧性能和热性能均有较大影响。随着SBS改性剂的掺入,沥青的氧指数降低,而燃闪点和热稳定性均提高。氧指数的降低是因为SBS仅含有C、H元素,比沥青更易燃烧,燃闪点和热稳定性则可归因于SBS在沥青中形成了交联网络结构,增大了沥青粘度,抑制了沥青中轻组分的挥发。
     (3)氢氧化铝对沥青的阻燃效果明显优于氢氧化镁。这是因为氢氧化铝脱去结晶水的温度较低,且其最高吸热峰温度与沥青初始热失重温度相近,其脱水吸热正好可以抑制沥青温度的升高,形成的水蒸气可以稀释沥青的挥发组分,而氢氧化镁的脱水起始温度和最高吸热峰温度均较高,对沥青温度的降低和挥发组分的稀释作用较小,阻燃效果较差。
     (4)单一的膨胀蛭石、有机化蛭石、蒙脱土、有机化蒙脱土及累托石对沥青氧指数的改善效果均有限,其中膨胀蛭石对沥青阻燃性能的改善效果优于蒙脱土和累托石,而有机化蛭石又略优于膨胀蛭石。
     (5)氢氧化铝与膨胀蛭石、有机化蛭石、蒙脱土、有机化蒙脱土及累托石复合用于沥青阻燃,复合阻燃剂对沥青氧指数的提高显著大于单一阻燃剂,表现出非常明显的协同阻燃效应,其中尤以氢氧化铝与膨胀蛭石复合阻燃剂对沥青的协同阻燃效应最强。氢氧化铝/膨胀蛭石协同使用不仅具有抑烟、无毒、环保的优点,而且可显著减少氢氧化铝的用量,降低阻燃沥青的成本。
     (6)XRD分析表明,单独的膨胀蛭石和有机化蛭石经高温烧蚀后,蛭石层状结构被破坏,蛭石片层被剥离,而蛭石中的金云母层状结构未被破坏;膨胀蛭石与沥青及氢氧化铝复合后,体系中蛭石层状结构未被破坏,而有机化蛭石与沥青、氢氧化铝复合体系中蛭石层状结构已被破坏,高温烧蚀后,两个体系中蛭石及金云母片层均已被剥离;蒙脱土与沥青及氢氧化铝复合后,蒙脱土的层状结构已被破坏,蒙脱土成片层剥离分散在沥青中。
     (7) TG-DSC-MS分析表明,SBS改性沥青/氢氧化铝体系挥发组分中的水蒸气离子流强度在400℃之前高于SBS改性沥青,在400℃之后低于SBS改性沥青,而SBS改性沥青与SBS改性沥青/氢氧化铝体系挥发组分中的二氧化碳离子流强度在350℃之前相近,但之后后者明显低于前者;SBS改性沥青/氢氧化铝/膨胀蛭石体系挥发组分中的水蒸气和二氧化碳离子流强度均明显小于SBS改性沥青及SBS改性沥青/氢氧化铝体系。
     (8)综合XRD和TG-DSC-MS的分析结果,SBS改性沥青/氢氧化铝/层状硅酸盐体系的协同阻燃机理为:当沥青受热升温到260℃左右,氢氧化铝开始脱水会吸收一部分热量,以降低体系的温度,均匀分散在沥青中的层状硅酸盐会阻隔氢氧化铝释放的水蒸气、沥青中的轻组分及热分解产物的挥发和空气中氧气的渗入,避免沥青发生燃烧;随着温度的进一步升高,氢氧化铝释放的水分和沥青热分解产生的水分越来越多,水蒸气充斥在层状硅酸盐的层间,使其片层剥离,逐渐形成硅酸盐阻隔层,氢氧化铝脱水生成的氧化铝固体颗粒也填充在片层之间,使得阻隔层更为致密,更有效地阻隔沥青热分解产物的挥发,并阻止氧气的扩散渗入,达到协同阻燃目的,此外层状硅酸盐与氢氧化铝协同使用还具有促进沥青燃烧成炭的作用。
     (9)SBS改性沥青/氢氧化铝/膨胀蛭石与SBS改性沥青/氢氧化铝/有机化蛭石协同阻燃效果的差异主要在于:有机化蛭石在阻燃沥青制备过程中蛭石层状结构已破坏,蛭石片层无序地分散在沥青中,而膨胀蛭石的层状结构未被破坏,容易形成致密的固相阻隔层,从而具有更好的固相阻燃作用;而蒙脱土对沥青阻燃性能比膨胀蛭石差的主要原因在于:与有机化蛭石相同,蒙脱土容易被沥青分子插层,在阻燃沥青制备过程中蒙脱土片层已被剥离,难以形成致密的固相阻隔层,而且蒙脱土的膨胀性和隔热性能弱于蛭石。
     (10)与SBS改性沥青混合料相比,采用氢氧化铝和膨胀蛭石协同阻燃剂制备的阻燃SBS改性沥青混合料的吸水率、空隙率和矿料间隙率略微减少,毛体积密度和沥青饱和度略微增大,马歇尔稳定度、浸水残留稳定度、冻融劈裂强度比和动稳定度等均得到提高,可在一定程度上改善沥青混合料水稳定性和高温稳定性能。
     (11)采用氢氧化铝和膨胀蛭石协同阻燃剂制备的SBS改性沥青混合料,燃烧试验后的残留马歇尔稳定度比显著高于普通SBS改性沥青混合料,且燃烧试验时仅表面汽油在燃烧,燃烧后试件破坏程度较轻,表明阻燃剂有效提高了沥青混合料的阻燃性能。
Bitumen pavement has been widely used in road tunnels because of its excellent road performance and driving comfort. However, once the tunnel caught fire, it would not only exacerbate the spread of fires but also cause serious damage to tunnel pavements. Traffic would be interrupted for a long time and lead to a lot of casualties. In order to improve fire retardant property of tunnel bitumen pavement, preparation and application of flame retardant bitumen and concrete have been attracted great attentions at home and abroad. Adding flame retardant is an important method for improving fire retardant properties of bitumen. Currently, bitumen flame retardant agents are mainly halogen and inorganic hydroxides fire retardant agents. Flame retardant effect of former one is better than that of later one. However, large amount of toxic and corrosion gas and smoke would be produced in the construction of bitumen mixture and combustion of bitumen pavement. These would seriously harm constructors'health and even lead to suffocation death of trapped people. Larger amount of inorganic hydroxides flame retardant agent would increase the cost of flame retardant bitumen and influence performance of bitumen mixture gravely. Therefore, developing non-toxic, environmental, low cost, good overall performance flame-retardant bitumen and its mixture has become a critical project for flame-retardant bitumen pavement of the tunnel.
     This paper first takes different origins and types of matrix bitumen and SBS modified bitumens as research objects. Combustion and thermal performance of bitumen has been evaluated by using oxygen index, ignition and flash point and thermal property. Relationship between bitumen chemical components and combustion performance has been discussed. Then the impact of inorganic hydroxides, layered silicates (expanded vermiculite, organic vermiculite, montmorillonite, organic montmorillonite and rectorite) and inorganic hydroxide/layered silicate on oxygen index, ignition and flash point and thermal property of SBS modified bitumen, as well as basic bitumen was studied. X-ray diffraction (XRD) and thermal-mass technology (TG-DSC-MS) were also used to analyze the synergistic flame retardant mechanism of inorganic hydroxide/layered silicate. Finally, the effect of fire retardant of inorganic hydroxide/layered silicate on volume performance, road performance and fire-retardant property was researched. Main conclusions of the study are as follows:
     (1) Chemical composition of bitumen has little effect on oxygen index but more on ignition and flash point. Bitumen with high saturates has lower ignition and flash point, but it with high resins has higher ignition and flash point. Chemical composition of bitumen has noticeable effect on its thermal properties. Bitumen with high saturates has lower initial temperature of thermal weight loss.
     (2) SBS modifiers have great impact on combustion characteristics and thermal properties of bitumen. With the addition of SBS, the oxygen index of bitumen becomes lower, but the ignition and flash point and thermal stability are increased. SBS is more vulnerable for combustion because they only has C, H elements, which leads to the decrease of oxygen index. The increase of ignition and flash point and thermal stability attributes to the formation of cross-linked network structure of SBS in bitumen, and that structure increases the viscosity of bitumen and obstructs the loss of volatile components in bitumen.
     (3) Aluminum hydroxide has better inflaming retarding effects on bitumen than magnesium hydroxide, which due to the lower dehydration temperature of crystal water in aluminum hydroxide, and its supreme endothermic peak temperature is close to initial thermal weight loss temperature of bitumen. Absorbing heat of dehydration can inhibit increasing temperature of bitumen and formed steam can dilute volatile component of bitumen. But the dehydration temperature and supreme endothermic peak temperature of magnesium hydroxide are both high, which result in little effects on restraining increasing temperature of bitumen and dilution of volatile component of bitumen, and inflaming retarding effect is comparatively poor.
     (4) Single vermiculite, organic vermiculite, montmorillonite, organic montmorillonite and rectorite have limited improvement on oxygen index of bitumen. Vermiculite has better ability in improving flame retardant property of bitumen than montmorillonite and rectorite, and organic vermiculite is superior to expanded vermiculite.
     (5) Aluminum hydroxide composed with expanded vermiculite, organic vermiculite, montmorillonite, organic montmorillonite and rectorite separately. And then they can be added into bitumen for fire retardant. Increment of bitumen oxygen index for composed fire retardants is comparatively higher than that of single flame retardants, which shows very obvious synergistic flame retardant effect, especially for composite of aluminum hydroxide and expanded vermiculite. Aluminum hydroxide used in tandem with expanded vermiculite not only has the advantages of smoke suppression, non-toxic, as well as environmental protection, but also could decrease the amount of aluminum hydroxide, lowering the cost of flame retardant bitumen.
     (6) XRD analysis indicates that layered structure of expanded vermiculite and organic vermiculite would be damaged and vermiculite layers would be exfoliated after burning, but the layered structure of phlogopite in vermiculite would not be damaged. The layered structure of expanded vermiculite in the composite system mixed with bitumen, expanded vermiculite and aluminum hydroxide could not be destroyed, while that in the composite system mixed with bitumen, organic vermiculite and aluminum hydroxide has been damaged. After high temperature calcination, the layered structures of vermiculite and phlogopite in these two composite systems were exfoliated, and layered structure of montmorillonite in the composite system mixed with bitumen, montmorillonite and aluminum hydroxide has been damaged, montmorillonite layers have been exfoliated and dispersed in bitumen.
     (7) Analysis of TG-DSC-MS indicates that water steam ion flow intensity in volatile component of SBS modified bitumen/aluminum hydroxide system is higher than that of SBS modified bitumen before400℃, while the situation is contrary after400℃. Carbon dioxide ion flow intensities of volatile components in SBS modified bitumen and SBS modified bitumen/aluminum hydroxide are similar before350℃, but it reverses after350℃. Water vapor and carbon dioxide ion flow intensity of volatile components in SBS modified bitumen/aluminum hydroxide/expanded vermiculite are obviously less than that in SBS modified bitumen/aluminum hydroxide.
     (8) The analysis results combined XRD and TG-DSC-MS reveal the synergistic flame retardant mechanism of SBS modified bitumen/aluminum hydroxide/layer silicate: when bitumen is heated up to around260℃, aluminum hydroxide begins to dehydrate and absorbs part of heat, thus the system temperature can be reduced. The layered silicate dispersed in bitumen uniformly would barrier the volatilization of water steam released from aluminum hydroxide, light component of bitumen as well as thermal decomposed products, and the permeation of oxygen in air, then the combustion of bitumen is hindered. As temperature rises further, water released from aluminum hydroxide and decomposition of bitumen would become more and more. The interlayer of layered silicate would be filled with increasing steam, and then layered silicate is exfoliated. Meanwhile, silicate barrier layer would be formed gradually. Alumina particles formed from the decomposition of aluminum hydroxide would be filled into the interlayer, forming compact barrier layers. It is more effective to inhibit the volatilization of decomposition products of flame retardant bitumen and the permeation of oxygen to achieve the goal of synergistic flame retardant. In addition, synergistic usage of layer silicates and aluminum hydroxide can promote the formation of charcoal during combustion.
     (9) The differences of synergistic flame retardant effect between SBS modified bitumen/aluminum hydroxide/expanded vermiculite and SBS modified bitumen/aluminum hydroxide/organic vermiculite would be:the layered structure of organic vermiculite has been damaged during the preparation process of flame retardant bitumen, the vermiculite layers disperse in bitumen randomly, while the layered structure of expanded vermiculite has not been spoiled, thus compact solid barrier layer would be easily formed, which leads to better solid flame retardant effect. The main reason that flame retardant property for montmorillonite is poorer than that for expanded vermiculite is:montmorillonite can be more easily intercalated by bitumen molecules compared to expanded vermiculite, montmorillonite layers are exfoliated in the preparation, then it is hard to form solid barrier layer. Furthermore, the dilatability and heat insulation properties of montmorillonite are weaker than that of vermiculite.
     (10) Compared with SBS modified bitumen mixtures, the water adsorption, voidage and voids in the mineral aggregate of SBS modified bitumen mixtures with the addition of aluminum hydroxide and expanded vermiculite are decreased slightly, while the bulk density and voids filled with bitumen are increased a little, the Marshall stability, soaking residues stability degrees, tensile strength ratio and dynamic stability are all improved, water stability and high temperature stability performance of bitumen mixture would be improved to a certain extent.
     (11) After burning tests, residual Marshall strength ratio of bitumen mixtures prepared with aluminum hydroxide and expanded vermiculite were apparently higher than that common SBS modified bitumen, and only gasoline on surfaces was burning, and the level of destruction of samples was comparatively low, which indicates that flame retardant agents have improved the flame retardant property of bitumen mixture effectively.
引文
[1]刘伟.我国公路隧道火灾防救研究[J].中国公路,2005,(02):52-54.
    [2]康晓龙,王伟,赵耀华,华高英.公路隧道火灾事故调研与对策分析[J].中国安全科学学报,2007,(5):110-116.
    [3]吴绪浩,刘朝晖.公路隧道路面结构与材料技术研究[J].广西交通科技,2003,28(6):31-33.
    [4]Pitts J J. Inorganic flame retardants and their mode of action[J]. Flame retardancy of polymeric materials.,1973,1:133-194.
    [5]Cullis C F, Hirschler M M. The combustion of organic polymers[M]. Oxford:Clarendon Press,1981.
    [6]Chamberiain D L. Mechanism of Fire Retardance in Polymers in Flame Retardancy of Polymeric Materials. Vol.4, ed. Kuryla W C&Papa A J, Marcel Dekker, New York,1978: 109
    [7]王玉忠.阻燃剂的发展史及聚酯纤维的阻燃改性[J].青岛大学学报,1997,12(1):43-52.
    [8]刘晓.阻燃温拌沥青混合料在隧道路面中的应用研究[D].山东大学,2012.
    [9]尹荔松,黄钢明.氧化锑/高岭土复合阻燃微粉的湿化学法制备及特性[J].中国粉体技术,2001,7(1):1-4.
    [10]尹荔松,黄钢明.氧化锑/高岭土复合阻燃微粉的化学反应动力学及特征[J].材料科学与工艺,2000,8(4):39-43.
    [11]罗筑,陈兴江.有机溴/氧化锑体系对PBT, PE类材料阻燃特性研究[J].贵州工业大学学报:自然科学版,2002,31(1):84-87.
    [12]魏昭荣,朱世富,赵北君,等.磷钼酸钙阻燃抑烟剂的制备和性能研究[J].塑料工业,2005,33(1):52-54.
    [13]欧育湘,刘治国,吴俊浩.聚磷酸蜜胺与八钼酸蜜胺阻燃PA6的燃烧行为及协同作用[J].北京理工大学学报,2004,24(9):829-832.
    [14]李斌,王建祺.用锥形量热仪研究Cu2O和Mo03对PVC阻燃抑烟的作用[J].科学通报,1998,43(8):836-840.
    [15]尹德荟,张勇.甲基丙烯酸对氢氧化铝填充丁苯橡胶性能的影响[J].合成橡胶工业,2002,25(3):161-163..
    [16]程俊梅,于广水,赵树高,等.溶聚丁苯橡胶/炭黑/短纤维复合材料的取向结构与力学性能[J].合成橡胶工业,2006,28(4):300-305.
    [17]张保卫,谭英杰.氢氧化铝在丁苯橡胶中的阻燃性研究[J].特种橡胶制品,2003,24(2):15-17.
    [18]亢庆卫,罗权焜.氢氧化铝复合阻燃剂对热硫化硅橡胶性能的影响[J].有机硅材料,2004,18(6):1-4.
    [19]王明清.橡胶的阻燃技术进展[J].橡胶工业,2004,51(5):309-312.
    [20]张泽江,冯良荣,邱发礼,等.纳米无机阻燃剂的研究进展[J].化学进展,2004,16(4):508-515.
    [21]黄宝晟,郝建薇.纳米双羟基复合金属氧化物的阻燃性能[J].应用化学,2002,19(1):71-75.
    [22]Chuan Y. L., Wu S., Chiu Y. C.Thermal stability of epoxy resins containing flame retardant components:an evaluation with thermogravimetric analysis[J]. Polymer Degradation and Stability,2002,78(1):41-48.
    [23]Liang, H. B., Shi, W. F.,Gong, M. Expansion behaviour and thermal degradation of tri(acryloyloxyethyl) phosphate/methacrylated phenolic melamine intumescent flame retardant system[J]. Polymer Degradation And Stability,2005,90(1):1-8.
    [24]Hergenrother, P. M., Thompson, C. M., Smith, J. G, Cornell, J. W.. Flame retardant aircraft epoxy resins containing phosphorus[J]. Polymer,2005,46(14):5012-5024.
    [25]Wang, Z. Y., Han, E. H.,Ke, W. Influence of nano-LDHs on char formation and fire-resistant properties of flame-retardant coating[J]. Progress In Organic Coatings,2005,53(1):29-37.
    [26]Jeng, R.J., Shau, S.M., Lin, J.J., Su, W.C.,Chiu, Y.S. Flame retardant epoxy polymers based on all phosphorus-containing components[J]. European Polymer Journal,2002, 38(4):683-693.
    [27]Li, X., Ou, Y.,Shi, Y. Combustion behavior and thermal degradation properties of epoxy resins with a curing agent containing a caged bicyclic phosphate[J]. Polymer Degradation and Stability,2002,77(3):383-390.
    [28]林铭,陶文亮,聂登攀,等.氢氧化铝阻燃剂表面改性研究[J].广东化工,2010,37(10):37-38.
    [29]Wang Z Z, Chen Z, et al. Effects of surface modifiers on mechanical and rheological properties of halogen-free flame retarded polyethylene composites [J]. Polymer Plastics Technology Engineer,2006,45(2):191.
    [30]刘鲁梅,陈南博.纳米氢氧化铝的制备及亲油改性[J].山东陶瓷,2009,31(6):26-29.
    [31]Berta M, Lindsay C, Pans G, et al. Effect of chemical structure on combustion and thermal behaviour of polyurethane elastomer layered silicate nanocomposites [J]. Polymer Degradation and Stability,2006,91(5):1179.
    [32]朱德钦,生瑜,章文贡.大分子键合处理氢氧化铝的制备及其与LDPE的性能研究[J].塑料工业,2001,(5):38-40.
    [33]Rothon R N, Hornsby P R. Flame retardant effects of magnesium hydroxide [J]. Polymer Degradation and Stability,1996, (54):383-385.
    [34]吴湘锋,王标兵,胡国胜.纳米氢氧化镁阻燃剂的研究进展[J].材料导报,2007,21(5):17-19.
    [35]王福强,徐雪梅,揣成智,程远.氢氧化镁粒径及偶联剂对PP/Mg(OH)2复合材料性能的影响[J].塑料工业,2010,38(5):59-62.
    [36]陈一,赵芳,杨军红.纳米氢氧化镁及其复合体系阻燃改性HDPE研究[J].湖南工业大学学报,2009,23(4):33-35.
    [37]霍蛟龙,虞鑫海,李四新.环境友好型阻燃剂——氢氧化镁[J].粘接,2010,(11):72-76.
    [38]李永泉.氢氧化镁及其阻燃增效剂阻燃的研究[D].北京:北京化工大学,2003.
    [39]安晶,陆荣.氢氧化镁填充量对聚乙烯阻燃性能的研究[J].化工技术与开发,2010,39(4):12-14.
    [40]杜高翔,郑水林,姜骑山,刘月.超细氢氧化镁粉的表面改性[J].化工矿物与加工,2005(9):11-13,17.
    [41]Wu Q, Lu J P, Qu B J. Preparation and characterization of microcapsulated red phosporus and its flame-retardant mechanism in halogen-free flame retardant polyolefins [J]. Polymer International,2003,52(8):1326-1331.
    [42]王德花,李荣勋,刘光烨.包覆红磷阻燃ABS的性能研究[J].中国塑料,2007,21(11):74-77.
    [43]刘长生,王琪,夏和生.红磷阻燃PA6/PF/硅灰石复合材料的制备[J].塑料工业,2002,30(4):27-29.
    [44]陈建峰,陈峰,谢吉民,朱建军,王仲华.微胶囊化聚磷酸铵阻燃环氧树脂的研究[J].涂料工业,2010,40(11):15-23.
    [45]王海军,陈立新,缪桦.氮系阻燃剂的研究及应用概况[J].热固性树脂,2005, 20(4):3641.
    [46]欧育湘.国外阻燃剂发展动态及对发展我国阻燃剂工业之浅见[J].精细与专用化学品,2003,2(3):1-5.
    [47]播健传,陈桧华,兰芳.阻燃剂的现状和发展[J].广东化工,2007(2):46-47.
    [48]贾修伟,刘治国.硅系阻燃剂研究进展[J].化工进展,2003,22(8):818-822.
    [49]高峰,朱梦如.有机磷系阻燃剂的研究与应用[J].武警学院学报,2009(4):9-12.
    [50]崔丽丽,李巧玲,韩红丽.有机磷阻燃剂的现状及发展前景[J].当代化工,2007,36(5):512-515.
    [51]林志丹,张秀菊.溴锑阻燃体系对PTT结构与性能的影响[J].中国塑料,2007,21(11):82-86.
    [52]麦堪成,李日强.丙烯酸改性卤锑阻燃PP的阻燃性能[J].塑料工业,2004,32(7):10-12.
    [53]彭德淼.锑系阻燃剂研究新进展[J].塑料助剂,2004,5:66-74.
    [54]远忠森,杨丽梅,刘水根.共沉淀法制备Sb2O3-SiO2复合阻燃剂[J].有色金属(冶炼部分),1995,47(5):44-46.
    [55]远忠森,杨丽梅,刘水根.共沉淀法制备Sb2O3-Al(OH)3复合阻燃剂[J].有色金属,1996,48(1):64-68.
    [56]赵瑞荣,石西昌,蒋汉赢,王建峰.Sb2O3-ZnSn(OH)6-ZnNH4PO4阻燃体系的研究[J].中南工业大学学报,1995,26(6):744-748.
    [57]杨丽梅,张力,远忠森,赵良清.Sb-A复合阻燃剂在软PVC中的热稳定性、阻燃抑烟性及力学性能[J].有色金属,1997,49(1):83-86.
    [58]王晓立,郭听岩,李臻.环氧树脂阻燃剂研究[J].化工科技,2003,11(3):4-6.
    [59]唐谟堂,阳卫军.氯氧化锑阻燃剂研究进展[J].现代化工,2000,20(6):15-19.
    [60]李海屏,刘大梁.二溴三苯基锑阻燃剂的合成与性能研究[J].精细化工,1997,14(4):34-36..
    [61]赵晓光,绍永仁,李虹.氯氧化锑阻燃剂研究进展[J].高等学校化学学报,1994,15(2).
    [62]高岩,张燕芬,彭小红.氢氧化铝在聚乙烯中阻燃性能的研究[J].材料研究与应用,2008,2(2):129-132.
    [63]Wang D X, Kibble K A. Comparison of Aluminium Hy-droxide and Magnesium Hydroxide as Flame Retardants in SEBS-based Composites [J]. Polymers & Polymer Composites, 2008,16(7):415-422.
    [64]齐兴国,黄兆阁,姚伟,丁乃秀,李荣勋,刘光烨.Mg(OH)2及其与红磷复配阻燃聚丙烯复合材料的性能研究[J].塑料,2006,35(5):53-56.
    [65]伍玉娇,肖贤彬,骆丁胜,丁兴艳,王珏.Mg(OH)2与包覆红磷协效阻燃PP/PA6复合材料的研究[J].塑料,2009,38(1):58-61.
    [66]Lv J P, Liu W H. Flame Retardancy and Mechanical Properties of EVA Nanocomposites Based on Magnesium Hydroxide Nanoparticles/Microcapsulated Red Phos-phorus[J].Journal of Applied Polymer Science,2007,105(2):333-340.
    [67]陈一,赵芳,杨军红.纳米氢氧化镁及其复合体系阻燃改性HDPE研究[J].湖南工业大学学报,2009,23(4):33-36.
    [68]陈俊,刘述梅,赵建青,李伟聪,毛新华,谭浩明.氢氧化镁与磷酸酯齐聚物协同阻燃聚酰胺6[J].合成树脂及塑料,2009,26(1):19-34.
    [69]王志伟,张永强,李葵英,于荣金.聚乙烯阻燃光缆护套料的制备工艺研究[J].光电子激光,2007,18(9):1082-1084.
    [70]Genovese A, Shanks R A. Structural and thermal interpretation of the synergy and interactions between the fire retardants magnesium hydroxide and zinc borate[J]. Polymer degradation and stability,2007,92(1):2-13.
    [71]李傲,梁基照.无卤阻燃剂的研究进展[J].上海塑料,2007(1):1-5.
    [72]Li Z Z, Wang X G, Tan Y J, et al.Synergistic Effects and Flame-retardant Properties of Melamine Cyanurate with Magnesium Hydroxide in Halogen-free Flame-retardant EVA Blends[J]. Fire Science and Technology,2005,24(3):320-326.
    [73]冯钠,陈涛,赵建,苏鸿翔.MCA协同阻燃EVA/MH体系性能研究[J].塑料科技,2007,35(12):50-53.
    [74]易岚,陈俊,叶华.含硅阻燃剂的研究进展[J].化工新型材料,2009,37(1):8-10.
    [75]张敏吗,李如钢.有机硅阻燃剂的研究进展[J].有机硅材料,2009,23(1):51-54.
    [76]周文君,周箭,杨辉,徐存进,张云云.纳米Mg(OH)2与硅树脂对聚丙烯的阻燃协同效应[J].稀有金属材料与工程,2008,37(2):312-315.
    [77]Fujiwara S., Sakamoto K. T.. Application on polyamide 6-montmorillonite [P]. Pat109998, 1976.
    [78]Giannelis, E. P. Polymer layered silicate nanocomposites [J]. Adv. Mater.,1996,8:29-35.
    [79]Giannelis, E. P.. Polymer-layered silicate nanocomposites:synthesis, properties and applications [J]. Appl. Org. Chem.,1998,12:675-680.
    [80]Tang Y, Hu Y, Wang S F. Intumescent flame retardant-montmorillonite synergism in polypropylene layered silicate nanocomposites [J]. Polyer International,2003,52(8): 1396-1400.
    [81]Giannelis E. P., Krishnamoorti R., Manias E.. Polymer-silicate nanocomposites:Model systems for confined polymers and polymer brushes [J]. Polymers in Confined Environments,1999,138:107-147.
    [82]Ray S. S., Okamoto M.. Polymer/layered silicate nano-composites:a review from preparation to processing [J]. Prog. Polym. Sci.,2003,28:1539-1641.
    [83]Pavlidou S., Papaspyrides C. D.. A review on polymer-layered silicate nanocomposites. Prog. Polym. Sci.,2008,33(12),1119-1198.
    [84]Wang D. Y., Zhu J., Yao Q., Wilkie C. A.. Comparison of various methods for the preparation of polystyrene and poly(methyl methacrylate) clay nanocomposites [J]. Mater. Chem.,2002,14:3837-3843.
    [85]Paula D. R, Robeson L. M.. Polymer nanotechnology nanocomposites [J]. Polym.,2008, 49:3187-3204.
    [86]Rao Y. Q., Pochan J. M.. Mechanics of polymer-clay nanocomposites [J]. Macromolecules, 2007,40:290-296.
    [87]Yang L, Hu Y, Lu H, et al. Morphology, thermal, and mechanical properties of flame-retardant silicone rubber/montmorillonite nanocomposites[J]. Journal of applied polymer science,2006,99(6):3275-3280.
    [88]保华,王一中,余鼎声。有机蒙脱土的制备与表征[J].石油化工,1999,28(3):153-156.
    [89]王胜杰,李强,王新宇.聚苯乙烯/蒙脱土熔融插层复合的研究[J].高分子学报,1998,2(4):129-133.
    [90]In-Joo Chin, Thomas Thum-Albrecht, Ho-Cheol Kim, et al. Exfoliation of Montmorillonites in Epoxy Polymer Preprints,2000,41(1):591-592.
    [91]王立新,张楷亮,袁金凤,刘盘阁.环氧树脂对脂肪胺阳离子交换蒙脱石浸润行为的研究[J].河北工业大学学报,2000,29(4):24-28.
    [92]Zhu J, Uhl F M, Morgan A B, et al. Studies on the mechanism by which the formation of nanocomposites enhances thermal stability[J]. Chemistry of materials,2001,13(12): 4649-4654.
    [93]贾修伟.纳米阻燃材料[M].北京:化学工业出版社,2005.
    [94]刘军辉,张军,李枫.苯乙烯-丙烯酸丁酯/蒙脱土纳米复合材料[J].高分子材料科学与工程,2005,7:156-159.
    [95]You F, Shi Y, Hu Y. A Study on Developing Fire Retardant HIPS Nano-composites[J].火灾科学,2005,14(4):258-266.
    [96]Zanetti M, Camino G, Reichert P, et al. Thermal behaviour of poly (propylene) layered silicate nanocomposites[J]. Macromolecular rapid communications,2001,22(3):176-180.
    [97]Qin H, Zhang S, Zhao C, et al. Flame retardant mechanism of polymer/clay nanocomposites based on polypropylene[J]. Polymer,2005,46(19):8386-8395.
    [98]Sepehr M, Utracki L A, Zheng X, et al. Polystyrenes with macro-intercalated organoclay. Part I. Compounding and characterization[J]. Polymer,2005,46(25):11557-11568.
    [99]Bourbigot S, Devaux E, Flambard X. Flammability of polyamide-6/clay hybrid nanocomposite textiles[J]. Polymer Degradation and Stability,2002,75(2):397-402.
    [100]Zhang J, Jiang D D, Wilkie C A. Polyethylene and polypropylene nanocomposites based on a three component oligomerically-modified clay[J]. Polymer degradation and stability, 2006,91(4):641-648.
    [101]Zhang J, Jiang D D, Wilkie C A. Polyethylene and polypropylene nanocomposites based upon an oligomerically modified clay[J]. Thermochimica acta,2005,430(1):107-113.
    [102]Zhu J, Morgan A B, Lamelas F J, et al. Fire properties of polystyrene-clay nanocomposites[J]. Chemistry of materials,2001,13(10):3774-3780.
    [103]Zhang J, Wilkie C A. Fire retardancy of polyethylene-alumina trihydrate containing clay as a synergist[J]. Polymers for advanced technologies,2005,16(7):549-553.
    [104]Gilman J W, Jackson C L, Morgan A B, et al. Flammability properties of polymer-layered-silicate nanocomposites. Polypropylene and polystyrene nanocomposites[J]. Chemistry of Materials,2000,12(7):1866-1873.
    [105]Ma H. Y, Xu Z. B., Tong L. F., Gu A. G., Fang Z. P.. Studies of ABS-graft-maleic anhydride/clay nanocomposites:Morphologies, thermal stability and flammability properties. Polym. Degrad. Stab.,2006,91:2951-2959.
    [106]Shi Y, Kashiwagi T., Walters R. N., Gilman J. W., Lyon R. E., Sogah D. Y. Ethylene vinyl acetate/layered silicate nanocomposites prepared by a surfactant-free method:Enhanced flame retardant and mechanical properties [J]. Polym,2009,50:3478-3487.
    [107]余剑英.国外阻燃油毡研究与发展[J].化学建材,1995,(6):271-272.
    [108]吴少鹏.阻燃油毡的阻燃机理研究[J].中国建筑防水,1997,4:18-21.
    [109]李祖伟,陈辉强,牟建波,陈仕周.沥青阻燃改性技术研究及其阻燃机理[J].长沙交通学院学报,2002,18(4):44-47.
    [110]Wu S. P., Cong P. L., Yu J. Y., Luo X. F.,Mo L.T. Experimental investigation of related properties of asphalt binders containing various flame retardants[J].Fuel,2006,85 (9):1298-1304.
    [111]Yu J.Y., Cong P. L., Wu S. P. Investigation of the properties of asphalt and its mixtures containing flame retardant modifier [J]. Construction and Building Materials,2009,23(6): 2277-2282.
    [112]谭忆秋,蓝碧武,纪伦,等.隧道路面沥青常用阻燃剂改性技术研究方法[J].重庆交通大学学报:自然科学版,2009,28(004):711-714.
    [113]郭进存,廖克俭,戴跃玲.阻燃沥青的研制[J].辽宁石油化工大学学报,2005,25(2):5-8.
    [114]凌天清,张睿卓,宁华宇,袁明.膨胀型沥青阻燃剂阻燃性能研究[J].重庆交通大学学报,2011,30(5):948-952.
    [115]丁庆军,刘新权,沈凡,胡曙光.ATH沥青阻燃体系试验及机理分析[J].中国公路学报,2008,21(5):10-14.
    [116]Walters R B. Flame retarded asphalt blend composition:U.S. Patent 4,659,381 [P]. 1987-4-21.
    [117]何唯平,邓忠才,赵欣平,张红兵,李飞.一种阻燃改性沥青混合料[P].中国:CN1569963A,2005.
    [118]黄少龙,陈蔚,何唯平.阻燃改性沥青马蹄脂碎石(SMA)混合料[P].中国:CN1827696A,2006.
    [119]张世飙,丛培良,程松波,余剑英.ATH阻燃沥青混合料Superpave设计与性能研究[J].武汉理工大学学报,2008,30(12):54-57.
    [120]杨彦海,南雪峰,陈晓雪.环保型阻燃沥青性能分析与评价[J].公路,2012,3:182-186.
    [121]沈金安.改性沥青与SMA路面[M].北京:人民交通出版社,2001,1.
    [122]柳永行,范耀华,张昌祥.石油沥青[M].石油工业出版社,1984.
    [123]杨丽,周逸潇,韩新宇,等.阻燃剂阻燃机理的探讨[J].天津化工,2010,24(1):1-4.
    [124]姜敏,李波,王强.新型高效沥青阻燃剂的制备[J].新型建材,2011,(4):38-41.
    [125]汪关才,卢忠远,胡小平,张建华.无机阻燃剂的作用机理及研究现状[J].材料导报, 2007,21(2):47-50.
    [126]余剑英,魏连启,曹献坤,陈文怡.有机蛭石/酚醛树脂熔融插层纳米复合材料的研究叨.材料工程,2004,(4):20-23.
    [127]魏连启,余剑英.酚醛树脂、有机蛭石纳米复合材料的制备与结构表征[A].国家纳米科学中心、中国科学院纳米科技中心、中国颗粒学会.2004年中国纳米技术应用研讨会论文集[C].国家纳米科学中心、中国科学院纳米科技中心、中国颗粒学会:2004:10.
    [128]魏连启.酚醛树脂纳米复合材料及其在摩阻材料中的应用研究[D].武汉理工大学,2004.
    [129]侯欣鹏,康兴川,徐迪,矫阳,郭振涛.A1(OH)3及其复合阻燃体系对电缆护套料阻燃和力学性能的影响[J].中国塑料,2011,(09):43-47.
    [130]Zhang H, Yu J, Kuang D. Effect of expanded vermiculite on aging properties of bitumen[J]. Construction and Building Materials,2012,26(1):244-248.
    [131]Yu J. Y., Wang L, Zeng X, et al. Effect of montmorillonite on properties of styrene-butadiene-styrene copolymer modified bitumen[J]. Polymer Engineering & Science,2007,47(9):1289-1295.
    [132]Yu J. Y, Wang X. L., Hu L, et al. Effect of Various Organomodified Montmorillonites on the Properties of Montmorillonite/Bitumen Nanocomposites[J]. Journal of Materials in Civil Engineering,2010,22(8):788-793.
    [133]张铁江.常见阻燃剂的阻燃机理[J].化学工程与设备,2009,(10):114-115.
    [134]亓云霞,任强,李锦春等.膨胀蛭石协同膨胀型阻燃剂阻燃HDPE研究[J].现代材料加工应用,201 1,23(6):36-39.
    [135]姜敏,李波,王强等.新型高效沥青阻燃剂的制备[J].新型建材,2010,1:38-45.
    [136]宋超,苏俊杰.Mg(OH)2,Al(OH)3的阻燃机理与性能研究[J].中国新技术新产品.2010,17:1.
    [137]刘鑫.膨胀型阻燃剂/无极纳米粒子阻燃协效作用研究[D].武汉:武汉科技学院,2011
    [138]Saeed Ghaffarpour Jahromi, Ali Khodail.Effects of nanoclay on rheological properties of bitumen binder [J]. Construction and Building Materials,2009,23:2894-2904
    [139]时佳.热质联用仪对膨胀阻燃剂阻燃EVA的机理研究[D].保定:河北大学,2010.
    [140]Zhao Hou-yin, Cao Yan. Thermal characteristics of bitumen pyrolysis [J]. Therm Anal Calorim,2012, (107):541-547.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700